Wild Malus niedzwetzkyana Dieck ex Koehne as a Genetic Resource for Fire Blight Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. SSR Profiling
2.3. In Vitro Cultivation of M. niedzwetzkyana Genotypes
2.4. Screening of a Local E. amylovora Strain
2.5. E. amylovora Inoculation Test
- 0, no reaction;
- 1, slight trichome development, necrosis of less than 5% of leaf matter;
- 2, moderate trichome development, necrosis of up to 10% of leaf matter localized around the lesion;
- 3, moderate to severe trichome development, necrosis of up to 25% of leaf matter, necrosis progression rootward, severe wilting in adjacent leaves;
- 4, the occurrence of ooze droplets, severe witling of leaves away from the lesion, necrosis both rootward and upward, and up to 35% plant matter affected;
- 5, necrosis affecting up to 50% of leaves, several instances of ooze droplets.
2.6. FBF7 QTL Identification
3. Results
3.1. SSR Profiling
3.2. Screening of a Local E. amylovora Strain
3.3. E. amylovora Inoculation Test
3.4. FBF7 QTL Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Marker | Primer Sequence (5′–3′) | Fluorescent Dye | Linkage Group | Multiplex Group |
---|---|---|---|---|
GD12 | F-TTGAGGTGTTTCTCCCATTGGA R-CTAACGAAGCCGCCATTTCTTT | TAMRA | 3 | III |
GD147 | F-TCCCGCCATTTCTCTGC R-GTTTAAACCGCTGCTGCTGAAC | ATTO565 | 13 | III |
CH01h10 | F-TGCAAAGATAGGTAGATATATGCCA R-AGGAGGGATTGTTTGTGCAC | HEX | 8 | II |
CH01h01 | F-GAAAGACTTGCAGTGGGAGC R-GGAGTGGGTTTGAGAAGGTT | TAMRA | 17 | II |
CH04c07 | F-GGCCTTCCATGTCTCAGAAG R-CCTCATGCCCTCCACTAACA | 6-FAM | 14 | II |
Hi02c07 | F-AGAGCTACGGGGATCCAAAT R-GTTTAAGCATCCCGATTGAAAGG | ATTO565 | 1 | II |
CH01f03b | F-GAGAAGCAAATGCAAAAC CC R-CTCCCCGGCTCCTATTCTAC | HEX | 9 | III |
CH02d08 | F-TCCAAAATGGCGTACCTCTC R-GCAGACACTCACTCACTATCTCTC | HEX | 11 | I |
CH02c11 | F-TGAAGGCAATCACTCTGTGC R-TTCCGAGAATCCTCTTCGAC | TAMRA | 10 | I |
CH04e05 | F-AGGCTAACAGAAATGTGGTTTG R-ATGGCTCCTATTGCCATCAT | 6-FAM | 7 | I |
CH01f02 | F-ACCACATTAGAGCAGTTGAGG R-CTGGTTTGTTTTCCTCCAGC | 6-FAM | 12 | III |
CH02c09 | F-TTATGTACCAACTTTGCTAACCTC R-AGAAGCAGCAGAGGAGGATG | ATTO565 | 15 | I |
References
- Janick, J. Wild Apple and Fruit Trees of Central Asia. In Horticultural Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 29, p. 416. ISBN 978-0-47065-086-8. [Google Scholar]
- Wilson, B.; Mills, M.; Kulikov, M.; Clubbe, C. The Future of Walnut–Fruit Forests in Kyrgyzstan and the Status of the Iconic Endangered Apple Malus niedzwetzkyana. Oryx 2019, 53, 415–423. [Google Scholar] [CrossRef]
- Eastwood, A.; Lazkov, G.; Newton, A.C. The Red List of Trees of Central Asia; Fauna and Flora International: Cambridge, UK, 2009; ISBN 978-1-90370-327-4. [Google Scholar]
- The Red Data Book of the Republic of Kazakhstan, 4th ed.; DPS: Almaty, Kazakhstan, 2010; Volume 2, ISBN 9-96-532738-6.
- Ji, X.-H.; Wang, Y.-T.; Zhang, R.; Wu, S.-J.; An, M.-M.; Li, M.; Wang, C.-Z.; Chen, X.-L.; Zhang, Y.-M.; Chen, X.-S. Effect of Auxin, Cytokinin and Nitrogen on Anthocyanin Biosynthesis in Callus Cultures of Red-Fleshed Apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss. Organ. Cult. 2015, 120, 325–337. [Google Scholar] [CrossRef]
- Yan, G.; Long, H.; Song, W.; Chen, R. Genetic Polymorphism of Malus sieversii Populations in Xinjiang, China. Genet. Resour. Crop Evol. 2008, 55, 171–181. [Google Scholar] [CrossRef]
- Harris, S.A.; Robinson, J.P.; Juniper, B.E. Genetic Clues to the Origin of the Apple. Trends Genet. 2002, 18, 426–430. [Google Scholar] [CrossRef]
- Omasheva, M.E.; Chekalin, S.V.; Galiakparov, N.N. Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers. Russ. J. Genet. 2015, 51, 647–652. [Google Scholar] [CrossRef]
- Yang, M.; Che, S.; Zhang, Y.; Song, W.; Yan, G.; Yu, W. Malus niedzwetzkyana (Dieck) Langenf Transcriptome Comparison and Phylogenetic Analysis with Malus sieversii (Ledeb) Roem. Genet. Resour. Crop Evol. 2020, 67, 313–323. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, S.; Zhang, Z.; Fang, H.; Xu, H.; Wang, Y.; Chen, X. Malus sieversii: The Origin, Flavonoid Synthesis Mechanism, and Breeding of Red-Skinned and Red-Fleshed Apples. Hortic. Res. 2018, 5, 70. [Google Scholar] [CrossRef]
- Flachowsky, H.; Szankowski, I.; Fischer, T.C.; Richter, K.; Peil, A.; Höfer, M.; Dörschel, C.; Schmoock, S.; Gau, A.E.; Halbwirth, H.; et al. Transgenic Apple Plants Overexpressing the Lc Gene of Maize Show an Altered Growth Habit and Increased Resistance to Apple Scab and Fire Blight. Planta 2010, 231, 623–635. [Google Scholar] [CrossRef]
- Oh, C.-S.; Beer, S.V. Molecular Genetics of Erwinia amylovora Involved in the Development of Fire Blight. FEMS Microbiol. Lett. 2005, 253, 185–192. [Google Scholar] [CrossRef]
- Calenge, F.; Drouet, D.; Denancé, C.; Van de Weg, W.E.; Brisset, M.-N.; Paulin, J.-P.; Durel, C.-E. Identification of a Major QTL Together with Several Minor Additive or Epistatic QTLs for Resistance to Fire Blight in Apple in Two Related Progenies. Theor. Appl. Genet. 2005, 111, 128–135. [Google Scholar] [CrossRef]
- Khan, M.A.; Durel, C.-E.; Duffy, B.; Drouet, D.; Kellerhals, M.; Gessler, C.; Patocchi, A. Development of Molecular Markers Linked to the ‘Fiesta’ Linkage Group 7 Major QTL for Fire Blight Resistance and Their Application for Marker-Assisted Selection. Genome 2007, 50, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Durel, C.-E.; Denancé, C.; Brisset, M.-N. Two Distinct Major QTL for Resistance to Fire Blight Co-Localize on Linkage Group 12 in Apple Genotypes “Evereste” and Malus Floribunda Clone 821. Genome 2009, 52, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Peil, A.; Emeriewen, O.F.; Khan, A.; Kostick, S.; Malnoy, M. Status of Fire Blight Resistance Breeding in Malus. J. Plant Pathol. 2021, 103, 3–12. [Google Scholar] [CrossRef]
- Papp, D.; Békefi, Z.; Balotai, B.; Tóth, M. Identification of Marker Alleles Linked to Fire Blight Resistance QTLs in Apple Genotypes. Plant Breed. 2015, 134, 345–349. [Google Scholar] [CrossRef]
- Omasheva, M.Y.; Pozharskiy, A.S.; Maulenbay, A.D.; Ryabushkina, N.A.; Galiakparov, N.N. SSR Genotyping of Kazakhstani Apple Varieties: Identification of Alleles Associated with Resistance to Highly Destructive Pathogens. Eurasian J. Appl. Biotechnol. 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Amraee, L.; Rahmani, F. Modified CTAB Protocol for RNA Extraction from Lemon Balm (Melissa officinalis L.). Acta Agric. Slov. 2020, 115, 53–57. [Google Scholar] [CrossRef]
- Hemmat, M.; Weeden, N.F.; Brown, S.K. Mapping and Evaluation of Malus × domestica Microsatellites in Apple and Pear. J. Am. Soc. Hortic. Sci. 2003, 128, 515–520. [Google Scholar] [CrossRef]
- Hokanson, S.C.; Szewc-McFadden, A.K.; Lamboy, W.F.; McFerson, J.R. Microsatellite (SSR) Markers Reveal Genetic Identities, Genetic Diversity and Relationships in a Malus × domestica Borkh. Core Subset Collection. Theor. Appl. Genet. 1998, 97, 671–683. [Google Scholar] [CrossRef]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; Van De Weg, E.; Gessler, C. Development and Characterisation of 140 New Microsatellites in Apple (Malus × domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Richards, C.M.; Volk, G.M.; Reilley, A.A.; Henk, A.D.; Lockwood, D.R.; Reeves, P.A.; Forsline, P.L. Genetic Diversity and Population Structure in Malus sieversii, a Wild Progenitor Species of Domesticated Apple. Tree Genet. Genomes 2009, 5, 339–347. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, F. Common Set of ECPGR SSR Markers for Malus Characterization; Bioversity International: Weggis, Switzerland, 2013. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Nurtaza, A.; Magzumova, G.; Yessimseitova, A.; Karimova, V.; Shevtsov, A.; Silayev, D.; Lutsay, V.; Ramankulov, Y.; Kakimzhanova, A. Micropropagation of the Endangered Species Malus niedzwetzkyana for Conservation Biodiversity in Kazakhstan. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 965–976. [Google Scholar] [CrossRef]
- PM 7/20 (3) Erwinia amylovora. EPPO Bull. 2022, 52, 198–224. [CrossRef]
- Schaad, N.W.; Jones, J.B.; Chun, W. Laboratory Guide for the Identification of Plant Pathogenic Bacteria, 3rd ed.; American Phytopathological Society (APS Press): St Paul, MI, USA, 2001; ISBN 0-89-054263-5. [Google Scholar]
- Gottsberger, R.A. Development and Evaluation of a Real-time PCR Assay Targeting Chromosomal DNA of Erwinia amylovora. Lett. Appl. Microbiol. 2010, 51, 285–292. [Google Scholar] [CrossRef] [PubMed]
- De Lima, J.E.O.; Miranda, V.S.; Hartung, J.S.; Brlansky, R.H.; Coutinho, A.; Roberto, S.R.; Carlos, E.F. Coffee Leaf Scorch Bacterium: Axenic Culture, Pathogenicity, and Comparison with Xylella fastidiosa of Citrus. Plant Dis. 1998, 82, 94–97. [Google Scholar] [CrossRef]
- Cock, P.J.A.; Chilton, J.M.; Grüning, B.; Johnson, J.E.; Soranzo, N. NCBI BLAST+ Integrated into Galaxy. GigaScience 2015, 4, s13742-015-0080-7. [Google Scholar] [CrossRef]
- Cabrefiga, J.; Montesinos, E. Lysozyme Enhances the Bactericidal Effect of BP100 Peptide against Erwinia amylovora, the Causal Agent of Fire Blight of Rosaceous Plants. BMC Microbiol. 2017, 17, 39. [Google Scholar] [CrossRef]
- Mendes, R.J.; Sario, S.; Luz, J.P.; Tassi, N.; Teixeira, C.; Gomes, P.; Tavares, F.; Santos, C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. Plants 2021, 10, 2637. [Google Scholar] [CrossRef]
- Peil, A.; Bus, V.G.M.; Geider, K.; Richter, K.; Flachowsky, H.; Hanke, M.-V. Improvement of Fire Blight Resistance in Apple and Pear. Int. J. Plant Breed. 2009, 3, 1–27. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Smits, T.H.M.; Rezzonico, F.; Kamber, T.; Blom, J.; Goesmann, A.; Frey, J.E.; Duffy, B. Complete Genome Sequence of the Fire Blight Pathogen Erwinia Amylovora CFBP 1430 and Comparison to Other Erwinia Spp. Mol. Plant-Microbe Interact. 2010, 23, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Slack, S.M.; Zeng, Q.; Outwater, C.A.; Sundin, G.W. Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze. Phytopathology 2017, 107, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Duffy, B.; Gessler, C.; Patocchi, A. QTL Mapping of Fire Blight Resistance in Apple. Mol. Breed. 2006, 17, 299–306. [Google Scholar] [CrossRef]
- Rauzin, E. The Role of Wild Fruit Species in the Development of Modern Horticulture and the Experience of Preserving Their Gene Pool; DPS: Almaty, Kazakhstan, 2007. [Google Scholar]
- Bus, V.; Brewer, L.; Morgan, C. Observations on Scab Resistance in Interspecific Pear Seedling Families. Acta Hortic. 2013, 976, 493–498. [Google Scholar] [CrossRef]
- Aleksanyan, S.; Ponomarenko, V.; Burmistrov, L.; Smekalova, T.; Sorokin, A. Modern Methods and International Experience of Preserving the Gene Pool of Wild Plants (on the Example of Wild Fruits); United Nations Development Program in Kazakhstan: Almaty, Kazakhstan, 2011; ISBN 978-6-01703-220-3. [Google Scholar]
- Vitkovsky, V. Fruit Plants of the World; Lan’: Saint-Petersburg, Russia, 2003. [Google Scholar]
- Emeriewen, O.; Richter, K.; Kilian, A.; Zini, E.; Hanke, M.-V.; Malnoy, M.; Peil, A. Identification of a Major Quantitative Trait Locus for Resistance to Fire Blight in the Wild Apple Species Malusfusca. Mol. Breed. 2014, 34, 407–419. [Google Scholar] [CrossRef]
- Emeriewen, O.F.; Richter, K.; Berner, T.; Keilwagen, J.; Schnable, P.S.; Malnoy, M.; Peil, A. Construction of a Dense Genetic Map of the Malus Fusca Fire Blight Resistant Accession MAL0045 Using Tunable Genotyping-by-Sequencing SNPs and Microsatellites. Sci. Rep. 2020, 10, 16358. [Google Scholar] [CrossRef]
- Kairova, G.; Daulet, N.; Solomadin, M.; Sandybayev, N.; Orkara, S.; Beloussov, V.; Kerimbek, N.; Gritsenko, D.; Sapakhova, Z. Identification of Apple Varieties Resistant to Fire Blight (Erwinia amylovora) Using Molecular Markers. Horticulturae 2023, 9, 1000. [Google Scholar] [CrossRef]
- Omasheva, M.Y.; Flachowsky, H.; Ryabushkina, N.A.; Pozharskiy, A.S.; Galiakparov, N.N.; Hanke, M.-V. To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genet. Genomes 2017, 13, 52. [Google Scholar] [CrossRef]
- Baumgartner, I.O.; Patocchi, A.; Franck, L.; Kellerhals, M.; Broggini, G.A.L. Fire Blight Resistance from “Evereste” and Malus sieversii Used in Breeding for New High Quality Apple Cultivars: Strategies and Results. Acta Hortic. 2011, 896, 391–397. [Google Scholar] [CrossRef]
- Harshman, J.M.; Evans, K.M.; Allen, H.; Potts, R.; Flamenco, J.; Aldwinckle, H.S.; Wisniewski, M.E.; Norelli, J.L. Fire Blight Resistance in Wild Accessions of Malus sieversii. Plant Dis. 2017, 101, 1738–1745. [Google Scholar] [CrossRef]
Gen, Locus | Marker | Primer Sequence (5′–3′) | PCR Cycling |
---|---|---|---|
F7 QTL | AE10-375 | F-CTGAAGCGCACGTTCTCC | 1× 95 °C—3 min, 35× (95 °C—40 s; 60 °C—40 s; 72 °C—60 s), 1× 72 °C—10 min. |
R-CTGAAGCGCATCATTTCTGATAG | |||
F7 QTL | GE80-19 | F-TTGAGACCGATTTTCGTGTG | 1× 95 °C—3 min, 35× (95 °C—40 s; 60 °C—40 s; 72 °C—60 s), 1× 720 °C—10 min |
R-TCTCTCCCAGAGCTTCATTGT |
Sample | Fire Blight Marker | Symptoms | Infection Severity |
---|---|---|---|
2 | AE10-375 | Severe necrosis in five adjacent leaves | 3 |
3 | AE10-375 | Small area of leaf necrosis, moderate trichome development | 2 |
9 | AE10-375 | Necrosis of 30% of shoot, severe wilting, moderate trichome development | 4 |
10 | AE10-375 | Necrosis of 7% of adjacent leaf, wilting of the shoot upwards from the lesion, limited effect rootward | 2 |
12 | AE10-375 | Ooze production, severe wilting incl. downwards from the lesion, trichome development | 4 |
1-W | AE10-375 | Necrosis of less than 1% of leaves | 1 |
2-W | AE10-375 | Slight trichome development | 1 |
3-W | GE80-19 | Slight trichome development | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolchenko, M.; Nurtaza, A.; Pozharskiy, A.; Dyussembekova, D.; Kapytina, A.; Nizamdinova, G.; Khusnitdinova, M.; Taskuzhina, A.; Kakimzhanova, A.; Gritsenko, D. Wild Malus niedzwetzkyana Dieck ex Koehne as a Genetic Resource for Fire Blight Resistance. Horticulturae 2023, 9, 1066. https://doi.org/10.3390/horticulturae9101066
Kolchenko M, Nurtaza A, Pozharskiy A, Dyussembekova D, Kapytina A, Nizamdinova G, Khusnitdinova M, Taskuzhina A, Kakimzhanova A, Gritsenko D. Wild Malus niedzwetzkyana Dieck ex Koehne as a Genetic Resource for Fire Blight Resistance. Horticulturae. 2023; 9(10):1066. https://doi.org/10.3390/horticulturae9101066
Chicago/Turabian StyleKolchenko, Mariya, Aidana Nurtaza, Alexandr Pozharskiy, Damira Dyussembekova, Anastasiya Kapytina, Gulnaz Nizamdinova, Marina Khusnitdinova, Aisha Taskuzhina, Almagul Kakimzhanova, and Dilyara Gritsenko. 2023. "Wild Malus niedzwetzkyana Dieck ex Koehne as a Genetic Resource for Fire Blight Resistance" Horticulturae 9, no. 10: 1066. https://doi.org/10.3390/horticulturae9101066
APA StyleKolchenko, M., Nurtaza, A., Pozharskiy, A., Dyussembekova, D., Kapytina, A., Nizamdinova, G., Khusnitdinova, M., Taskuzhina, A., Kakimzhanova, A., & Gritsenko, D. (2023). Wild Malus niedzwetzkyana Dieck ex Koehne as a Genetic Resource for Fire Blight Resistance. Horticulturae, 9(10), 1066. https://doi.org/10.3390/horticulturae9101066