Construction of Watermelon Mutant Library Based on 60Co γ-ray Irradiation and EMS Treatment for Germplasm Innovation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Construction of the Mutant Library
2.3. Phenotypic Characterization of the Mutants
2.4. Measurement of the Physiological Indices of Mutant M1-5
2.5. Statistical Analysis
3. Results
3.1. Negative Effect of 60Co-γ Radiation on Seed Viability
3.2. Observation and Analysis of the M1 and M2 Generations
3.3. Morphological Screening of the Mutations Identified by 60Co γ-ray Irradiation and EMS Treatments
3.4. Statistical Analyses of the Contents of Photosynthetic Pigments and Photosynthetic Parameters in Mutant M1-5
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, K.; Lan, Z.; Liu, Q.; Xue, Y.; Yan, J.; Su, Z.; Cheng, M.; Luan, F.; Zhang, X.; Li, H. Screening of rootstocks with resistance to chilling and continuous cropping but without compromising fruit quality for protected watermelon production. Veg. Res. 2022, 2, 10. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Du, H.; Zhao, H.; Mao, A.; Zhang, X.; Jiang, L.; Zhang, H.; Wen, C.; Xu, Y. Genetic relationship and pedigree of Chinese watermelon varieties based on diversity of perfect SNPs. Hortic. Plant J. 2022, 8, 489–498. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, S.; Zhang, Y.; Tan, J.; Li, X.; Chu, X.; Xu, B.; Tian, Y.; Sun, Y.; Li, B.; et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 2022, 15, 1268–1284. [Google Scholar] [CrossRef] [PubMed]
- Paris, H.S. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann. Bot. 2015, 116, 133–148. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Reddy, U.; Sun, H.; Bao, K.; Gao, L.; Mao, L.; Patel, T.; Ortiz, C.; Abburi, V.L.; et al. Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnol. J. 2019, 17, 2246–2258. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, S.; Sun, H.; Wang, X.; Wu, S.; Lin, T.; Ren, Y.; Gao, L.; Deng, Y.; Zhang, J.; et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat. Genet. 2019, 51, 1616–1623. [Google Scholar] [CrossRef]
- Chen, C.; Cui, Q.-Z.; Huang, S.-W.; Wang, S.-H.; Liu, X.-H.; Lu, X.-Y.; Chen, H.-M.; Tian, Y. An EMS mutant library for cucumber. J. Integr. Agr. 2018, 17, 1612–1619. [Google Scholar] [CrossRef]
- Greene, E.A.; Codomo, C.A.; Taylor, N.E.; Henikoff, J.G.; Till, B.J.; Reynolds, S.H.; Enns, L.C.; Burtner, C.; Johnson, J.E.; Odden, A.R.; et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 2003, 164, 731–740. [Google Scholar] [CrossRef]
- Menda, N.; Semel, Y.; Peled, D.; Eshed, Y.; Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 2004, 38, 861–872. [Google Scholar] [CrossRef]
- Sikder, S.; Biswas, P.; Hazra, P.; Akhtar, S.; Chattopadhyay, A.; Badigannavar, A.M.; D’Souza, S.F. Induction of mutation in tomato (Solanum lycopersicum L.) by gamma irradiation and EMS. Indian J. Genet. Plant Breed. 2013, 73, 392. [Google Scholar] [CrossRef]
- Subramaniam, R.; Kumar, V.S. Ethyl methanesulphonate (EMS)-mediated mutagenesis induces genetic and morphological variations in eggplant (Solanum melongena L.). Int. J. Plant Biol. 2023, 14, 53. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, M.; Zhao, C.; Cui, Y.; Cai, Z.; Zhao, J.; Zheng, Y.; Xue, L.; Lei, J. Establishment of a mutant library of Fragaria nilgerrensis schlechtendal ex J. Gay via EMS mutagenesis. Horticulturae 2022, 8, 61. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Li, J.; Yang, X.; Ren, Z. Ethyl methanesulfonate (EMS)-mediated mutagenesis of cucumber (Cucumis sativus L.). Agr. Sci. 2014, 05, 716–721. [Google Scholar] [CrossRef]
- Zha, G.; Yin, J.; Cheng, F.; Song, M.; Zhang, M.; Obel, H.O.; Wang, Y.; Chen, J.; Lou, Q. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L.). BMC Plant Biol. 2022, 22, 570. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, H.; Pan, J.; Du, H.; Zhang, K.; Zhang, L.; Yu, Y.; He, H.; Cai, R.; Pan, J. CsUFO is involved in the formation of flowers and tendrils in cucumber. Theor. Appl. Genet. 2021, 134, 2141–2150. [Google Scholar] [PubMed]
- Rong, F.; Chen, F.; Huang, L.; Zhang, J.; Zhang, C.; Hou, D.; Cheng, Z.; Weng, Y.; Chen, P.; Li, Y. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2019, 132, 113–123. [Google Scholar] [CrossRef]
- Galpaz, N.; Burger, Y.; Lavee, T.; Tzuri, G.; Sherman, A.; Melamed, T.; Eshed, R.; Meir, A.; Portnoy, V.; Bar, E.; et al. Genetic and chemical characterization of an EMS induced mutation in Cucumis melo CRTISO gene. Arch. Biochem. Biophys. 2013, 539, 117–125. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Guo, S.; Ren, Y.; Li, M.; Wang, J.; Yu, Y.; Zhang, H.; Gong, G.; He, H.; et al. ClZISO mutation leads to photosensitive flesh in watermelon. Theor. Appl. Genet. 2022, 135, 1565–1578. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, J.; Jiang, Y.; Wang, X.; Gu, M.; Wang, Y.; Kang, H.; Fan, X.; Sha, L.; Zhang, H.; et al. 100 Gy 60Coγ-Ray induced novel mutations in tetraploid wheat. Sci. World J. 2014, 2014, 725813. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Huang, T.; Tang, Z.; Li, L.; Ding, X.; Lin, P.; Chen, M. SRAP Marker analysis of genomic mutation induced by 60Co γ-Ray irradiation in potato (Solanum tuberosum). Agr. Sci. Technol. 2013, 14, 1092. [Google Scholar]
- Dutta, S.; Hazra, P.; Saha, S.; Acharya, B.; Bhattacharjee, T.; Maurya, P.K.; Banerjee, S.; Chakraborty, I.; Chattopadhyay, A. Applied mutagenesis could improve economically important traits in bitter gourd (Momordica charantia L.). J. Genet. 2021, 100, 43. [Google Scholar] [CrossRef]
- Kurtar, E.; Balkaya, A.; Kandemir, D. Determination of semi-lethal (LD50) doses for mutation breeding of Turkish winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Fresenius Environ. Bull. 2017, 26, 3209–3216. [Google Scholar]
- Velkov, N.; Tomlekova, N.; Sarsu, F. Sensitivity of watermelon variety Bojura to mutant agents 60Co and EMS. J. Biosci. Biotechnol. 2016, 1, 105–110. [Google Scholar]
- Kantoğlu, K.Y. Effects of gamma irradiation on seed germination in watermelon (Citrullus lanatus (Thunb.) matsum & nakai) and determination of effective mutation dose. Alatarim 2022, 21, 10–17. [Google Scholar]
- Wang, C.; He, Y.; Li, C.; Zeng, Z.; Yang, J.; Ma, H.; Wei, C.; Zhang, X. Optimation of EMS mutation in watermelon germplasm M08. China Cucurbits Veg. 2021, 34, 26–31. [Google Scholar] [CrossRef]
- Yin, L.; Wang, C.; Li, C.; Ding, X.; Pan, X.; Yu, R.; Ma, H.; Chen, X.; Yang, J.; Zhang, X.; et al. Screening and phenotypic analysis of EMS induced mutants in watermelon. Acta Hortic. Sin. 2023; accepted. [Google Scholar]
- Wang, Z.; Yang, Y.; Yadav, V.; Zhao, W.; He, Y.; Zhang, X.; Wei, C. Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic. Plant J. 2022, 8, 615–626. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, N.; Gao, Q.; Liu, L.; Zhang, Y.; Feishi, L. Analysis of EMS mutation conditions of watermelon seed. J. Northeast Agric. Univ. 2015, 46, 35–39. [Google Scholar]
- Xu, X.; Lu, X.; Tang, Z.; Zhang, X.; Lei, F.; Hou, L.; Li, M. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (Cucurbita pepo L.). Food Chem. Mol. Sci. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Zong, H.; Liu, S.; Xing, R.; Chen, X.; Li, P. Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotox. Environ. Saf. 2017, 138, 271–278. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Li, L.; Hou, S.; Huo, Z.; Zhang, X. Optimization of conditions for mutagenesis of watermelon seeds with ethyl methanesulfonate. China Cucurbits Veg. 2022, 35, 81–85. [Google Scholar]
- Zhang, R.; Chang, J.; Li, J.; Lan, G.; Xuan, C.; Li, H.; Ma, J.; Zhang, Y.; Yang, J.; Tian, S.; et al. Disruption of the bHLH transcription factor Abnormal Tapetum 1 causes male sterility in watermelon. Hortic. Res. 2021, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Sim, T.-Y.; Ryu, J.; Rhee, S.-J.; Kim, Y.; Lee, G.P. Identification of a candidate locus and development of a molecular marker for male sterility in watermelon. Hortic. Sci. Technol. 2021, 39, 673–683. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, C.; Gu, Y.; Cheng, R.; Huang, D.; Liu, X.; Sun, Y. Physiological and transcriptomic analysis of a yellow leaf mutant in watermelon. Sci. Rep. 2023, 13, 9647. [Google Scholar] [CrossRef]
- Xu, M.; Gao, M.; Guo, Y.; Bao, X.; Liu, X.; Gao, Y. Photosynthetic characteristics of virescent mutant in watermelon. J. Northwest Univ. Nat. Sci. Ed. 2022, 50, 91–96+106. [Google Scholar]
Material | Germination Rate (%) | Emergence Rate (%) | Seedling Rate (%) |
---|---|---|---|
M08 | 95.45% | 90.91% | 88.18% |
M1 | 89.84% | 73.95% | 51.18% |
Traits | Mutant Description | Number of Plants | Mutation Frequency (%) |
---|---|---|---|
Leaf | Yellow leaf | 7 | 0.38 |
Pale gray leaf | 4 | 0.22 | |
Chimera color leaf | 6 | 0.32 | |
Deformed leaf | 66 | 3.56 | |
Large leaf | 2 | 0.11 | |
Small leaf | 3 | 0.16 | |
Stem | Shorter internode | 2 | 0.11 |
Flower | Bisexual flower | 40 | 2.16 |
Variation in petal numbers in male flowers | 15 | 0.81 | |
Variation in petal numbers in female flowers | 12 | 0.65 | |
Petal deformity | 10 | 0.54 | |
Clustered male flowers | 2 | 0.11 | |
Male sterility | 2 | 0.11 | |
Fruit | Stripe pattern variation | 6 | 0.32 |
Fruit color variation | 7 | 0.38 | |
Fruit shape variation | 4 | 0.22 | |
Flesh color variation | 1 | 0.05 | |
Pericarp thickness variation | 2 | 0.11 | |
Seedless | 1 | 0.05 | |
Others | Slow-growing | 4 | 0.22 |
Traits | Mutant Description | Number of Plants | Mutation Frequency (%) |
---|---|---|---|
Cotyledon | Cotyledon deformity | 1 | 0.4 |
Yellow cotyledon | 4 | 1.62 | |
Yellow-green cotyledon | 1 | 0.4 | |
Leaf | Deformed leaf | 9 | 3.64 |
Deep-lobed leaf | 2 | 0.81 | |
Stem | Shorter internode | 1 | 0.4 |
Flower | Bisexual flower | 4 | 1.62 |
Delayed flowering | 1 | 0.4 | |
Male sterility | 1 | 0.4 | |
Fruit | Variation in pericarp thickness | 11 | 4.45 |
Leaf | Material | Chl a (mg/g) | Chl b (mg/g) | Caro (mg/g) | Chl (mg/g) | Ratio of Chl a/b | Ratio of Caro/Chl |
---|---|---|---|---|---|---|---|
Young leaves | WT | 1.90 ± 0.01 b | 0.67 ± 0.03 b | 0.64 ± 0.01 b | 2.58 ± 0.02 b | 2.82 ± 0.13 c | 0.25 ± 0.01 c |
M1-5 | 1.00 ± 0.02 d | 0.22 ± 0.02 d | 0.59 ± 0.02 c | 1.22 ± 0.02 d | 4.52 ± 0.38 a | 0.48 ± 0.02 a | |
Mature leaves | WT | 2.15 ± 0.02 a | 0.75 ± 0.01 a | 0.74 ± 0.03 a | 2.90 ± 0.02 a | 2.86 ± 0.01 c | 0.25 ± 0.08 c |
M1-5 | 1.73 ± 0.02 c | 0.48 ± 0.02 c | 0.67 ± 0.03 b | 2.22 ± 0.01 c | 3.59 ± 0.16 b | 0.30 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Hou, Y.; Chen, X.; Huang, X.; Feng, M.; Wang, C.; Wang, Z.; Yue, Z.; Zhang, Y.; Ma, J.; et al. Construction of Watermelon Mutant Library Based on 60Co γ-ray Irradiation and EMS Treatment for Germplasm Innovation. Horticulturae 2023, 9, 1133. https://doi.org/10.3390/horticulturae9101133
Yin L, Hou Y, Chen X, Huang X, Feng M, Wang C, Wang Z, Yue Z, Zhang Y, Ma J, et al. Construction of Watermelon Mutant Library Based on 60Co γ-ray Irradiation and EMS Treatment for Germplasm Innovation. Horticulturae. 2023; 9(10):1133. https://doi.org/10.3390/horticulturae9101133
Chicago/Turabian StyleYin, Lijuan, Yinjie Hou, Xiaoyao Chen, Xin Huang, Mengjiao Feng, Chunxia Wang, Zhongyuan Wang, Zhen Yue, Yong Zhang, Jianxiang Ma, and et al. 2023. "Construction of Watermelon Mutant Library Based on 60Co γ-ray Irradiation and EMS Treatment for Germplasm Innovation" Horticulturae 9, no. 10: 1133. https://doi.org/10.3390/horticulturae9101133
APA StyleYin, L., Hou, Y., Chen, X., Huang, X., Feng, M., Wang, C., Wang, Z., Yue, Z., Zhang, Y., Ma, J., Li, H., Yang, J., Zhang, X., Yu, R., & Wei, C. (2023). Construction of Watermelon Mutant Library Based on 60Co γ-ray Irradiation and EMS Treatment for Germplasm Innovation. Horticulturae, 9(10), 1133. https://doi.org/10.3390/horticulturae9101133