Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Components of Mixes
2.2. Seedling-Growth Experiments
2.2.1. Growth Conditions and Mixes
2.2.2. Measurements
- 1.
- Chl a = 16.82A665.2 − 9.28A652.4
- 2.
- Chl b = 36.92A652.4 − 16.54A665.2
- 3.
- Cc = (1000A470 − 1.91Chl-a − 95.15Chl-b)/225
2.2.3. Data Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of the Components
3.2. Experiment 1
3.2.1. Initial Physicochemical Characteristics of the Mixes
3.2.2. Seed Emergence
3.2.3. Photosynthetic Pigments and Total Phenols
3.2.4. Seedling Growth
3.3. Experiment 2
3.3.1. Initial Physicochemical Characteristics of the Mixes
3.3.2. Seed Emergence
3.3.3. Photosynthetic Pigments and Total Phenols
3.3.4. Seedling Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.B.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production—A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Gruda, N.; Bragg, N. Developments in alternative organic materials as growing media in soilless culture systems. In Advances in Horticultural Soilless Culture; Gruda, N., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2021; ISBN 9781786764355. [Google Scholar] [CrossRef]
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Atzori, G.; Pane, C.; Zaccardelli, M.; Cacini, S.; Massa, D. The Role of Peat-Free Organic Substrates in the Sustainable Management of Soilless Cultivations. Agronomy 2021, 11, 1236. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Heiskanen, J.; Englund, K.; Tervahauta, A. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 2011, 35, 2018–2027. [Google Scholar] [CrossRef]
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir, an Alternative to Peat—Effects on plant growth, phytochemical accumulation, and antioxidant power of spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Veeken, A.; Adani, F.; Fangueiro, D.; Jensen, L.S. The Value of Recycling Organic Matter to Soils: Classification as Organic Fertiliser or Organic Soil Improver; EIP-AGRI Focus Group—Nutrient Recycling: Brussels, Belgium, 2017; pp. 8–10. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/fg19_minipaper_5_value_of_organic_matter_en.pdf (accessed on 14 November 2022).
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.T.; Wu, J.; Rene, E.R.; Ali, Z.; Chen, Z. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. J. Clean. Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Domínguez, J. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef]
- Vallance, J.; Déniel, F.; Floch, G.L.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganisms in soilless cultures. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherland, 2011; Volume 2, pp. 711–726. [Google Scholar]
- Fascella, G. Growing substrates alternative to peat for ornamental plants. In Soilless Culture—Use of Substrates for the Production of Quality Horticultural Crops; Asaduzzaman, M., Ed.; Intech Publication: Rijeka, Croatia, 2015; pp. 47–67. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Matt, C.P.; Keyes, C.R.; Dumroese, R.K. Biochar effects on the nursery propagation of 4 northen Rocky Mountain native plant species. Nativ. Plants J. 2018, 19, 14–26. [Google Scholar] [CrossRef]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory Bioassay and Greenhouse Evaluation of a Pine tree substrate used as a container Substrate. Eur. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar]
- Jackson, B.E.; Wright, R.D.; Gruda, N. Container medium pH in a pine tree substrate amended with peat moss and dolomitic limestone affects plant growth. Hortscience 2009, 44, 1983–1987. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant nutrient availability and pH of biochar and their fractions, with the possible use as a component in a growing media. Agronomy 2020, 10, 10. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Wood fiber substrates as a peat alternative for vegetable production. Eur. J. Wood Prod. 2006, 64, 347–350. (In German) [Google Scholar] [CrossRef]
- Gruda, N. Sustainable peat alternative growing media. Acta Hortic. 2012, 927, 973–980. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.; Pascual, J.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.; Egea-Gilabert, C. Promising composts as growing media for the production of baby leaf lettuce in a floating system. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type. ratio. and nutrient levels in growing media affects seedling production and plant performance. Agronomy 2020, 10, 1421. [Google Scholar] [CrossRef]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Michel, J.C. The physical properties of peat: A key factor for modern growing media. Mires Peat 2010, 6, 1–90. [Google Scholar]
- Gruda, N.; Caron, J.; Prasad, M.; Maher, M. Growing media. In Encyclopedia of Soil Science; CRC Press: Boca Raton, FL, USA, 2016; pp. 1053–1058. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.H.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Bui, H.H. Physicochemical characteristics of substrates of the mixture of coir with municipal solid waste compost and with biochar. Acta Hortic. 2021, 1320, 399–404. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Morais, C.; Alemão, A.; Ferreira, R. Effects of Coir-Based Growing Medium with Municipal Solid Waste Compost or Biochar on Plant Growth, Mineral Nutrition, and Accumulation of Phytochemicals in Spinach. Plants 2022, 11, 14. [Google Scholar] [CrossRef]
- Almeida, D. Manual de Culturas Hortícolas; Editorial Presença: Lisboa, Portugal, 2006; Volume 1, pp. 196–300. ISBN 9789722335515. [Google Scholar]
- Fonteno, W.C.; Harden, C.T. Procedures for Determining Physical Properties of Horticultural Substrates Using the NCSU Porometer, Horticultural Substrates Laboratory; North Carolina State University: Raleigh, NC, USA, 2003; Available online: https://www.ncsu.edu/project/hortsublab/pdf/porometermanual.pdf (accessed on 3 November 2022).
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties. Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant nutrition in future greenhouse production. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherland, 2009; pp. 393–403. [Google Scholar]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastesfor use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.A.; Nelson, P.V.; Fonteno, W.C. Substrates pH and Water Quality; North Carolina State University: Raleigh, NC, USA, 2000. [Google Scholar]
- Martínez, P.F.; Roca, D. Sustratos para el cultivo sin suelo. Materiales, propiedades y manejo. In Sustratos, Manejo del Clima, Automatización y Control en Sistemas de Cultivo sin Suelo; Flórez, R.V.J., Ed.; Editorial Universidad Nacional de Colombia: Bogotá, Colombia, 2011; pp. 37–77. [Google Scholar]
- Bunt, B.R. Media and Mixes for Container-Grown Plants: A Manual on the Preparation and Use of Growing Media for Pot Plants, 2nd ed.; Springer Science & Business Media: London, UK, 2012; pp. 86–93. [Google Scholar]
- Camberato, D.M.; Lopez, R.G.; Mickelbart, M.V. pH and Electrical Conductivity Measurements in Soilless Substrates; HO-237-W; Purdue University: West Lafayette, IN, USA, 2009; pp. 1–6. [Google Scholar]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrates for production of vegetable transplants. I. Physical properties of wood fiber substrates. Sci. Hortic. 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Reis, M.M.F. Material Vegetal e Viveiros: Manual de Horticultura em Modo de Produção Biológico; Escola Superior Agrária Ponte de Lima/Instituto Politécnico de Viana do Castelo: Refóios do Lima, Portugal, 2007; pp. 19–52. [Google Scholar]
- Tzortzakis, N.; Gouma, S.; Paterakis, C.; Manios, T. Deployment of municipal solid wastes as a substitute growing medium component in marigold and basil seedlings production. Sci. World J. 2012, 2012, 285874. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 2016, 54, 87–92. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Lee, J.G. Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 2021, 7, 238. [Google Scholar] [CrossRef]
- Luna, M.C.; Martínez-Sánchez, A.; Selma, M.V.; Tudela, J.A.; Baixauli, C.; Gil, M.I. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. J. Sci. Food Agric. 2012, 93, 415–421. [Google Scholar] [CrossRef]
- Howard, L.R.; Pandjaitan, N.; Morelock, T.; Gill, M.I. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 2002, 50, 5891–5896. [Google Scholar] [CrossRef]
- Blok, C.; Van der Salm, C.; Hofland-Ziljstra, J.; Streminska, M.; Eveleens, B.; Regelink, I.; Fryda, L.; Visser, R. Biochar for horticultural rooting media improvement: Evaluation of biochar from gasification and slow pyrolysis. Agronomy 2017, 7, 6. [Google Scholar] [CrossRef]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Canellas, L.P.; Façanha, A.R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ -pumps activation. Planta 2007, 225, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pérez, M.; Camacho-Ferre, F. Effect of composts in substrates on the growth of tomato transplants. HortTechnology 2010, 20, 361–367. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Yong, J.W. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. Biology 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Arias, D.; García-Machado, F.J.; Morales-Sierra, S.; García-García, A.L.; Herrera, A.J.; Valdés, F.; Luis, J.C.; Borges, A.A. A beginner’s guide to osmoprotection by biostimulants. Plants 2021, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Mašková, T.; Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 2018, 8, 7143–7150. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Maher, M.J. The use of composted green waste (CGW) as a growing medium component. Acta Hortic. 2001, 549, 107–114. [Google Scholar] [CrossRef]
- Gruda, N. Current and Future Perspective of Growing Media in Europe. Acta Hortic. 2012, 960, 37–43. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Alternative raising systems by head lettuce. Rep. Agric./Ber. Über Landwirtsch. 2006, 84, 469–484. (In German) [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of water supply on bio-morphological and plant-physiological parameters of tomato transplants cultivated in wood fiber substrate. J. Appl. Bot. 2000, 74, 233–239. (In German) [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of water supply of seedlings, cultivated in different substrates and raising systems on the bio-morphological and plant-physiological parameters of lettuce. J. Appl. Bot. 2000, 74, 240–247. (In German) [Google Scholar]
Mixes (%, v/v) | ||||||
---|---|---|---|---|---|---|
Mixes 1 (Treatments) | C | B | MSW | P | Pi | BP |
C + B + P | 84 | 14 | - | 2 | - | - |
C + B + Pi | 70 | 20 | - | - | 10 | - |
C + B + Pi + BP | 65 | 20 | - | - | 5 | 10 |
C + MSW + P | 84 | - | 14 | 2 | - | - |
C + MSW + Pi | 70 | - | 20 | - | 10 | - |
C + MSW + Pi + BP | 65 | - | 20 | - | 5 | 10 |
Mixes (%, v/v) | ||||||
---|---|---|---|---|---|---|
Mixes 1 (Treatments) | C | MSW | B | P | Pi | BP |
C + MSW + P | 85 | 13 | - | 2 | - | - |
C + MSW + BP | 80 | 12 | - | - | - | 8 |
C + MSW + Pi | 80 | 12 | - | - | 8 | - |
C + MSW + Pi + BP | 73 | 12 | - | - | 5 | 10 |
C + MSW + B + BP | 73 | 12 | 10 | - | - | 5 |
Components | pH | EC (dS m−1) | Bulk Density (g cm−3) | Nitrate (NO3−) (ppm) |
---|---|---|---|---|
Coir | 5.66 | 1.5 | 0.12 | - |
MSW 1 | 7.91 | 8.62 | 0.23 | 91.1 |
Biochar 2 | 8.76 | 0.22 | 0.36 | 4.45 |
Pine bark | 4.84 | 0.13 | 0.18 | 12.1 |
Perlite | 7.06 | 0.04 | 0.14 | - |
Blonde peat | 5.5 | 0.11 | 0.12 | - |
Mixes 1 | pH | EC (dS m−1) | Bulk Density (g cm−3) | Mass Wetness 3 (g Water/g Substrate) | Total Porosity (%) | Moisture Content (%, w/w) |
---|---|---|---|---|---|---|
C + B + P | 7.51 c 2 | 1.60 c | 0.18 bc | 5.39 ab | 97.95 a | 81.06 ab |
C + B + Pi | 7.77 b | 1.14 d | 0.18 c | 4.96 bc | 98.75 a | 79.56 bc |
C + B + Pi + BP | 7.14 d | 0.98 d | 0.18 c | 5.03 bc | 99.22 a | 78.17 c |
C + MSW + P | 7.81 b | 2.80 b | 0.18 c | 5.71 a | 98.90 a | 82.88 a |
C + MSW + Pi | 8.09 a | 3.42 a | 0.21 a | 4.92 bc | 99.28 a | 81.73 ab |
C + MSW + Pi + BP | 7.95 ab | 3.25 a | 0.19 b | 4.69 c | 98.66 a | 82.11 ab |
Significance | *** | *** | *** | *** | NS | *** |
Mixes 1 | Chl a | Chl b | Chl Total | Cc | TPC |
---|---|---|---|---|---|
(mg 100 g−1 FW) | (mg GAE 100 g−1 FW) | ||||
Unfertilized | |||||
C + B + P | 7.90 def 2 | 9.69 d | 17.59 e | 5.22 d | 68.16 fg |
C + B + Pi | 8.49 cde | 8.82 d | 17.32 e | 6.98 c | 149.37 a |
C + B + Pi + BP | 7.64 def | 9.50 d | 17.14 | 7.82 c | 122.70 b |
C + MSW + P | 6.37 fg | 9.57 d | 15.94 ef | 7.13 c | 104.05 cd |
C + MSW + Pi | 7.40 efg | 8.34 d | 15.74 ef | 5.50 d | 67.58 fg |
C + MSW + Pi + BP | 5.83 g | 7.98 d | 13.81 f | 4.84 d | 115.88 bc |
Fertilized | |||||
C + B + P | 14.73 a | 19.18 a | 33.91 a | 10.40 b | 68.27 fg |
C + B + Pi | 12.80 b | 17.9 ab | 30.71 b | 12.88 a | 62.67 fg |
C + B + Pi + BP | 9.28 cd | 12.06 c | 21.34 d | 12.80 a | 107.01 bcd |
C + MSW + P | 9.3 cd | 13.49 c | 22.80 d | 9.18 b | 77.26 ef |
C + MSW + Pi | 9.64 c | 16.13 b | 25.77 c | 12.72 a | 54.43 g |
C + MSW + Pi + BP | 10.16 c | 16.29 b | 26.44 c | 13.40 a | 93.42 de |
Significance | |||||
Fertilizer | *** | *** | *** | *** | *** |
Mixes | *** | *** | *** | *** | *** |
Interaction | *** | *** | *** | *** | *** |
Mixes | Shoot Fresh Weight | Shoot Dry Weight | Seedling Total Dry Weight | Seedling Dry Weight | Leaf Area | Leaves |
---|---|---|---|---|---|---|
(g/Plant) | (%) | (cm2) | (Nº) | |||
Unfertilized | ||||||
C + B + P 1 | 0.89 def 2 | 0.09 ef | 0.14 e | 8.21 a | 21.6 def | 6.00 fg |
C + B + Pi | 0.67 f | 0.06 f | 0.09 f | 6.24 b | 16.75 f | 5.92 fg |
C + B + T + Pi | 0.72 ef | 0.07 f | 0.09 f | 6.40 b | 19.02 ef | 5.58 g |
C + MSW + P | 1.08 cde | 0.10 de | 0.14 de | 6.03 b | 28.37 cde | 6.67 def |
C + MSW + Pi | 1.73 b | 0.14 c | 0.20 c | 5.94 b | 46.33 b | 7.08 cde |
C + MSW + Pi + BP | 2.05 b | 0.18 b | 0.25 b | 6.44 b | 54.02 ab | 7.75 bc |
Fertilized | ||||||
C + B + P | 1.19 cd | 0.12 cde | 0.18 cd | 6.44 b | 31.08 cd | 7.58 bcd |
C + B + Pi | 1.21 cd | 0.12 cde | 0.17 cde | 6.84 b | 31.28 cd | 7.33 cde |
C + B + Pi + BP | 1.22 cd | 0.13 cd | 0.18 cde | 6.50 b | 31.88 cd | 6.50 efg |
C + MSW + P | 1.35 c | 0.13 cd | 0.19 c | 6.48 b | 35.62 c | 7.33 cde |
C + MSW + Pi | 1.84 b | 0.17 b | 0.23 b | 6.13 b | 49.90 b | 8.50 b |
C + MSW + Pi + BP | 2.57 a | 0.22 a | 0.29 a | 5.97 b | 66.11 a | 9.50 a |
Significance | ||||||
Fertilizer | *** | *** | *** | NS | *** | *** |
Mixe | *** | *** | *** | * | *** | *** |
Interaction | NS | NS | NS | * | NS | NS |
Mixes 1 | pH | EC | Bulk Density | Mass Wetness 3 | Total Porosity | Moisture |
---|---|---|---|---|---|---|
(dS m−1) | (g/cm3) | (g Water/g Substrate) | (%) | (% w/w) | ||
C + MSW + P | 7.25 a 2 | 2.79 a | 0.12 c | 7.38 a | 98.58 a | 75.03 b |
C + MSW + BP | 6.56 b | 2.56 bc | 0.12 c | 7.18 a | 98.67 a | 75.12 b |
C + MSW + Pi | 7.17 a | 2.73 b | 0.13 b | 6.82 b | 98.52 a | 77.64 a |
C + MSW + Pi + BP | 6.56 b | 2.44 c | 0.13 b | 6.67 b | 98.62 a | 74.74 b |
C + MSW + B + BP | 7.16 a | 2.53 bc | 0.14 a | 6.32 c | 98.45 a | 76.23 ab |
Significance | *** | *** | *** | *** | NS | * |
Mixes 1 | Chl a | Chl b | Chl Total | Cc | TPC |
---|---|---|---|---|---|
(mg.100 g−1 FW) | (mg GAE 100 g−1 FW) | ||||
C + MSW + P | 11.92 ab 2 | 15.54 ab | 27.46 ab | 13.37 b | 69.63 a |
C + MSW + BP | 13.15 a | 16.50 a | 29.65 a | 15.28 a | 62.20 a |
C + MSW + Pi | 11.79 ab | 15.45 ab | 27.23 ab | 11.60 c | 49.05 b |
C + MSW + Pi + BP | 10.10 b | 13.85 b | 24.84 b | 9.80 d | 70.04 a |
C + MSW + B + BP | 12.55 ab | 13.53 b | 26.08 ab | 10.42 d | 45.79 b |
Significance | ** | ** | ** | ** | * |
Fresh Weight | Dry Weight | |||||
---|---|---|---|---|---|---|
Mixes1 | Shoot | Shoot | Seedling | Seedling Dry Weight | Leaf Area | Leaves |
(g/Plant) | (%) | (cm2) | (Nº) | |||
C + MSW + P | 1.96 b 2 | 0.13 b | 0.18 b | 4.65 a | 67.86 b | 6.25 a |
C + MSW + BP | 2.12 b | 0.15 b | 0.20 b | 4.75 a | 68.83 b | 6.15 a |
C + MSW + Pi | 2.38 ab | 0.15 b | 0.20 b | 4.44 a | 76.27 ab | 6.25 a |
C + MSW + Pi + BP | 2.92 a | 0.20 a | 0.27 a | 4.80 a | 92.99 a | 6.69 a |
C + MSW + B + BP | 2.49 ab | 0.16 b | 0.22 ab | 4.61 a | 81.04 ab | 6.73 a |
Significance | * | * | * | NS | * | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae 2023, 9, 105. https://doi.org/10.3390/horticulturae9010105
Martins TC, Machado RMA, Alves-Pereira I, Ferreira R, Gruda NS. Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae. 2023; 9(1):105. https://doi.org/10.3390/horticulturae9010105
Chicago/Turabian StyleMartins, Tiago Carreira, Rui M. A. Machado, Isabel Alves-Pereira, Rui Ferreira, and Nazim S. Gruda. 2023. "Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings" Horticulturae 9, no. 1: 105. https://doi.org/10.3390/horticulturae9010105
APA StyleMartins, T. C., Machado, R. M. A., Alves-Pereira, I., Ferreira, R., & Gruda, N. S. (2023). Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae, 9(1), 105. https://doi.org/10.3390/horticulturae9010105