Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Methyl Jasmonate (MeJA) Treatments
2.3. Phytochemical Analyses
2.3.1. Extraction and Quantification of Total Free Phenolics
2.3.2. Extraction and Quantification of Total Glucosinolates
2.3.3. Extraction and Quantification of Total Carotenoids
2.3.4. Extraction and Quantification of Ascorbic Acid
2.4. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Characterization of Peruvian Mashua Morphotypes
3.2. Effect of Methyl Jasmonate (MeJA) on the Accumulation of Bioactive Compounds of Peruvian Mashua Morphotypes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbizu, C.; Tapia, M. Tubérculos andinos. In Cultivos Marginados: Otra Perspectiva de 1492; Hernández Bermajo, J.E., León, S., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; pp. 147–161. [Google Scholar]
- Chirinos, R.; Campos, D.; Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. Phenolic profiles of andean mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chem. 2008, 106, 1285–1298. [Google Scholar] [CrossRef]
- Inostroza, L.A.; Castro, A.J.; Hernández, E.M.; Carhuapoma, M.; Yuli, R.A.; Collado, A.; Córdova, J.S. Actividad antioxidante de Tropaeolum tuberosum Ruiz & Pavón (mashua) y su aplicación como colorante para yogur. Cienc. E Investig. 2015, 18, 83–89. [Google Scholar] [CrossRef]
- Quispe, C.; Mansilla, R.; Chacón, A.; Blas, R. Análisis de la variabilidad morfológica del “Añu” Tropaeolum tuberosum Ruiz & Pavón procedente de nueve distritos de la región Cusco. Ecol. Appl. 2015, 14, 211–222. [Google Scholar]
- Pissard, A.; Arbizu, C.; Ghislain, M.; Bertin, R. Influence of geographical provenance on the genetic structure and diversity of the vegetatively propagated Andean tuber crop, mashua (Tropaeolum tuberosum), highlighted by intersimple sequence repeat markers and multivariate analysis methods. Int. J. Plant Sci. 2008, 169, 1248–1260. [Google Scholar] [CrossRef]
- Ortega, O.R.; Kliebenstein, D.J.; Arbizu, C.; Ortega, R.; Quiros, C.F. Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruiz & Pavón) in the Cuzco region of Peru. Econ. Bot. 2006, 60, 254–264. [Google Scholar] [CrossRef]
- Ticona, L.N.A.; Pérez, V.T.; Benito, P.B. Local/traditional uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol. 2020, 247, 112152. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Controlled abiotic stresses revisited: From homeostasis through hormesis to extreme stresses and the impact on nutraceuticals and quality during pre- and postharvest applications in horticultural crops. J. Agric. Food Chem. 2020, 68, 11877–11879. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A. Definition of biofortification revisited. ACS Food Sci. Technol. 2022, 2, 782–783. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol. Technol. 2009, 51, 242–249. [Google Scholar] [CrossRef]
- Villarreal-García, D.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: Postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Front. Plant Sci. 2016, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Swain, T.; Hillis, W.E. The phenolics constituents of Prunus domestica. I. The quantitative analysis of phenolics constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Cuéllar-Villarreal, M.R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol. Technol. 2016, 119, 18–26. [Google Scholar] [CrossRef]
- Gross, J. Pigments in Vegetables: Chlorophylls and Carotenoids; Springer: New York, NY, USA, 1991. [Google Scholar]
- Gillespie, K.M.; Ainsworth, E.A. Measurement of reduced, oxidized and total ascorbate content in plants. Nat. Protoc. 2007, 2, 871–874. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. J. Food Sci. 2009, 74, R107–R113. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Betalleluz, I.; Giusti, M.M.; Schwartz, J.; Tian, Q.; Pedreschi, R.; Larondelle, Y. High-performance liquid chromatography with photodiode array detection (HPLC−DAD)/HPLC−mass spectrometry (MS) profiling of anthocyanins from Andean mashua tubers (Tropaeolum tuberosum Ruíz and Pavón) and their contribution to the overall antioxidant activity. J. Agric. Food Chem. 2006, 54, 7089–7097. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Gao, M.L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.-O. Consideration on equivalent chemicals in total phenolic assay of chlorogenic acid-rich plums. Food Res. Int. 2004, 37, 337–342. [Google Scholar] [CrossRef]
- Edge, R.; Truscott, T.G. Singlet oxygen and free radical reactions of retinoids and carotenoids—A review. Antioxidants 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int. J. Mol. Sci. 2017, 18, 2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.T.; Kim, Y.B.; Seo, J.M.; Kim, S.J.; Chung, E.; Lee, J.H.; Park, S.U. Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate. J. Agric. Food Chem. 2013, 61, 4127–4132. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Balibrea, S.; Moreno, D.A.; García-Viguera, C. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem. 2011, 129, 35–44. [Google Scholar] [CrossRef]
- Ku, K.M.; Juvik, J.A. Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in broccoli florets and kale leaf tissues. HortScience 2013, 48, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Ku, K.M.; Jeffery, E.H.; Juvik, J.A. Influence of seasonal variation and methyl jasmonate mediated induction of glucosinolate biosynthesis on quinone reductase activity in broccoli florets. J. Agric. Food Chem. 2013, 61, 9623–9631. [Google Scholar] [CrossRef]
- Lou, H.; He, W.; Li, D.; Bao, Y.; Riaz, A.; Xiao, Y.; Song, J.; Liu, C. Effect of methyl jasmonate on carotenoids biosynthesis in germinated maize kernels. Food Chem. 2020, 307, 125525. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chen, F.; Wang, X.; Choi, J.-H. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem. 2006, 54, 7263–7269. [Google Scholar] [CrossRef]
- Wolucka, B.A.; Goossens, A.; Inzé, D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J. Exp. Bot. 2005, 56, 2527–2538. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Camacho, M.; Welti-Chanes, J.; Jacobo-Velázquez, D.A. Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrason. Sonochem. 2019, 50, 289–301. [Google Scholar] [CrossRef] [PubMed]
Accession Number | Region | Province | Distrit | Location | Altitud | Lat. South E | Log. West S | Tuber Color |
---|---|---|---|---|---|---|---|---|
MAC 001 | Ayacucho | Huamanga | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Black |
MAC 006 | Ayacucho | Huamanga | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Black |
MAC 007 | Ayacucho | Huamanga | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow |
MAC 008 | Ayacucho | Huamanga | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 019 | Ayacucho | Huanta | Uchuraccay | Iquicha | 3802 | 601,807.25 | 8,582,772.00 | Yellow with spots |
MAC 042 | Ayacucho | Huanta | Uchuraccay | Iquicha | 3802 | 601,807.25 | 8,582,772.00 | Black |
MAC 048 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow |
MAC 051 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 057 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 058 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 063 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 067 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Black |
MAC 068 | Ayacucho | Cangallo | Morochucos | Codorccocha | 3609 | 586,371.04 | 8,513,193.58 | Black |
MAC 069 | Apurimac | Andahuaylas | Pomacocha | Angasccucha | 3930 | 657,582.32 | 8,447,807.00 | Brown |
MAC 075 | Apurimac | Andahuaylas | Huayana | Patahuasi | 3842 | 657,850.95 | 8,451,388.39 | Yellow |
MAC 080 | Apurimac | Andahuaylas | Huayana | Patahuasi | 3768 | 657,128.19 | 8,451,202.10 | Yellow with spots |
MAC 081 | Apurimac | Andahuaylas | Huayana | Patahuasi | 3847 | 656,165.16 | 8,451,003.98 | Yellow with spots |
MAC 090 | Apurimac | Chincheros | Anccohuayllo | Uripa | 4060 | 646,838.51 | 8,500,799.01 | White |
MAC 092 | Ayacucho | Huamanga | Acocro | Pumapuquio | 3680 | 601,865.03 | 8,530,546.20 | Black |
MAC 093 | Ayacucho | Huamanga | Acocro | Pumapuquio | 3680 | 601,865.03 | 8,530,546.20 | Yellow |
MAC 094 | Ayacucho | Huamanga | Acocro | Pumapuquio | 3680 | 601,865.03 | 8,530,546.20 | Black |
MAC 095 | Ayacucho | Huamanga | Acocro | Pumapuquio | 3680 | 601,865.03 | 8,530,546.20 | Grayish purple |
MAC 098 | Ayacucho | Cangallo | Morochucos | Condorccocha | 3610 | 586,371.04 | 8,513,193.58 | Yellow with spots |
MAC 111 | Ayacucho | Huanta | Uchuraccay | Iquicha | 3759 | 601,814.89 | 8,582,356.37 | Pale pinkish orange |
MAC 120 | Ayacucho | La Mar | Anco | Osccoccocha | 3590 | 634,357.08 | 8,556,954.53 | Brown |
MAC 123 | Ayacucho | La Mar | Tambo | Huisca | 3904 | 612,334.92 | 850,002.07 | Brown |
MAC 135 | Ayacucho | La Mar | Chiquintirca | Osccoccocha | 3669 | 634,555.00 | 8,558,368.76 | Yellow with spots |
Accession Number i,ii | Total Phenolic (mg/kg) iii | Total Carotenoids (mg/kg) | Total Glucosinolates (mmol/kg) | Ascorbic Acid (mg/kg) |
---|---|---|---|---|
MAC 001 | 10,035.93 ± 786 def | 27.6 ± 2.8 g | 662 ± 9 def | 2.72 ± 0.51 bcdef |
MAC 006 | 3592.737 ± 285.9 ijk | 58.5 ± 4.4 c | 212 ± 43 ij | 2.49 ± 0.32 bcdefg |
MAC 007 | 4054.544 ± 671 fghij | 19.8 ± 0 hij | 734 ± 23 def | 1.05 ± 0.18 ij |
MAC 008 | 3262.498 ± 385.5 ijk | 54.7 ± 3.1 c | 286 ± 53 hij | 1.74 ± 0.11 efghij |
MAC 019 | 13,207.19 ± 1351 cd | 81.8 ± 3 a | 644 ± 69 def | 1.2 ± 0.23 hij |
MAC 042 | 10745.96 ± 464.3 de | 56.8 ± 1.1 c | 765 ± 55 de | 2.83 ± 0.64 bcde |
MAC 048 | 10,624.13 ± 185.7 efgh | 66.7 ± 4.1 b | 601 ± 66 def | 1.54 ± 0.25 ghij |
MAC 051 | 6099.282 ± 850.4 hijk | 24.7 ± 1.4 ghi | 750 ± 144 def | 1.99 ± 0.28 cdefghi |
MAC 057 | 8379.372 ± 513.2 efghi | 70.3 ± 2.4 b | 666 ± 34 def | 3.08 ± 0.64 bc |
MAC 058 | 9974.931 ± 744.6 defg | 19.2 ± 1.6 ijk | 346 ± 73 ghi | 1.17 ± 0.06 hij |
MAC 063 | 13,053.63 ± 233.7 cd | 55.7 ± 2.4 c | 671 ± 96 def | 1.94 ± 0.46 cdefghi |
MAC 067 | 9332.752 ± 172.4 efgh | 18 ± 3.1 ijk | 794 ± 76 cd | 1.56 ± 0.16 fghij |
MAC 068 | 13,153.79 ± 2192 cd | 22.8 ± 1.8 ghij | 190 ± 60 ij | 2.52 ± 0.45 bcdefg |
MAC 069 | 14,813.24 ± 1836 c | 85.8 ± 3.1 a | 619 ± 221 def | 3.02 ± 0.51 bcd |
MAC 075 | 3002.672 ± 164.2 jk | 46.1 ± 3.2 d | 694 ± 19 def | 3.48 ± 0.67 ab |
MAC 080 | 3420.103 ± 548.3 k | 40.8 ± 2.4 def | 535 ± 51 efg | 1.97 ± 0.3 cdefghi |
MAC 081 | 10,808.32 ± 75.82 de | 54.5 ± 2.2 c | 237 ± 15 ij | 2.31 ± 0.54 cdefgh |
MAC 090 | 2990.762 ± 273.5 k | 16.7 ± 3 jk | 513 ± 81 fgh | 0.91 ± 0.07 ij |
MAC 092 | 24,217.36 ± 1144 a | 18.6 ± 1.4 ijk | 717 ± 118 def | 0.92 ± 0.03 ij |
MAC 093 | 8646.174 ± 83.55 ghijk | 26.3 ± 1.9 gh | 1031 ± 47 bc | 1.47 ± 0.08 ghij |
MAC 094 | 9206.516 ± 824.1efghij | 27.7 ± 3 g | 259 ± 66 ij | 2.63 ± 0.39 bcdefg |
MAC 095 | 7339.298 ± 335.3 efghij | 12.8 ± 0.6 k | 806 ± 166 cd | 0.65 ± 0.33 j |
MAC 098 | 5958.474 ± 379.4 hijk | 23.3 ± 0.9 ghij | 831 ± 112 bcd | 4.51 ± 1.03 a |
MAC 111 | 13,128.37 ± 784.5 cd | 37.4 ± 1.6 ef | 1053 ± 119 ab | 1.71 ± 0.29 efghij |
MAC 120 | 8803.842 ± 513.3 efgh | 35.7 ± 0.1 f | 274 ± 20 hij | 1.87 ± 0.21 defghi |
MAC 123 | 10,714.23 ± 298.8 de | 42.7 ± 1.8 de | 1289 ± 65 a | 1.49 ± 0.16 ghij |
MAC 135 | 19,494.7 ± 370.3 b | 17.8 ± 0.5 jk | 65 ± 11 j | 1.57 ± 0.42 fghij |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobo-Velázquez, D.A.; Peña-Rojas, G.; Paredes-Avila, L.E.; Andía-Ayme, V.; Torres-Contreras, A.M.; Herrera-Calderon, O. Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. Horticulturae 2022, 8, 471. https://doi.org/10.3390/horticulturae8060471
Jacobo-Velázquez DA, Peña-Rojas G, Paredes-Avila LE, Andía-Ayme V, Torres-Contreras AM, Herrera-Calderon O. Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. Horticulturae. 2022; 8(6):471. https://doi.org/10.3390/horticulturae8060471
Chicago/Turabian StyleJacobo-Velázquez, Daniel A., Gilmar Peña-Rojas, Luis Ernesto Paredes-Avila, Vidalina Andía-Ayme, Ana Mariel Torres-Contreras, and Oscar Herrera-Calderon. 2022. "Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants" Horticulturae 8, no. 6: 471. https://doi.org/10.3390/horticulturae8060471