RNA-Seq of Tomato Fruit-Alternaria Chitin Oligomer Interaction Reveals Genes Encoding Chitin Membrane Receptors and the Activation of the Defense Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Fungal Chitin Oligomers
2.3. Postharvest Application of Chitin Oligomers
2.4. RNA Isolation from Tomato Fruits
2.5. RNA-Seq Library Construction and Sequencing
2.6. RNA-Seq Processing
2.7. Mapping the Short Reads to the Tomato Genome
2.8. Differential Gene Expression and Enrichment Analysis
2.9. Gene Expression Based on qRT-PCR
2.10. Statistical Analysis
3. Results and Discussion
3.1. Gene Expression Analysis
3.2. Expression of the Genes Encoding Chitin-Binding Receptors of Alternaria Chitin Oligomers
3.3. Signaling Molecules Were Differentially Expressed in Response to Fungal Chitin Oligomers
3.4. Alternaria Chitin Oligomer Perception Induces Changes in the Expression of Genes Encoding Defense-Related Proteins in Tomato Fruit
3.5. Validation of the Results Obtained In Silico by qRT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kitinoja, L.; Kader, A.A. Measuring postharvest losses of fresh fruits and vegetables in developing countries. Postharvest Educ. Found. 2015, 15, 26. [Google Scholar]
- Pane, C.; Fratianni, F.; Parisi, M.; Nazzaro, F.; Zaccardelli, M. Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop. Protect. 2016, 84, 81–87. [Google Scholar] [CrossRef]
- Troncoso-Rojas, R.; Tiznado-Hernández, M. Alternaria alternata (black rot, black spot). In Postharvest Decay of Fruits and Vegetables: Control Strategies; Bautista-Baños, S., Ed.; Elsevier, Inc.: Amsterdam, The Netherlands, 2014; pp. 147–187. [Google Scholar]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- European Commission. Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115. 2022, pp. 1–71. Available online: https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides_en (accessed on 14 June 2023).
- Fu, D.; Xiang, H.; Yu, C.; Zheng, X.; Yu, T. Colloidal chitin reduces disease incidence of wounded pear fruit inoculated by Penicillium expansum. Postharvest Biol. Technol. 2016, 111, 1–5. [Google Scholar] [CrossRef]
- Sun, C.; Fu, D.; Jin, L.; Chen, M.; Zheng, X.; Yu, T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr. Polym. 2018, 199, 341–352. [Google Scholar] [CrossRef]
- Valle-Sotelo, E.; Troncoso-Rojas, R.; Tiznado-Hernández, M.; Carvajal-Millan, E.; Estrada, A.; García, Y. Bioefficacy of fungal chitin oligomers in the control of postharvest decay in tomato fruit. Int. Food Res. J. 2022, 29, 1131–1142. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers 2019, 11, 839. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, S.K.; Singh, M.K.; Sharma, I.; Sharma, P.; Pooja, K.; Saini, A.K.; Voraha, R.; Sharma, A.; Upadhyay, T.K.; et al. Chitin, Chitinases and Chitin Derivatives in Biopharmaceutical, Agricultural and Environmental Perspective. Biointerface Res. Appl. Chem. 2021, 11, 9985–10005. [Google Scholar]
- Sanchez-Vallet, A.; Mesters, J.R.; Thomma, B.P. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol. Rev. 2015, 39, 171–183. [Google Scholar] [CrossRef]
- Bozsoki, Z.; Cheng, J.; Feng, F.; Gysel, K.; Vinther, M.; Andersen, K.R.; Oldroyd, G.; Blaise, M.; Radutoiu, S.; Stougaard, J. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc. Natl. Acad. Sci. USA 2017, 114, E8118–E8127. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, K. Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection. Plant Signal. Behav. 2017, 12, e1271859. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhou, L.; Jamieson, P.; Zhang, L.; Zhao, Z.; Babilonia, K.; Shao, W.; Wu, L.; Mustafa, R.; Amin, I.; et al. The Cotton Wall-Associated Kinase GhWAK7A Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory Receptors. Plant Cell 2020, 32, 3978–4001. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy-Lelek, R.; Czernicka, M.; Ptaszek, M.; Jarecka-Boncela, A.; Furmanczyk, E.M.; Kęska-Izworska, K.; Grzanka, M.; Skoczylas, Ł.; Kuźnik, N.; Smoleń, S.; et al. Transcriptome Dynamics Underlying Planticine(®)-Induced Defense Responses of Tomato (Solanum lycopersicum L.) to Biotic Stresses. Int. J. Mol. Sci. 2023, 24, 6494. [Google Scholar] [CrossRef]
- Zhang, B.; Ramonell, K.; Somerville, S.; Stacey, G. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact. 2002, 15, 963–970. [Google Scholar] [CrossRef]
- Bi, G.; Zhou, Z.; Wang, W.; Li, L.; Rao, S.; Wu, Y.; Zhang, X.; Menke, F.L.H.; Chen, S.; Zhou, J.M. Receptor-like Cytoplasmic Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-Activated Protein Kinase Cascades in Arabidopsis. Plant Cell 2018, 30, 1543–1561. [Google Scholar] [CrossRef]
- Abdul Malik, N.A.; Kumar, I.S.; Nadarajah, K. Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, Y.; Tanaka, K.; Nguyen, C.; Jedrzejczak, R.; Joachimiak, A.; Stacey, G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 2014, 3, e03766. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.Y.; Zamora, O.R.; Troncoso-Rojas, R.; Tiznado-Hernández, M.E.; Báez-Flores, M.E.; Carvajal-Millan, E.; Rascón-Chu, A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021, 26, 6513. [Google Scholar] [CrossRef]
- Zipfel, C.; Oldroyd, G.E. Plant signalling in symbiosis and immunity. Nature 2017, 543, 328–336. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Song, C.; Hu, Y.; Han, Z.; She, J.; Fan, F.; Wang, J.; Jin, C.; Chang, J.; et al. Chitin-induced dimerization activates a plant immune receptor. Science 2012, 336, 1160–1164. [Google Scholar] [CrossRef]
- Buendia, L.; Girardin, A.; Wang, T.; Cottret, L.; Lefebvre, B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. Front. Plant Sci. 2018, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Nakano, T.; Takamizawa, D.; Desaki, Y.; Ishii-Minami, N.; Nishizawa, Y.; Minami, E.; Okada, K.; Yamane, H.; Kaku, H.; et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010, 64, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Liao, C.J.; Mengesha, B.; Han, H.; Lee, S.; Sharon, A.; Zhou, Y.; Mengiste, T. Regulation of plant immunity and growth by tomato receptor-like cytoplasmic kinase TRK1. New Phytol. 2022, 233, 458–478. [Google Scholar] [CrossRef]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.-J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef] [PubMed]
- Skelly, M.J.; Furniss, J.J.; Grey, H.; Wong, K.W.; Spoel, S.H. Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1. eLife 2019, 8, e47005. [Google Scholar] [CrossRef]
- Sanchez-Estrada, A.; Tiznado-Hernandez, M.; Ojeda-Contreras, A.-J.; Valenzuela-Quintanar, A.; Troncoso-Rojas, R. Induction of Enzymes and Phenolic Compounds Related to the Natural Defence Response of Netted Melon Fruit by a Bio-elicitor. J. Phytopathol. 2008, 157, 24–32. [Google Scholar] [CrossRef]
- Bakhat, N.; Vielba-Fernández, A.; Padilla-Roji, I.; Martínez-Cruz, J.; Polonio, Á.; Fernández-Ortuño, D.; Pérez-García, A. Suppression of Chitin-Triggered Immunity by Plant Fungal Pathogens: A Case Study of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii. J. Fungi 2023, 9, 771. [Google Scholar] [CrossRef]
- Dölfors, F.; Holmquist, L.; Dixelius, C.; Tzelepis, G. A LysM effector protein from the basidiomycete Rhizoctonia solani contributes to virulence through suppression of chitin-triggered immunity. Mol. Genet. Genom. 2019, 294, 1211–1218. [Google Scholar] [CrossRef]
- Liao, C.J.; Hailemariam, S.; Sharon, A.; Mengiste, T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. Curr. Opin. Plant Biol. 2022, 69, 102291. [Google Scholar] [CrossRef]
- Samolski, I.; de Luis, A.; Vizcaíno, J.A.; Monte, E.; Suárez, M.B. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol. 2009, 9, 217. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, L.; Staehelin, C.; Li, Y.; Ruan, J.; Liang, Z.; Xie, Z.; Wang, W.; Xie, J.; Huang, S. The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytol. 2019, 223, 1530–1546. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Dong, C.; Sun, X.; Zhang, Y.; Dai, H.; Bai, S. Overexpression of an apple LysM-containing protein gene, MdCERK1–2, confers improved resistance to the pathogenic fungus, Alternaria alternata, in Nicotiana benthamiana. BMC Plant Biol. 2020, 20, 146. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Velasquez, A.C.; Munkvold, K.R.; Zhang, J.; Martin, G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 2012, 69, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Sun, X.; Wang, N.; Song, F.; Liang, Y. Tomato LysM Receptor-Like Kinase SlLYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Front. Plant Sci. 2018, 9, 1004. [Google Scholar] [CrossRef]
- Ai, Y.; Li, Q.; Li, C.; Wang, R.; Sun, X.; Chen, S.; Cai, X.Z.; Qi, X.; Liang, Y. Tomato LysM receptor kinase 4 mediates chitin-elicited fungal resistance in both leaves and fruit. Hortic. Res. 2023, 10, uhad082. [Google Scholar] [CrossRef]
- Yokotani, N.; Hasegawa, Y.; Sato, M.; Hirakawa, H.; Kouzai, Y.; Nishizawa, Y.; Yamamoto, E.; Naito, Y.; Isobe, S. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: A role of salicylic acid in the host response. BMC Plant Biol. 2021, 21, 476. [Google Scholar] [CrossRef]
- Alkan, N.; Fortes, A.M. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 2015, 6, 889. [Google Scholar] [CrossRef]
- Basim, H.; Basim, E.; Tombuloglu, H.; Unver, T. Comparative transcriptome analysis of resistant and cultivated tomato lines in response to Clavibacter michiganensis subsp. michiganensis. Genomics 2021, 113, 2455–2467. [Google Scholar] [CrossRef]
- Henry García, Y.; Troncoso-Rojas, R.; Tiznado-Hernández, M.E.; Báez-Flores, M.E.; Carvajal-Millan, E.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Martínez-Robinson, K.G. Enzymatic treatments as alternative to produce chitin fragments of low molecular weight from Alternaria alternata. J. Appl. Polym. Sci. 2019, 136, 47339. [Google Scholar] [CrossRef]
- Farris, S.; Mora, L.; Capretti, G.; Piergiovanni, L. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment. J. Chem. Educ. 2012, 89, 121–124. [Google Scholar] [CrossRef]
- López-Gómez, R.; Gómez-Lim, M.A. A Method for Extracting Intact RNA from Fruits Rich in Polysaccharides using Ripe Mango Mesocarp. HortScience 1992, 27, 440–442. [Google Scholar] [CrossRef]
- Krueger, F.; Andrews, S.R.; Osborne, C.S. Large Scale Loss of Data in Low-Diversity Illumina Sequencing Libraries Can Be Recovered by Deferred Cluster Calling. PLoS ONE 2011, 6, e16607. [Google Scholar] [CrossRef]
- Causse, M.; Giovannoni, J.; Bouzayen, M.; Zouine, M. The Tomato Genome; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Feng, L.; Lintula, S.; Ho, T.H.; Anastasina, M.; Paju, A.; Haglund, C.; Stenman, U.H.; Hotakainen, K.; Orpana, A.; Kainov, D.; et al. Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. BioTechniques 2012, 52, 263–270. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Landi, L.; De Miccolis Angelini, R.M.; Pollastro, S.; Feliziani, E.; Faretra, F.; Romanazzi, G. Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan. Front. Plant Sci. 2017, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Akter Mukta, J.; Rahman, M.; As Sabir, A.; Gupta, D.R.; Surovy, M.Z.; Rahman, M.; Islam, M.T. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal. Agric. Biotechnol. 2017, 11, 9–18. [Google Scholar] [CrossRef]
- Lemke, P.; Moerschbacher, B.M.; Singh, R. Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan. Front. Plant Sci. 2020, 11, 1193. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Marhuenda-Egea, F.C.; Lopez-Moya, F.; Arnao, M.B.; Cabrera-Escribano, F.; Nueda, M.J.; Gunsé, B.; Lopez-Llorca, L.V. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. Front. Plant Sci. 2020, 11, 572087. [Google Scholar] [CrossRef] [PubMed]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef]
- Sundvall, M. Role of Ubiquitin and SUMO in Intracellular Trafficking. Curr. Issues Mol. Biol. 2020, 35, 99–108. [Google Scholar] [CrossRef]
- Gao, Y.; Zan, X.L.; Wu, X.F.; Yao, L.; Chen, Y.L.; Jia, S.W.; Zhao, K.J. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1. Plant Sci. 2014, 215–216, 190–198. [Google Scholar] [CrossRef]
- Wan, J.; Tanaka, K.; Zhang, X.C.; Son, G.H.; Brechenmacher, L.; Nguyen, T.H.; Stacey, G. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 2012, 160, 396–406. [Google Scholar] [CrossRef]
- Hu, S.P.; Li, J.J.; Dhar, N.; Li, J.P.; Chen, J.Y.; Jian, W.; Dai, X.F.; Yang, X.Y. Lysin Motif (LysM) Proteins: Interlinking Manipulation of Plant Immunity and Fungi. Int. J. Mol. Sci. 2021, 22, 3114. [Google Scholar] [CrossRef]
- Huang, C.; Yan, Y.; Zhao, H.; Ye, Y.; Cao, Y. Arabidopsis CPK5 Phosphorylates the Chitin Receptor LYK5 to Regulate Plant Innate Immunity. Front. Plant Sci. 2020, 11, 702. [Google Scholar] [CrossRef]
- Asensio, J.L.; Canada, F.J.; Siebert, H.C.; Laynez, J.; Poveda, A.; Nieto, P.M.; Soedjanaamadja, U.M.; Gabius, H.J.; Jimenez-Barbero, J. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem. Biol. 2000, 7, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Yamada, K.; Yoshimura, S.; Yamaguchi, K. Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signal. Behav. 2017, 12, e1361076. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes 2018, 9, 339. [Google Scholar] [CrossRef]
- Bai, Y.; Sunarti, S.; Kissoudis, C.; Visser, R.G.F.; van der Linden, C.G. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses. Front. Plant Sci. 2018, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Hu, X.; Li, C.; Xu, X.; Su, C.; Li, J.; Song, H.; Zhang, X.; Pan, Y. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, is a Negative Regulator of Drought and Salt Stress Tolerance. Genes 2017, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- Alós, E.; Rodrigo, M.J.; Zacarias, L. Chapter 7—Ripening and Senescence. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 131–155. [Google Scholar]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef]
- Pratiwi, P.; Tanaka, G.; Takahashi, T.; Xie, X.; Yoneyama, K.; Matsuura, H.; Takahashi, K. Identification of Jasmonic Acid and Jasmonoyl-Isoleucine, and Characterization of AOS, AOC, OPR and JAR1 in the Model Lycophyte Selaginella moellendorffii. Plant Cell Physiol. 2017, 58, 789–801. [Google Scholar] [CrossRef]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef]
- Aerts, N.; Pereira Mendes, M.; Van Wees, S.C.M. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef]
- Müller, M.; Munné-Bosch, S. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiol. 2015, 169, 32–41. [Google Scholar] [CrossRef]
- Li, S.; Wu, P.; Yu, X.; Cao, J.; Chen, X.; Gao, L.; Chen, K.; Grierson, D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022, 11, 2484. [Google Scholar] [CrossRef] [PubMed]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Ulate, B.; Vincenti, E.; Powell, A.L.; Cantu, D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front. Plant Sci. 2013, 4, 142. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, R.; Sheng, J.; Shen, L. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit. J. Agric. Food Chem. 2018, 66, 9923–9932. [Google Scholar] [CrossRef] [PubMed]
- Cota, I.E.; Troncoso-Rojas, R.; Sotelo-Mundo, R.; Sánchez-Estrada, A.; Tiznado-Hernández, M.E. Chitinase and β-1,3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci. Hortic. 2007, 112, 42–50. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Alkan, N.; Friedlander, G.; Ment, D.; Prusky, D.; Fluhr, R. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol. 2015, 205, 801–815. [Google Scholar] [CrossRef]
- Iizasa, E.; Mitsutomi, M.; Nagano, Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 2010, 285, 2996–3004. [Google Scholar] [CrossRef]
- Petutschnig, E.K.; Jones, A.M.; Serazetdinova, L.; Lipka, U.; Lipka, V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 2010, 285, 28902–28911. [Google Scholar] [CrossRef]
- Gong, B.Q.; Wang, F.Z.; Li, J.F. Hide-and-Seek: Chitin-Triggered Plant Immunity and Fungal Counterstrategies. Trends Plant Sci. 2020, 25, 805–816. [Google Scholar] [CrossRef]
Gene Symbol | Size (bp) | Sequence |
---|---|---|
LYK4-Fw | 20 | GGGATCTGTTTATCGGGGCA |
LYK4-Rv | 20 | TATCCCAGCTTTAGCGCCAC |
SlBti9-Fw | 24 | AGACCACCTCCATCAGTATGGTCA |
SlBti9-Rv | 24 | TGCCTGAAAGCACTGGAGAATTGC |
PR2-Fw | 24 | AAGTATATAGCTGTTGGTAATGAA |
PR2-Rv | 21 | ATTCTCATCAAACATGGCGAA |
Chi1-Fw | 23 | TCATGAAACTACGGGTGGATGGG |
Chi1-Rv | 23 | TCTCCAGGACTTCCTTGTTCCTG |
PR5-Fw | 20 | GCAACAACTGTCCATACACC |
PR5-Rv | 19 | AGACTCCACCACAATCACC |
GAPDH-Fw | 20 | GTGGCTGTTAACGATCCCTT |
GAPDH-Rv | 20 | GTGACTGGCTTCTCATCGAA |
TIP41-Fw | 19 | GCTGCGTTTCTGGCTTAGG |
TIP41-Rv | 22 | ATGGAGTTTTTGAGTCTTCTGC |
Samples | Biosample Accession Number | Number of Reads after Trimming | % Mapped Reads |
---|---|---|---|
F1: fruit exposed to chitin oligomers for 30 min | RT1SL1SS01 | 25,098,062 (3.8 Gb) | 97.19% |
RT1SL1SS02 | 33,739,540 (5.1 Gb) | 97.49% | |
RT1SL1SS03 | 22,506,396 (3.4 Gb) | 97.87% | |
Control: fruit exposed to water for 30 min | RT1SL1SS04 | 31,459,284 (4.7 Gb) | 97.16% |
RT1SL1SS05 | 26,387,161 (4.0 Gb) | 97.66% | |
RT1SL1SS06 | 36,089,385 (5.4 Gb) | 97.23% |
Gene | ID | Gene Description | GO ID | GO Name | Class | Fold Change |
---|---|---|---|---|---|---|
Genes encoding chitin receptor | ||||||
LRR | Solyc12g039080.3 | LRR receptor-like serine/threonine-protein kinase | GO:0004675 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 6.84 |
SlLYK4 | Solyc11g010730.3 | Receptor-like kinase, Serine/threonine protein kinase | GO:0004675 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 2.14 |
RLK | Solyc08g150135.1 | Receptor protein kinase | GO:0004675 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 2.84 |
RLK | Solyc07g006770.3 | Receptor-like kinase, Serine/threonine protein kinase | GO:0006468 | Transmembrane receptor protein serine/threonine kinase activity | Biological process | 2.23 |
SlCERK1 | Solyc01g098420.3 | Receptor-like protein kinase | GO:0019199 | Transmembrane receptor protein kinase activity | Molecular function | 0.55 |
SlLYK7 | Solyc02g089900.1 | Receptor-like kinase, Serine/threonine protein kinase | GO:0006468 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 0.42 |
RLK | Solyc07g006770.3 | Receptor-like kinase, Serine/threonine protein kinase | GO:0006468 | Transmembrane receptor protein serine/threonine kinase activity | Biological process | 2.23 |
SlBti9 | Solyc07g049180.3 | Receptor-like protein kinase | GO:0019199 | Transmembrane receptor protein kinase activity | Biological process | 0.35 |
LYK4 | Solyc02g089900.1 | Receptor-like kinase, Serine/threonine protein kinase | GO:0006468 | Protein phosphorylation | Biological process | 0.42 |
RLK | Solyc08g080830.3 | Receptor kinase, putative | GO:0004675 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 0.5 |
LRR | Solyc01g006550.3 | LRR receptor-like protein kinase | GO:0004675 | Transmembrane receptor protein serine/threonine kinase activity | Molecular function | 0.39 |
CBL | Solyc06g082440.1 | Non-specific serine/threonine protein kinase | GO:0007165 | Signal transduction | Biological process | 0.44 |
Genes involved in signaling | ||||||
SlMYB110 | Solyc05g007160.3 | R2R3MYB Transcription factor 110 | GO:0003700 | Binding transcription factor activity | Molecular function | 0.43 |
MAPK3 | Solyc06g005170.3 | Mitogen-activated protein kinase 3 | GO:0016908 | MAP kinase activity | Molecular function | 0.32 |
MAPK4 | Solyc03g097920.1 | MAP kinase kinase 4 | GO:0008545 | JUN kinase activity | Molecular function | 0.55 |
CDPK | Solyc04g081910.4 | Calcium-dependent protein kinase | GO:0004683 | Calmodulin-dependent protein kinase activity | Molecular function | 0.51 |
CML | Solyc03g113980.3 | Calmodulin binding protein-like | GO:0005516 | Calmodulin binding | Molecular function | 0.44 |
CABP | Solyc11g071740.2 | Calcium-binding protein | GO:0005509 | Calcium ion binding | Molecular function | 0.37 |
WRKY6 | Solyc02g080890.3 | WRKY transcription factor 6 | GO:0005515 | Protein binding | Molecular function | 0.44 |
WRKY3 | Solyc02g088340.4 | WRKY transcription factor 3 | GO: 0005515 | Protein binding | Molecular function | 1.71 |
WRKY33 | Solyc09g014990.4 | WRKY Transcription factor 33 | GO:0005515 | Protein binding | Molecular function | 0.12 |
MTC2 | Solyc08g005050.4 | Transcription factor MTC2 | GO:0003700 | DNA-binding transcription factor activity | Molecular function | 0.40 |
CRF3 | Solyc10g078610.1 | Ethylene-responsive transcription factor CRF3 | GO:0003677 | DNA binding | Molecular function | 0.334 |
SlERF.C6 | Solyc03g093560.1.1 | Ethylene-responsive transcription factor 2 | GO:0005515 | Protein binding | Molecular function | 0.28 |
SlERF.2a | Solyc07g054220.1 | Ethylene-responsive transcription factor | GO:0003677 | DNA binding | Molecular function | 0.35 |
SlERF.E1 | Solyc09g075420.3 | Ethylene response factor E.1 | GO:0003677 | DNA binding | Molecular function | 2.39 |
SlERF-B2 | Solyc02g077360.1 | Ethylene response factor | GO:0006355 | Regulation of transcription, DNA-dependent | Biological process | 2.07 |
ACO5 | Solyc07g026650.3 | 1-aminocyclopropane- 1-carboxylate oxidase 5 | GO:0009815 | 1-aminocyclopropane-1-carboxylate oxidase activity | Molecular function | 3.39 |
SAM-MTs | Solyc02g091140.3 | S-adenosyl-L-methionine-dependent methyltransferases | GO:0030795 | Jasmonate O-methyltransferase activity | Molecular function | 0.33 |
JAZ | Solyc12g009220.2 | Jasmonate ZIM-domain protein 1 | GO:0042802 | Identical protein binding | Molecular function | 0.17 |
LOX | Solyc01g006555.1 | Lipoxygenase | GO:0016165 | Lipoxygenase activity | Molecular function | 0.42 |
LOXD | Solyc03g122340.3 | Lipoxygenase D | GO:0016702 | Oxidoreductase activity | Molecular function | 0.26 |
MDIS1 | Solyc01g010230.2 | MDIS1-interacting receptor-like kinase 2 | GO:0016020 | Membrane | Cellular component | 0.62 |
Genes encoding defense proteins | ||||||
GLUC | Solyc01g060020.4 | B-1,3-glucanase | GO:0004553 | Hydrolase activity | Molecular function | 4.58 |
GLUC | Solyc04g016470.4 | B-1,3-glucanase | GO:0004553 | Hydrolase activity | Molecular function | 1.62 |
Chi1 | Solyc07g009510.1 | Chitinase type I | GO:0008843 | Endochitinase activity | Molecular function | 1.45 |
Chi1 | Solyc10g017980.1 | Chitinase type I | GO:0008061 | Chitin binding | Molecular function | 2.38 |
Chi1 | Solyc03g116190.2 | Chitinase type I | GO:0008843 | Endochitinase activity | Molecular function | 1.75 |
Chi3 | Solyc05g050130.4 | Acidic endochitinase | GO:0005975 | Carbohydrate metabolic process | Biological process | 0.56 |
PR4 | Solyc01g097240.3 | Pathogenesis-related protein 4 | GO:0050832 | Defense response to fungi | Biological process | 0.44 |
PR5 | Solyc08g080670.1 | Pathogenesis-related 5-like protein | GO:0005515 | Protein binding | Molecular function | 2.26 |
PR10 | Solyc09g090970.4 | Pathogenesis-related 10-like protein | GO:0009607 | Response to biotic stimulus | Biological process | 10.74 |
DF | Solyc07g007710.4 | Defensin protein | GO:0030414 | Peptidase inhibitor activity | Molecular function | 13.31 |
DF | Solyc09g009725.1 | Defensin-like protein | GO:0030414 | Peptidase inhibitor activity | Molecular function | 3.48 |
POX | Solyc01g006290.4 | Peroxidase | GO:0004601 | Peroxidase activity | Molecular function | 2.51 |
PAL | Solyc09g007900.4 | Phenylalanine ammonia-lyase | GO:0045548 | Phenylalanine ammonia-lyase activity | Molecular function | 0.51 |
Pvr4 | Solyc04g005540.3 | Cc-nbs-lrr resistance protein | GO:0006952 | Defense response | Biological process | 0.58 |
PAD4 | Solyc02g032850.3 | Phytoalexin-deficient 4-1 protein | GO:0006629 | Lipid metabolic process | Biological process | 0.59 |
PDH | Solyc02g089620.3 | Proline dehydrogenase | GO:0004657 | Proline dehydrogenase activity | Molecular function | 2.07 |
TIR-NBS-LRR | Solyc04g007320.3 | Disease resistance protein (CC-NBS-LRR class) family | GO:0030275 | LRR domain binding | Molecular function | 0.38 |
RPP13 | Solyc02g084890.3 | Disease resistance RPP13-like protein 4 | GO:0043531 | ADP binding | Molecular function | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, Y.H.; Troncoso-Rojas, R.; Báez-Flores, M.E.; Hernández-Oñate, M.Á.; Tiznado-Hernández, M.E. RNA-Seq of Tomato Fruit-Alternaria Chitin Oligomer Interaction Reveals Genes Encoding Chitin Membrane Receptors and the Activation of the Defense Response. Horticulturae 2023, 9, 1064. https://doi.org/10.3390/horticulturae9101064
García YH, Troncoso-Rojas R, Báez-Flores ME, Hernández-Oñate MÁ, Tiznado-Hernández ME. RNA-Seq of Tomato Fruit-Alternaria Chitin Oligomer Interaction Reveals Genes Encoding Chitin Membrane Receptors and the Activation of the Defense Response. Horticulturae. 2023; 9(10):1064. https://doi.org/10.3390/horticulturae9101064
Chicago/Turabian StyleGarcía, Yaima Henry, Rosalba Troncoso-Rojas, María Elena Báez-Flores, Miguel Ángel Hernández-Oñate, and Martín Ernesto Tiznado-Hernández. 2023. "RNA-Seq of Tomato Fruit-Alternaria Chitin Oligomer Interaction Reveals Genes Encoding Chitin Membrane Receptors and the Activation of the Defense Response" Horticulturae 9, no. 10: 1064. https://doi.org/10.3390/horticulturae9101064
APA StyleGarcía, Y. H., Troncoso-Rojas, R., Báez-Flores, M. E., Hernández-Oñate, M. Á., & Tiznado-Hernández, M. E. (2023). RNA-Seq of Tomato Fruit-Alternaria Chitin Oligomer Interaction Reveals Genes Encoding Chitin Membrane Receptors and the Activation of the Defense Response. Horticulturae, 9(10), 1064. https://doi.org/10.3390/horticulturae9101064