Deep Feature Extraction for Cymbidium Species Classification Using Global–Local CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cymbidium Species Flower Dataset
2.2. Data Preprocessing
2.2.1. Two-Scale Image Acquisition
2.2.2. Data Set Enhancement
2.3. Global–Local CNN Classification Model
2.3.1. GL-CNN Model Construction
2.3.2. Cascade Fusion Strategy
2.3.3. Model Enhancement
2.4. Model Training
2.4.1. Parameter Settings
2.4.2. Contrast Experiment
2.4.3. Model Performance Evaluation
3. Results
3.1. Data Collection and Preprocessing
3.2. Model Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dressler, R.L. Phylogeny and Classification of the Orchid Family; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Sharma, S.K.; Rajkumari, K.; Kumaria, S.; Tandon, P.; Rao, S.R. Karyo-morphological characterization of natural genetic variation in some threatened Cymbidium species of Northeast India. Caryologia 2010, 63, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-M.; Kim, M.-S.; Lee, S.-I.; Kim, J.-B. Review on breeding, tissue culture and genetic transformation systems in Cymbidium. J. Plant Biotechnol. 2010, 37, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Z.; Lu, J.-J.; Hu, X.; Liu, J.-J. Genetic variation and cultivar identification in Cymbidium ensifolium. Plant Syst. Evol. 2011, 293, 101–110. [Google Scholar] [CrossRef]
- Ning, H.; Ao, S.; Fan, Y.; Fu, J.; Xu, C. Correlation analysis between the karyotypes and phenotypic traits of Chinese cymbidium cultivars. Hortic. Environ. Biotechnol. 2018, 59, 93–103. [Google Scholar] [CrossRef]
- Guo, F.; Niu, L.-X.; Zhang, Y.-L. Phenotypic Variation of Natural Populations of Cymbidium faberi in Zhashui. North Hortic. 2010, 18, 91–93. [Google Scholar]
- Sharma, S.K.; Kumaria, S.; Tandon, P.; Rao, S.R. Assessment of genetic variation and identification of species-specific ISSR markers in five species of Cymbidium (Orchidaceae). J. Plant Biochem. Biotechnol. 2013, 22, 250–255. [Google Scholar] [CrossRef]
- Lu, J.; Hu, X.; Liu, J.; Wang, H. Genetic diversity and population structure of 151 Cymbidium sinense cultivars. J. Hortic. For. 2011, 3, 104–114. [Google Scholar]
- Lee, D.-G.; Koh, J.-C.; Chung, K.-W. Determination and application of combined genotype of simple sequence repeats (SSR) DNA marker for cultivars of Cymbidium goeringii. Hortic. Sci. Technol. 2012, 30, 278–285. [Google Scholar] [CrossRef]
- Obara-Okeyo, P.; Kako, S. Genetic diversity and identification of Cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers. Euphytica 1998, 99, 95–101. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Fei, L.; Yan, K. Deep learning for image denoising: A survey. In Proceedings of the International Conference on Genetic and Evolutionary Computing, Springer, Singapore, 14–17 December 2018; pp. 563–572. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Cengil, E.; Çinar, A.; Güler, Z. A GPU-based convolutional neural network approach for image classification. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; pp. 1–6. [Google Scholar]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosys. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Yalcin, H.; Razavi, S. Plant classification using convolutional neural networks. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–5. [Google Scholar]
- Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 2018, 154, 18–24. [Google Scholar] [CrossRef]
- Patel, I.; Patel, S. An Optimized Deep Learning Model for Flower Classification Using NAS-FPN and Faster R-CNN. Int. J. Sci. Technol. Res. 2020, 9, 5308–5318. [Google Scholar]
- Liu, Y.H. Feature extraction and image recognition with convolutional neural networks. J. Phys. Conf. Ser. 2018, 1087, 062032. [Google Scholar] [CrossRef]
- Workman, S.; Jacobs, N. On the location dependence of convolutional neural network features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 70–78. [Google Scholar]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Hiary, H.; Saadeh, H.; Saadeh, M.; Yaqub, M. Flower classification using deep convolutional neural networks. IET Comput. Vis. 2018, 12, 855–862. [Google Scholar] [CrossRef]
- Dias, P.A.; Tabb, A.; Medeiros, H. Apple flower detection using deep convolutional networks. Comput. Ind. 2018, 99, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Alaslani, M.G. Convolutional neural network based feature extraction for iris recognition. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2018, 10, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Liu, X.; Fu, S.; Guo, D.; Xu, M. A lightweight privacy-preserving CNN feature extraction framework for mobile sensing. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1441–1455. [Google Scholar] [CrossRef]
- Xie, G.-S.; Zhang, X.-Y.; Yang, W.; Xu, M.; Yan, S.; Liu, C.-L. LG-CNN: From local parts to global discrimination for fine-grained recognition. Pattern Recognit. 2017, 71, 118–131. [Google Scholar] [CrossRef]
- Hao, X.; Jia, J.; Khattak, A.M.; Zhang, L.; Guo, X.; Gao, W.; Wang, M. Growing period classification of Gynura bicolor DC using GL-CNN. Comput. Electron. Agric. 2020, 174, 105497. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Chao, X.; Sun, G.; Zhao, H.; Li, M.; He, D. Identification of apple tree leaf diseases based on deep learning models. Symmetry 2020, 12, 1065. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Aryal, J. Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A Review and Meta-Analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Zhou, Q.; Situ, Z.; Teng, S.; Chen, G. Convolutional Neural Networks—Based Model for Automated Sewer Defects Detection and Classification. J. Water Resour. Plan. Manag. 2021, 147, 04021036. [Google Scholar] [CrossRef]
- Huang, K.; Li, C.; Zhang, J.; Wang, B. Cascade and Fusion: A Deep Learning Approach for Camouflaged Object Sensing. Sensors 2021, 21, 5455. [Google Scholar] [CrossRef]
- Lin, G.; Shen, W. Research on convolutional neural network based on improved Relu piecewise activation function. Procedia Comput. Sci. 2018, 131, 977–984. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Dozat, T. Incorporating nesterov momentum into adam. In Proceedings of the 4th International Conference on Learning Representations, Workshop Track, Caribe Hilton, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Yu, W.; Yang, K.; Bai, Y.; Xiao, T.; Yao, H.; Rui, Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Ballester, P.; Araujo, R.M. On the performance of GoogLeNet and AlexNet applied to sketches. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Gao, M.; Chen, J.; Mu, H.; Qi, D. A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects. Forests 2021, 12, 212. [Google Scholar] [CrossRef]
- Yacouby, R.; Axman, D. Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; Volume 202, pp. 79–91. [Google Scholar]
- Azman, A.A.; Ismail, F.S. Convolutional Neural Network for Optimal Pineapple Harvesting. ELEKTRIKA-J. Electr. Eng. 2017, 16, 1–4. [Google Scholar]
- Saleem, G.; Akhtar, M.; Ahmed, N.; Qureshi, W.S. Automated analysis of visual leaf shape features for plant classification. Comput. Electron. Agric. 2019, 157, 270–280. [Google Scholar] [CrossRef]
- Liu, J.; Pi, J.; Xia, L. A novel and high precision tomato maturity recognition algorithm based on multi-level deep residual network. Multimed. Tools Appl. 2020, 79, 9403–9417. [Google Scholar] [CrossRef]
- Esgario, J.G.M.; Krohling, R.A.; Ventura, J.A. Deep learning for classification and severity estimation of coffee leaf biotic stress. Comput. Electron. Agric. 2020, 169, 105162. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Beijbom, O.; Zhang, N.; Darrell, T. Compact bilinear pooling. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 317–326. [Google Scholar]
- Yuan, Z.-W.; Zhang, J. Feature extraction and image retrieval based on AlexNet. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; p. 100330E. [Google Scholar]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Nitrogen deficiency prediction of rice crop based on convolutional neural network. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5703–5711. [Google Scholar] [CrossRef]
- Yaqoob, M.K.; Ali, S.F.; Bilal, M.; Hanif, M.S.; Al-Saggaf, U.M. ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection. Sensors 2021, 21, 3883. [Google Scholar] [CrossRef]
Layer | Type | Size | Number of Cores | Step Size | Output Size | Number of Convolutions | Number of Neurons |
---|---|---|---|---|---|---|---|
Input | - | - | - | - | 224 × 224 × 3 | - | - |
Conv11 | Convolution | 11 × 11 | 96 | 4 | 54 × 54 × 96 | (11 × 11 + 1) × 96 | 54 × 54 × 96 |
Pool11 | Mean-pooling | 3 × 3 | - | 2 | 26 × 26 × 96 | - | 26 × 26 × 96 |
Conv12 | Convolution | 5 × 5 | 96 | 1 | 26 × 26 × 256 | (5 × 5 + 1) × 96 | 26 × 26 × 96 |
Pool12 | Mean-pooling | 3 × 3 | - | 2 | 12 × 12 × 96 | - | 12 × 12 × 96 |
Conv13 | Convolution | 3 × 3 | 192 | 1 | 12 × 12 × 384 | (3 × 3 + 1) × 192 | 12 × 12 × 192 |
Conv14 | Convolution | 3 × 3 | 256 | 1 | 12 × 12 × 384 | (3 × 3 + 1) × 256 | 12 × 12 × 256 |
Pool13 | Mean-pooling | 3 × 3 | - | 2 | 5 × 5 × 256 | - | 5 × 5 × 256 |
FC11 | Fully connected | 1 × 1 | 4096 | - | 1 × 1 × 4096 | (1 × 1 + 1) × 4096 | 1 × 1 × 2048 |
Conv21 | Convolution | 5 × 5 | 96 | 3 | 75 × 75 × 96 | (5 × 5 + 1) × 96 | 75 × 75 × 96 |
Pool21 | Mean-pooling | 3 × 3 | - | 3 | 25 × 25 × 96 | - | 25 × 25 × 96 |
Conv22 | Convolution | 5 × 5 | 96 | 1 | 25 × 25 × 256 | (5 × 5 + 1) × 96 | 25 × 25 × 96 |
Pool22 | Mean-pooling | 3 × 3 | - | 2 | 12 × 12 × 96 | - | 12 × 12 × 96 |
Conv23 | Convolution | 3 × 3 | 192 | 1 | 12 × 12 × 384 | (3 × 3 + 1) × 192 | 12 × 12 × 192 |
Conv24 | Convolution | 3 × 3 | 256 | 1 | 12 × 12 × 384 | (3 × 3 + 1) × 256 | 12 × 12 × 256 |
Conv25 | Convolution | 3 × 3 | 256 | 1 | 12 × 12 × 384 | (3 × 3 + 1) × 256 | 12 × 12 × 256 |
Pool23 | Mean-pooling | 3 × 3 | - | 2 | 5 × 5 × 256 | - | 5 × 5 × 256 |
FC21 | Fully connected | 1 × 1 | 4096 | - | 1 × 1 × 4096 | (1 × 1 + 1) × 4096 | 1 × 1 × 2048 |
Cas | Cascade | - | - | - | 1 × 1 × 8192 | - | 1 × 1 × 8192 |
FC2 | Fully connected | 1 × 1 | 4096 | - | 1 × 1 × 4096 | (1 × 1 + 1) × 4096 | 1 × 1 × 4096 |
FC3 | Fully connected | 1 × 1 | 1000 | - | 1 × 1 × 1000 | (1 × 1 + 1) × 1000 | 1 × 1 × 1000 |
Output | Output | 1 × 1 | 10 | - | 1 × 1 × 10 | - | - |
GL-CNN | AlexNet | ResNet | GoogleNet | VGGNet | |
---|---|---|---|---|---|
Average accuracy (%) | 94.13 | 90.06 | 89.47 | 92.15 | 88.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Zhang, X.; Zhao, F.; Ruan, R.; Qian, L.; Li, C. Deep Feature Extraction for Cymbidium Species Classification Using Global–Local CNN. Horticulturae 2022, 8, 470. https://doi.org/10.3390/horticulturae8060470
Fu Q, Zhang X, Zhao F, Ruan R, Qian L, Li C. Deep Feature Extraction for Cymbidium Species Classification Using Global–Local CNN. Horticulturae. 2022; 8(6):470. https://doi.org/10.3390/horticulturae8060470
Chicago/Turabian StyleFu, Qiaojuan, Xiaoying Zhang, Fukang Zhao, Ruoxin Ruan, Lihua Qian, and Chunnan Li. 2022. "Deep Feature Extraction for Cymbidium Species Classification Using Global–Local CNN" Horticulturae 8, no. 6: 470. https://doi.org/10.3390/horticulturae8060470
APA StyleFu, Q., Zhang, X., Zhao, F., Ruan, R., Qian, L., & Li, C. (2022). Deep Feature Extraction for Cymbidium Species Classification Using Global–Local CNN. Horticulturae, 8(6), 470. https://doi.org/10.3390/horticulturae8060470