Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato
Abstract
:1. Introduction
2. Material and Methods
2.1. Site and Material
2.2. Experimental Design
2.3. Methods
2.3.1. Measurement of Plant Growth Index
2.3.2. Determination of Leaf Chlorophyll Content and Photosynthetic Parameters
2.3.3. Analysis of the Yield and Quality of Tomato Fruit
2.3.4. Assessment of Partial Fertilizer Productivity
2.4. Data Statistics
3. Results
3.1. The Effect of Nutrient Solution Concentration Dynamic Management on Cherry Tomato Growth
3.2. The Effect of Nutrient Solution Concentration Dynamic Management on Chlorophyll Content and Photosynthesis in Cherry Tomato Leaves
3.3. The Effect of Nutrient Solution Concentration Dynamic Management on Fruit Weight of Cherry Tomato
3.4. The Effect of Nutrient Solution Concentration Dynamic Management on Fruit Quality of Cherry Tomato
3.5. The Effect of Nutrient Solution Concentration Dynamic Management on Partial Factor Productivity of Cherry Tomato Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lucke, T.; Walker, C.; Beecham, S. Experimental designs of field-based constructed floating wetland studies: A review. Sci. Total Environ. 2019, 660, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Skiba, E.; Michlewska, S.; Pietrzak, M.; Wolf, W.M. Additive interactions of nanoparticulate ZnO with copper, manganese and iron in Pisum sativum L., a hydroponic study. Sci. Rep. 2020, 10, 13574. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Nicola, S.; Savvas, D.; Voogt, W. Editorial: Soilless cultivation through an intensive crop production scheme. management strategies, challenges and future directions. Front. Plant Sci. 2020, 11, 363. [Google Scholar] [CrossRef]
- López, A.; Fenoll, J.; Hellín, P.; Flores, P. Physical characteristics and mineral composition of two pepper cultivars under organic, conventional and soilless cultivation. Sci. Hortic. 2013, 150, 259–266. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Gao, H.B.; Tian, J.; Wang, J.W.; Du, C.X.; Guo, S.R. Development status and trends of protected horticulture in China. J. Nanjing Agric. Uni. 2019, 42, 594–604. [Google Scholar]
- Agius, C.; Von Tucher, S.; Rozhon, W. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae 2022, 8, 59. [Google Scholar] [CrossRef]
- Bai, Y.; Lindhout, P. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef]
- Luterotti, S.; Bicanic, D.; Markovi, K.; Franko, M. Carotenes in processed tomato after thermal treatment. Food Control 2015, 48, 67–74. [Google Scholar] [CrossRef]
- Wyatt, L.E.; Strickler, S.R.; Mueller, L.A.; Mazourek, M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic. Res. 2015, 2, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Kyriacou, M.; Petropoulos, S.A.; Pascale, S.D.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Vande Vooren, J.; Welles, G.; Hayman, G. Glasshouse crop production. In The Tomato Crop; Springer: Dordrecht, The Netherlands, 1986; Volume 5, pp. 581–623. [Google Scholar]
- Savvas, D. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. J. Food Agric. Environ. 2003, 1, 80–86. [Google Scholar]
- Liu, J.; Hu, T.; Feng, P.; Wang, L.; Yang, S. Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLoS ONE 2019, 14, e0213643. [Google Scholar] [CrossRef]
- Wang, Y.; He, G.; Yang, H.; Yue, X.; Yu, J.; Shi, L.; Fang, H. Effects of water and fertilizer on the yield and quality of winter and spring tomato in dry-hot valley. Chin. J. Trop. Crops 2021, 42, 2297–2304. [Google Scholar]
- Zhang, Y.; Zhao, G.; Cheng, P.; Yan, X.; Li, Y.; Cheng, D.; Wang, R.; Chen, J.; Shen, W. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas. Int. J. Food Prop. 2019, 22, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Suzuki, T. Effect of nutrient solution concentration on the growth of hydroponic sweetpotato. Agronomy 2020, 10, 1708. [Google Scholar] [CrossRef]
- Jones, J.B. Hydroponics: Its history and use in plant nutrition studies. J. Plant Nutr. 1982, 5, 1003–1030. [Google Scholar] [CrossRef]
- Schwarz, D.; Klaring, H.P.; Iersel, M.; Ingram, K.T. Growth and photosynthetic response of tomato to nutrient solution concentration at two light levels. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 2002, 127, 984–990. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R. The absorption of ions by plants. Soil Sci. 1929, 16, 225–246. [Google Scholar] [CrossRef]
- Fernández-Crespo, E.; Scalschi, L.; Llorens, E.; García-Agustín, P.; Camañes, G. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation. J. Exp. Bot. 2015, 66, 6777–6790. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Li, S.; Guo, J.; Guo, Q.; Peichun, M.; Tian, X. Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Sci. Rep. 2017, 7, 17779. [Google Scholar]
- Gruber, B.D.; Giehl, R.F.; Friedel, S.; Von Wirén, N. Plasticity of the arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013, 163, 161–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, J.; Contreras-López, O.; Álvarez, J.M.; Gutiérrez, R.A. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana. Plant J. 2017, 92, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Bodale, I.; Mihalache, G.; Achiei, V.; Teliban, G.C.; Cazacu, A.; Stoleru, V. Evaluation of the nutrients uptake by tomato plants in different phenological stages using an electrical conductivity technique. Agriculture 2021, 11, 292. [Google Scholar] [CrossRef]
- Ddamulira, G.; Idd, R.; Namazzi, S.; Kalali, F.; Mundingotto, J.; Maphosa, M. Nitrogen and potassium fertilizers increase cherry tomato height and yield. J. Agric. Sci. 2019, 11, 48. [Google Scholar] [CrossRef]
- Li, L.; Guo, R.; Li, H.; Cao, Y. Effects of nitrogen concentration in hydroponics on growth and development of tomato and spectral characteristics of leaf in greenhouse. Plant Nutr. Fertil. Sci. 2010, 16, 20–26. [Google Scholar]
- Agius, C.; Von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of glutamate and aspartate by ultra-high performance liquid chromatography. Molecules 2018, 23, 1389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liang, Y.; Zhao, X.; Jin, X.; Hou, L.; Shi, Y.; Ahammed, G.J. Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 2019, 9, 733. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Yu, H.; Jiang, W.; Liu, X.; Yang, X. Effects of different potassium levels applied at blooming stage on the growth, yield and quality of tomato in greenhouse. Soils Fertil. Sci. China 2011, 6, 35–38. [Google Scholar]
- Veitkohler, U.; Krumbein, A.; Kosegarten, H. Effect of different water supply on plant growth and fruit quality of Lycopersicon esculentum. J. Plant Nutr. Soil Sci. 1999, 162, 583–588. [Google Scholar] [CrossRef]
- Moraes, C.C.; Factor, T.L.; Araújo, H.S.; Purquerio, L.F.V. Plant growth and nutrient accumulation in two tomato hybrids under tropical conditions. Aust. J. Crop Sci. 2018, 12, 1419–1425. [Google Scholar] [CrossRef]
- Wu, M.; Kubota, C. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hortic. 2008, 116, 122–129. [Google Scholar] [CrossRef]
- Wang, P. Effects of Nutrient Solution Concentration Supply on Growth, Yield and Quality during Growing Stage; Northwest A&F University: Xianyang, China, 2017. [Google Scholar]
- Lu, S.; Qi, F.; Li, T.; Jiang, J. Effects of tomato fruit development and sucrose metabolism by improving the conductivity of nutrient solution in soilless culture. North. Hortic. 2012, 19, 4–10. [Google Scholar]
- Pardossi, A.; Carmassi, G.; Diara, C.; Incrocci, L.; Maggini, R.; Massa, D. Fertigation and Substrate Management in Closed Soilless Culture; University of Pisa: Pisa, Italy, 2011. [Google Scholar]
- Li, B.; Wang, S.; Zhang, Y.; Qiu, D. Acid Soil Improvement enhances disease tolerance in citrus infected by candidatus liberibacter asiaticus. Int. J. Mol. Sci. 2020, 21, 3614. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Yu, H.; Li, Q.; Chai, L.; Jiang, W. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Front. Plant Sci. 2019, 10, 490. [Google Scholar] [CrossRef]
- Hiranrangsee, L.; Kumaree, K.K.; Sadiq, M.B.; Anal, A.K. Extraction of anthocyanins from pericarp and lipids from seeds of mangosteen (Garcinia mangostana L.) by Ultrasound-assisted extraction (UAE) and evaluation of pericarp extract enriched functional ice-cream. J. Food Sci. Technol. 2016, 53, 3806–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llerena, W.; Samaniego, I.; Angós, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds content prediction in ecuadorian fruits using a mathematical model. Foods 2019, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; He, W.; He, L.; Yang, J.Y.; Qian, B.; Zhou, W.; He, P. Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Sci. Rep. 2021, 11, 810. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.; Biehler, K.; Fock, H.; Carrayol, E.; Becker, T.W. A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato. Physiol. Plant. 1997, 99, 241–248. [Google Scholar] [CrossRef]
- Dennis, D.; Johanna, S.; Christian, U.; Schmidt, U. Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar]
- Sang, S.; Kim, Y.; Park, M.; Kim, H.; Choi, J. Changes in crop growth and nutrient concentrations of tissue and soil solution in raising of hot pepper plug seedlings as influenced by various pre-planting nitrogen levels incorporated into a inert medium. Prot. Hortic. Plant Fact. 2018, 27, 66–75. [Google Scholar]
- Xing, D.; Wu, Y. Effects of low nutrition on photosynthetic capacity and accumulation of total N and P in three climber plant species. Chin. J. Geochem. 2015, 34, 115–122. [Google Scholar] [CrossRef]
- D’ Anna, F.D.; Incalcaterra, G.; Moncada, A.; Miceli, A. Effects of different electrical conductivity levels on strawberry grown in soilless culture. Acta Hort. 2003, 609, 355–360. [Google Scholar] [CrossRef]
- Klamkowski, K.; Treder, W. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 2008, 16, 179–188. [Google Scholar]
- Klamkowski, K.; Treder, W. Morphological and physiological responses of strawberry plants to water stress. Agric. Conspec. Sci. 2006, 71, 159–165. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Caruso, G.; Villari, G.; Melchionna, G.; Conti, S. Effects of cultural cycles and nutrient solutions on plant growth, yield and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Sci. Hortic. 2011, 129, 479–485. [Google Scholar] [CrossRef]
- Higo, M.; Azuma, M.; Kamiyoshihara, Y.; Kanda, A.; Tatewaki, Y.; Isobe, K. Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 2020, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.T.; Kiriiwa, Y.; Nukaya, A. Influence o f nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. Hortic. J. 2015, 84, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, M. Effects of Nutrient Concentration Changes on Yield, Quality and Nutrient Absorption of Tomato; Northwest A&F University: Xianyang, China, 2015. [Google Scholar]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef]
- Cliff, M.A.; Li, J.B.; Toivonen PM, A.; Ehret, D.L. Effects of nutrient solution electrical conductivity on the compositional and sensory characteristics of greenhouse tomato fruit. Postharvest Biol. Technol. 2012, 74, 132–140. [Google Scholar] [CrossRef]
- Lei, Y.; Yin, C.; Li, C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of populus przewalskii. Physiol. Plant. 2010, 127, 182–191. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Muhammad, F.S. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Li, Y.; Stanghellini, C. Analysis of the effect of EC and potential transpiration on vegetative growth of tomato. Sci. Hortic. 2001, 89, 9–21. [Google Scholar] [CrossRef]
- Liang, Q.Y.; Wu, Y.H.; Wang, K.; Bai, Z.Y.; Liu, Q.L.; Pan, Y.Z.; Zhang, L.; Jiang, B.B. Chrysanthemum wrky gene dgwrky5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci. Rep. 2017, 7, 4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beesigamukama, D.; Mochoge, B.; Korir, N.K.; Fiaboe, K.; Tanga, C.M. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions. Front. Plant Sci. 2020, 11, 1447. [Google Scholar] [CrossRef]
- Yang, P.; Chen, R.; Li, J.; Fei, C.; Wu, Y.; Zheng, Z. Effects of different Irrigation limits and nutrient solution concentrations on tomato cultivated in substrate. Jiangsu Agric. Sci. 2017, 45, 126–128. [Google Scholar]
- Wei, Z.; Liang, Y.; Zhou, M.; Huang, M.; He, L.; Gao, J.; Wu, Y. Physiological characteristics of leaf growth and yield of cucumber under different watering and fertilizer coupling treatments in greenhouse. Trans. Chin. Soc. Agric. Eng. 2010, 26, 69–74. (In Chinese) [Google Scholar]
- Hebbar, S.S.; Ramachandrappa, B.K.; Nanjappa, H.V.; Prabhakar, M. Studies on npk drip fertigation in field grown tomato (Lycopersicon esculentum mill.). Eur. J. Agron. 2004, 21, 117–127. [Google Scholar] [CrossRef]
- Banedjschafie, S.; Bastani, S.; Widmoser, P.; Mengel, K. Improvement of water use and n fertilizer efficiency by subsoil irrigation of winter wheat. Eur. J. Agron. 2008, 28, 1–7. [Google Scholar] [CrossRef]
- Yadav, D.; Shavrukov, Y.; Bazanova, N.; Chirkova, L.; Lopato, S. Constitutive overexpression of the tanf-yb4 gene in transgenic wheat significantly improves grain yield. J. Exp. Bot. 2015, 66, 6635–6648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef] [PubMed]
- Hungyen, C.; Junko, Y.; Hirohisa, K.; Wenju, L. Bayesian inference of baseline fertility and treatment effects via a crop yield-fertility model. PLoS ONE 2014, 9, e112785. [Google Scholar]
- Fan, S. Effects of nutrient solution of different concentrations on growth properties of lactuca sativa var. longifolia Lam. J. Hortic. 2003, 30, 152–156. [Google Scholar]
- Sun, M. Effects of potassium fertilizer with different concentrations on growth, quality and yield of cherry tomatoes under soilless cultivation conditions. J. Chang. Veg. 2012, 22, 2–7. [Google Scholar]
- Jat, R.S.; Choudhary, R.L.; Singh, H.V.; Meena, M.K.; Rai, P.K. Sustainability, productivity, profitability and soil health with conservation agriculture-based sustainable intensification of oilseed brassica production system. Sci. Rep. 2021, 11, 13366. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Yuan, Y.; Meng, G.; Li, C.; Ogutu, C.; Li, M.; Feng, W. Determination of predominant organic acid components in malus species: Correlation with apple domestication. Metabolites 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Carli, P.; Arima, S.; Fogliano, V.; Tardella, L.; Frusciante, L.; Ercolano, M.R. Use of network analysis to capture key traits affecting tomato organoleptic quality. J. Exp. Bot. 2009, 60, 3379–3386. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Gao, Y.; Li, J.; Wang, L.; Zhang, X.; Liu, J. Mineral element absorption, distribution, and growth of nutrient film technique cultured tomatoes with varying nutrient solution ratios. J. Zhejiang A F Univ. 2019, 36, 1217–1224. [Google Scholar]
- Cai, D.; Li, J.; Li, H.; Hu, X.; Zhang, J. Effects of nutrient solution supply amount on yield, quality and volatile matter of tomato. Chin. J. Appl. Ecol. 2018, 29, 921–930. [Google Scholar]
- Amalfitano, C.; Del Vacchio, L.; Somma, S.; Cuciniello, A.; Caruso, G. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics. Hort. Sci. 2017, 44, 91–98. [Google Scholar]
- Savvas, D.; Stamati, E.; Tsirogiannis, I.L.; Mantzos, N.; Barouchas, P.E.; Katsoulas, N.; Kittas, C. Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems. Agric. Water Manag. 2007, 91, 102–111. [Google Scholar] [CrossRef]
- Jiang, J.; Li, T.; Lu, S.; Liu, S. The relationship between the added NaCl of different concentration and the development of tomato fruits under the soilless culture. North. Hortic. 2007, 7, 49–51. [Google Scholar]
- Thonmpson, A.J. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol. 1999, 120, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Dittakit, P.; Thongket, T. Increased nutrient solution concentration during early fruit development stages enhances pungency and phenylalanine ammonia-lyase activity in hot chili (Capsicum annuum L.). Am. J. Agric. Biol. Sci 2014, 9, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Ishigami, Y.; Goto, E. Effect of nutrient solution concentration at the heading time on the growth, development, and seed storage protein content of rice plants in a controlled environment. Environ. Control Biol. 2010, 48, 17–24. [Google Scholar] [CrossRef]
Treatments | Electrical Conductivity (ms·cm−1) | ||
---|---|---|---|
Seedling and Flowering Period | Fruiting Period | Harvesting Period | |
CK | 3.0 ± 0.2 | 3.0 ± 0.2 | 3.0 ± 0.2 |
T1 | 1.5 ± 0.2 | 3.0 ± 0.2 | 3.0 ± 0.2 |
T2 | 1.5 ± 0.2 | 3.0 ± 0.2 | 4.5 ± 0.2 |
T3 | 1.5 ± 0.2 | 1.5 ± 0.2 | 3.0 ± 0.2 |
T4 | 1.5 ± 0.2 | 4.5 ± 0.2 | 4.5 ± 0.2 |
Treatments | Chlorophyll Content (SPAD) | Pn (μmol·m−2·s−1) | Tr (mmol·m−2·s−1) | Gs (mol·m−2·s−1) | Ci (μmol·mmol−1) |
---|---|---|---|---|---|
CK | 37.6 ± 1.2 ab | 16.1 ± 1.3 ab | 6.3 ± 0.6 a | 0.42 ± 0.21 a | 264.8 ± 25.3 ab |
T1 | 37.2 ± 1.1 ab | 16.5 ± 1.2 ab | 6.1 ± 0.2 a | 0.47 ± 0.16 a | 269.5 ± 19.5 ab |
T2 | 38.1 ± 0.9 a | 17.7 ± 0.7 a | 6.8 ± 0.7 a | 0.48 ± 0.11 a | 274.8 ± 20.8 ab |
T3 | 35.7 ± 1.1 b | 14.1 ± 1.3 b | 6.4 ± 0.3 a | 0.45 ± 0.24 a | 250.7 ± 18.5 b |
T4 | 38.7 ± 1.2 a | 18.1 ± 1.3 a | 7.0 ± 0.7 a | 0.52 ± 0.08 a | 284.7 ± 15.8 a |
Treatments | Total Soluble Solids (°Brix) | Total Titratable Acid (%) | Maturity |
---|---|---|---|
CK | 9.79 ± 0.29 bc | 1.74 ± 0.09 a | 5.99 ± 0.30 b |
T1 | 9.85 ± 0.39 abc | 1.72 ± 0.09 a | 6.02 ± 0.30 b |
T2 | 10.68 ± 0.53 a | 1.69 ± 0.08 a | 6.76 ± 0.34 a |
T3 | 9.06 ± 0.45 c | 1.79 ± 0.09 a | 5.61 ± 0.28 b |
T4 | 10.75 ± 0.54 a | 1.68 ± 0.08 a | 6.81 ± 0.35 a |
Treatments | PFPN kg·kg−1 | PFPP kg·kg−1 | PFPK kg·kg−1 |
---|---|---|---|
CK | 80.55 ± 4.83 bc | 675.47 ± 36.29 bc | 87.30 ± 4.74 bc |
T1 | 82.17 ± 3.35 b | 689.02 ± 27.42 b | 89.05 ± 4.95 bc |
T2 | 86.44 ± 3.76 ab | 724.55 ± 35.87 ab | 93.64 ± 4.41 ab |
T3 | 74.99 ± 4.24 c | 628.82 ± 28.37 c | 81.27 ± 4.17 c |
T4 | 91.34 ± 4.15 a | 765.99 ± 36.60 a | 99.00 ± 4.89 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Yu, H.; Wang, T.; Zhang, T.; Shi, C.; Jiang, W. Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato. Horticulturae 2022, 8, 378. https://doi.org/10.3390/horticulturae8050378
Lu T, Yu H, Wang T, Zhang T, Shi C, Jiang W. Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato. Horticulturae. 2022; 8(5):378. https://doi.org/10.3390/horticulturae8050378
Chicago/Turabian StyleLu, Tao, Hongjun Yu, Tanyu Wang, Taoyue Zhang, Chenhua Shi, and Weijie Jiang. 2022. "Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato" Horticulturae 8, no. 5: 378. https://doi.org/10.3390/horticulturae8050378
APA StyleLu, T., Yu, H., Wang, T., Zhang, T., Shi, C., & Jiang, W. (2022). Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato. Horticulturae, 8(5), 378. https://doi.org/10.3390/horticulturae8050378