Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose
Abstract
:1. Introduction
2. History of Watermelon Anthracnose
3. The Pathogen
3.1. The Causal Agent: Colletotrichum Orbiculare
3.2. Taxonomy
3.3. Fungal Morphology
3.4. Life and Disease Cycle
3.5. Infection Process
3.6. Disease Symptoms
3.7. Pathogenesis Genes and Effectors
3.8. Pathogen Races
4. Disease Management
4.1. Host Resistance
4.2. Crop Protection
5. Prospects and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Agricultural Production Statistics 2000–2021; FAOSTAT Analytical Brief Series No. 60; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- USDA-NASS. Vegetables 2022 Summary (February 2023). National Agricultural Statistics Service (United States Department of Agriculture). Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/hq37x121v/4b29ck28c/vegean23.pdf (accessed on 10 May 2023).
- Wehner, T.C. Watermelon. In Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Eds.; Part of Book Series: Handbook of Plant Breeding; Springer: New York, NY, USA, 2008; pp. 381–418. [Google Scholar]
- Keinath, A.P. Anthracnose. In Compendium of Cucurbit Diseases and Pests, 2nd ed.; Keinath, A.P., Wintermantel, W.M., Zitter, T.A., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2017; pp. 54–55. [Google Scholar]
- Layton, D.V. The Parasitism of Colletotrichum lagenarium (Pass.) Ell. and Halst.; Research Bulletin 223; Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts: Ames, IA, USA, 1937; pp. 37–67. [Google Scholar]
- Parris, G. Watermelon Breeding. Econ. Bot. 1949, 3, 193–212. [Google Scholar] [CrossRef]
- Thompson, D.; Jenkins, S. Influence of cultivar resistance, initial disease, environment, and fungicide concentration and timing on anthracnose development and yield loss in pickling cucumbers. Phytopathology 1985, 75, 1422–1427. [Google Scholar] [CrossRef]
- Gardner, M.W. Anthracnose of Cucurbits; U.S. Department of Agriculture Bulletin; U.S. Department of Agriculture: Washington, DC, USA, 1918; pp. 1–68.
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Prusky, D. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 1996, 34, 413–434. [Google Scholar] [CrossRef] [PubMed]
- von Arx, J.A. Die arten der gattung Colletotrichum Cda. Phytopathol. Z. 1957, 29, 413–468. [Google Scholar]
- von Arx, J.A. A revision of the fungi classified as Gloeosporium. Bibl. Mycol. 1970, 24, 1–203. [Google Scholar]
- Barrus, M.F. Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1911, 1, 190–195. [Google Scholar]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Wasilwa, L.; Correll, J.; Morelock, T.; McNew, R. Reexamination of races of the cucurbit anthracnose pathogen Colletotrichum orbiculare. Phytopathology 1993, 83, 1190–1198. [Google Scholar] [CrossRef]
- Shen, S.; Goodwin, P.; Hsiang, T. Infection of Nicotiana species by the anthracnose fungus, Colletotrichum orbiculare. Eur. J. Plant Pathol. 2001, 107, 767–773. [Google Scholar] [CrossRef]
- Kousik, C.S.; Brusca, J.; Turechek, W.W. Diseases and disease management strategies take top research priority in the Watermelon Research and Development Group members survey (2014 to 2015). Plant Health Prog. 2016, 17, 53–58. [Google Scholar] [CrossRef]
- Damm, U.; Cannon, P.F.; Liu, F.; Barreto, R.W.; Guatimosim, E.; Crous, P.W. The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds. Fungal Divers. 2013, 61, 29–59. [Google Scholar] [CrossRef]
- Kirk, P.M. Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/X437 (accessed on 12 October 2023).
- Liu, B.; Wasilwa, L.; Morelock, T.; O’Neill, N.; Correll, J. Comparison of Colletotrichum orbiculare and several allied Colletotrichum spp. for mtDNA RFLPs, intron RFLP and sequence variation, vegetative compatibility, and host specificity. Phytopathology 2007, 97, 1305–1314. [Google Scholar] [CrossRef]
- Kubo, Y.; Furusawa, I. Melanin biosysnthesis: Prerequisite for successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia. In The Fungal Spore and Disease Initiation in Plants and Animals; Cole, G.T., Hoch, H.C., Eds.; Springer: New York, NY, USA, 1991; pp. 205–218. [Google Scholar]
- Bell, A.A.; Wheeler, M.H. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol. 1986, 24, 411–451. [Google Scholar] [CrossRef]
- Jenkins, S.J.; Winstead, N. Observations on the sexual stage of Colletotrichum orbiculare. Science 1961, 133, 581–582. [Google Scholar] [CrossRef]
- Thompson, D.; Jenkins, S. Effect of temperature, moisture, and cucumber cultivar resistance on lesion size increase and conidial production by Colletotrichum lagenarium. Phytopathology 1985, 75, 828–832. [Google Scholar] [CrossRef]
- Monroe, J.; Santini, J.; Latin, R. A model defining the relationship between temperature and leaf wetness duration, and infection of watermelon by Colletotrichum orbiculare. Plant Dis. 1997, 81, 739–742. [Google Scholar] [CrossRef]
- Sheldon, J.L. Diseases of Melons and Cucumbers during 1903 and 1904; West Virginia Agricultural and Forestry Experiment Station Bulletin 94; West Virginia University Agricultural Experiment Station: Morgantown, WV, USA, 1904; pp. 119–138. [Google Scholar]
- Gan, P.; Ikeda, K.; Irieda, H.; Narusaka, M.; O’Connell, R.J.; Narusaka, Y.; Takano, Y.; Kubo, Y.; Shirasu, K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 2013, 197, 1236–1249. [Google Scholar] [CrossRef]
- Anderson, J.; Walker, J. Histology of watermelon anthracnose. Phytopathology 1962, 52, 650–653. [Google Scholar]
- Perfect, S.E.; Hughes, H.B.; O’Connell, R.J.; Green, J.R. Colletotrichum: A model genus for studies on pathology and fungal–plant interactions. Fungal Genet. Biol. 1999, 27, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, K.; Onozawa-Komori, M.; Takahashi, F.; Asakura, M.; Bednarek, P.; Okuno, T.; Schulze-Lefert, P.; Takano, Y. Entry mode–dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. Plant Cell 2010, 22, 2429–2443. [Google Scholar] [CrossRef] [PubMed]
- Irieda, H.; Takano, Y. Identification and characterization of virulence-related effectors in the cucumber anthracnose fungus Colletotrichum orbiculare. Physiol. Mol. Plant Pathol. 2016, 95, 87–92. [Google Scholar] [CrossRef]
- Gijzen, M.; Nürnberger, T. Nep1-like proteins from plant pathogens: Recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 2006, 67, 1800–1807. [Google Scholar] [CrossRef] [PubMed]
- Irieda, H.; Maeda, H.; Akiyama, K.; Hagiwara, A.; Saitoh, H.; Uemura, A.; Terauchi, R.; Takano, Y. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 2014, 26, 2265–2281. [Google Scholar] [CrossRef]
- Stephenson, S.-A.; Hatfield, J.; Rusu, A.G.; Maclean, D.J.; Manners, J.M. CgDN3: An essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol. Plant Microbe Interact. 2000, 13, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.; Irieda, H.; Sugimoto, F.; Yoshioka, H.; Okuno, T.; Takano, Y. Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3. Mol. Plant Microbe Interact. 2012, 25, 625–636. [Google Scholar] [CrossRef]
- Saitoh, H.; Fujisawa, S.; Mitsuoka, C.; Ito, A.; Hirabuchi, A.; Ikeda, K.; Irieda, H.; Yoshino, K.; Yoshida, K.; Matsumura, H. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog. 2012, 8, e1002711. [Google Scholar] [CrossRef]
- Zhang, R.; Isozumi, N.; Mori, M.; Okuta, R.; Singkaravanit-Ogawa, S.; Imamura, T.; Kurita, J.-I.; Gan, P.; Shirasu, K.; Ohki, S. Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana. J. Biol. Chem. 2021, 297, 101370. [Google Scholar] [CrossRef]
- Azmi, N.S.A.; Singkaravanit-Ogawa, S.; Ikeda, K.; Kitakura, S.; Inoue, Y.; Narusaka, Y.; Shirasu, K.; Kaido, M.; Mise, K.; Takano, Y. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on cucurbitaceae cultivars via plant recognition of the C-terminal region. Mol. Plant Microbe Interact. 2018, 31, 101–111. [Google Scholar] [CrossRef]
- Isozumi, N.; Inoue, Y.; Imamura, T.; Mori, M.; Takano, Y.; Ohki, S. Ca2+-dependent interaction between calmodulin and CoDN3, an effector of Colletotrichum orbiculare. Biochem. Biophys. Res. Commun. 2019, 514, 803–808. [Google Scholar] [CrossRef]
- Kleemann, J.; Rincon-Rivera, L.J.; Takahara, H.; Neumann, U.; van Themaat, E.V.L.; van der Does, H.C.; Hacquard, S.; Stüber, K.; Will, I.; Schmalenbach, W. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog. 2012, 8, e1002643. [Google Scholar] [CrossRef]
- Kubo, Y.; Takano, Y. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J. Gen. Plant Pathol. 2013, 79, 233–242. [Google Scholar] [CrossRef]
- Irieda, H.; Inoue, Y.; Mori, M.; Yamada, K.; Oshikawa, Y.; Saitoh, H.; Uemura, A.; Terauchi, R.; Kitakura, S.; Kosaka, A. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc. Natl. Acad. Sci. USA 2019, 116, 496–505. [Google Scholar] [CrossRef]
- Kubo, Y.; Takano, Y.; Endo, N.; Yasuda, N.; Tajima, S.; Furusawa, I. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Appl. Environ. Microbiol. 1996, 62, 4340–4344. [Google Scholar] [CrossRef] [PubMed]
- Perpetua, N.S.; Kubo, Y.; Yasuda, N.; Takano, Y.; Furusawa, I. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol. Plant Microbe Interact. 1996, 9, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Kubo, Y.; Shimizu, K.; Mise, K.; Okuno, T.; Furusawa, I. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol. Gen. Genet. 1995, 249, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, G.; Kenmochi, Y.; Takano, Y.; Sweigard, J.; Farrall, L.; Furusawa, I.; Horino, O.; Kubo, Y. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn (II) 2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol. Microbiol. 2000, 38, 940–954. [Google Scholar] [PubMed]
- Tsuji, G.; Sugahara, T.; Fujii, I.; Yuichiro, M.; Ebizuka, Y.; Shiraishi, T.; Yasuyuki, K. Evidence for involvement of two naphthol reductases in the first reduction step of melanin biosynthesis pathway of Colletotrichum lagenarium. Mycol. Res. 2003, 107, 854–860. [Google Scholar] [CrossRef]
- Goode, M.J. Physiological specialization in Colletotrichum lagenarium. Phytopathology 1958, 48, 79–83. [Google Scholar]
- Dutta, S.; Hall, C.; Heyne, E. Observations on the physiological races of Colletotrichum lagenarium. Bot. Gaz. 1960, 121, 163–166. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Winstead, N.N.; McCombs, C.L. Pathogenic comparisons of three new and four previously described races of Glomerella cingulata var. orbiculare. Plant Dis. Rep. 1964, 48, 619–622. [Google Scholar]
- Wasilwa, L.; Correll, J.; Morelock, T. Further characterization of Colletotrichum orbiculare for vegetative compatibility and virulence. Phytopathology 1996, 86, S62. [Google Scholar]
- Boyhan, G.; Norton, J.; Abrahams, B.; Wen, H. A new source of resistance to anthracnose (Race 2) in watermelon. HortScience 1994, 29, 111–112. [Google Scholar] [CrossRef]
- Correa, E.; Crosby, K.; Malla, S. Optimizing a seedling screening method for anthracnose resistance in watermelon. Plant Health Prog. 2021, 22, 536–543. [Google Scholar] [CrossRef]
- Keinath, A.P. Identification of races of Colletotrichum orbiculare on muskmelon in South Carolina. Plant Health Prog. 2015, 16, 88–89. [Google Scholar] [CrossRef]
- Sowell, G., Jr.; Rhodes, B.; Norton, J. New sources of resistance to watermelon anthracnose [Colletotrichum langenarium]. J. Am. Soc. Hortic. Sci. 1980, 105, 197–199. [Google Scholar] [CrossRef]
- Suvanprakorn, K.; Norton, J. Inheritance of resistance to race 2 anthracnose [caused by Coletotrichum lagenarium] in watermelon. J. Am. Soc. Hortic. Sci. 1980, 106, 862–865. [Google Scholar] [CrossRef]
- Winstead, N.; Goode, M.; Barham, W. Resistance in watermelon to Colletotrichum lagenarium races 1, 2, and 3. Plant Dis. Rep. 1959, 43, 570–577. [Google Scholar]
- Andrus, C.F. New watermelon varieties: Bring new life to that industry. Seed World 1955, 4, 36–40. [Google Scholar]
- Jenkins, S.F.; Winstead, N. Glomerella magna, cause of a new anthracnose of cucurbits. Phytopathology 1964, 54, 452–454. [Google Scholar]
- Love, S.; Rhodes, B. Single gene control of anthracnose resistance in Citrullus? Cucurbit Genet. Coop. Rep. 1988, 11, 64–67. [Google Scholar]
- Jang, Y.J.; Seo, M.; Hersh, C.P.; Rhee, S.-J.; Kim, Y.; Lee, G.P. An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. Theor. Appl. Genet. 2019, 132, 473–488. [Google Scholar] [CrossRef]
- Bhatta, B.P.; Patel, T.; Correa, E.; Wehner, T.C.; Crosby, K.M.; Thomson, M.J.; Metz, R.; Wang, S.; Brun, M.; Johnson, C.D.; et al. Dissection of race 1 anthracnose resistance in a watermelon (Citrullus lanatus var. lanatus) biparental mapping population. Euphytica 2022, 218, 157. [Google Scholar] [CrossRef]
- FRAC. FRAC Code List ©*2018: Fungicides Sorted by Mode of Action (Including FRAC Code Numbering); Fungicide Resistance Action Committee: Brussels, Belgium, 2018. [Google Scholar]
- Adams, M.L.; Noël, N.A.; Collins, H.; Quesada-Ocampo, L.M. Evaluation of fungicides for control of anthracnose on cucumber, Clinton 2017. Plant Dis. Manag. Rep. 2018, 12, V099. [Google Scholar]
- Egel, D.S.; Marchino, C. Evaluation of systemic fungicide timing for the control of anthracnose on watermelon, 2017. Plant Dis. Manag. Rep. 2018, 12, V049. [Google Scholar]
- Everts, K.L.; Korir, R.C. Evaluation of fungicides for management of foliar diseases on watermelon, 2016. Plant Dis. Manag. Rep. 2017, 11, V022. [Google Scholar]
- Everts, K.L.; Korir, R.C. Evaluation of fungicide programs for management of foliar diseases on watermelon, 2017. Plant Dis. Manag. Rep. 2018, 12, V039. [Google Scholar]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2013, 45, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.J.; Ojiambo, P.S.; Hausbeck, M.K.; Quesada-Ocampo, L.; Keinath, A.P. Resurgence of cucurbit downy mildew in the United States: A watershed event for research and extension. Plant Dis. 2015, 99, 428–441. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Level of Resistance | Race | Company |
---|---|---|---|
SSX8585 | High | 1 | Sakata, Yokohama, Japan |
Valentino | High | 1 | Sakata, Yokohama, Japan |
Belmont | Intermediate | 1 | Sakata, Yokohama, Japan |
Sweet Treasure | Intermediate | 1 | Sakata, Yokohama, Japan |
Fascination | Intermediate | 1 | Syngenta, Basel, Switzerland |
Melody | Intermediate | 1 | Syngenta, Basel, Switzerland |
Excursion | Intermediate | 1 | Syngenta, Basel, Switzerland |
Captivation | Intermediate | 1 | Syngenta, Basel, Switzerland |
Cooperstown | High | 1 | Seminis, St. Louis, MO, USA |
Majestic | High | ? † | Seminis, St. Louis, MO, USA |
Road Trip | High | ? | Seminis, St. Louis, MO, USA |
Santa Matilde | High | 1 | Seminis, St. Louis, MO, USA |
HMX 1925 | Intermediate | 1 | HM Clause, Davis, CA, USA |
Maistros F1 | High | 1 | HM Clause, Davis, CA, USA |
Accomplice | High | 1 | HM Clause, Davis, CA, USA |
Millennium | High | 1 | HM Clause, Davis, CA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, T.; Quesada-Ocampo, L.M.; Wehner, T.C.; Bhatta, B.P.; Correa, E.; Malla, S. Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae 2023, 9, 1132. https://doi.org/10.3390/horticulturae9101132
Patel T, Quesada-Ocampo LM, Wehner TC, Bhatta BP, Correa E, Malla S. Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae. 2023; 9(10):1132. https://doi.org/10.3390/horticulturae9101132
Chicago/Turabian StylePatel, Takshay, Lina M. Quesada-Ocampo, Todd C. Wehner, Bed Prakash Bhatta, Edgar Correa, and Subas Malla. 2023. "Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose" Horticulturae 9, no. 10: 1132. https://doi.org/10.3390/horticulturae9101132
APA StylePatel, T., Quesada-Ocampo, L. M., Wehner, T. C., Bhatta, B. P., Correa, E., & Malla, S. (2023). Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae, 9(10), 1132. https://doi.org/10.3390/horticulturae9101132