PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurement of Fruit Firmness
2.3. Determination of Ethylene Production
2.4. Determination of IAA Concentration
2.5. Identification of the PpSAUR Genes in Peaches
2.6. Phylogenetic Analyses of the SAUR Genes in Peaches and Arabidopsis
2.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
2.8. Subcellular Localization Analysis
2.9. Peach Injection Assays
2.10. Yeast Two-Hybrid (Y2H) Assay
2.11. Bimolecular Fluorescence Complementation (BiFC) Assay
2.12. Statistical Analysis
3. Results
3.1. Screening and Identification of the PpSAUR Family Genes
3.2. Sequence and Phylogenetic Analysis
3.3. Expression Patterns of PpSAUR43 in the MF and NMF Cultivars during Peach Post-Ripening
3.4. PpSAUR43 Proteins Are Localized in the Cell Membrane and Nucleus
3.5. PpSAUR43 Impacts Peach Fruit Post-Ripening and Softening as an Inhibitor
3.6. PpSAUR43 Interacts with PpCMB1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grierson, D.; Kader, A.A. Fruit ripening and quality. In The Tomato Crop; Rudich, J., Ed.; Springer: London, UK, 1986; pp. 241–280. [Google Scholar]
- Li, Y.; Wang, L. Genetic Resources, Breeding Programs in China, and Gene Mining of Peach: A Review. Hortic. Plant J. 2020, 6, 205–215. [Google Scholar] [CrossRef]
- Food and Agricultural Organization. Available online: www.fao.org (accessed on 18 December 2021).
- Yoshida, M. Genetical studies on the fruit quality of peach varieties. III. Texture and keeping quality. Bull. Fruit Tree Res. Stn. 1976, 3, 1–16. [Google Scholar]
- Given, N.K.; Venis, M.A.; Gierson, D. Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 1988, 174, 402–406. [Google Scholar] [CrossRef]
- Fuentes, L.; Figueroa, C.R.; Valdenegro, M. Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. Horticulturae 2019, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Obroucheva, N.V. Hormonal regulation during plant fruit development. Russ. J. Dev. Biol. 2014, 45, 14. [Google Scholar] [CrossRef]
- Wang, P.; Lu, S.; Zhang, X.; Hyden, B.; Qin, L.; Liu, L.; Bai, Y.; Han, Y.; Wen, Z.; Xu, J.; et al. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Sci. 2021, 304, 110739. [Google Scholar] [CrossRef]
- Tan, B.; Lian, X.; Cheng, J.; Zeng, W.; Zheng, X.; Wang, W.; Ye, X.; Li, J.; Li, Z.; Zhang, L.; et al. Genome-wide identification and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic acid are differentially expressed in the fruits of melting flesh and stony hard peach varieties. BMC Genom. 2019, 20, 892. [Google Scholar] [CrossRef] [Green Version]
- Burg, S.P. Ethylene action and the ripening of fruits. Science 1965, 148, 1190–1196. [Google Scholar] [CrossRef]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 377, 2039–2055. [Google Scholar] [CrossRef]
- Lelièvre, J.M.; Latchè, A.; Jones, B.; Hall, M.A. Ethylene and fruit ripening. Physiol. Plant. 1997, 101, 727–739. [Google Scholar] [CrossRef]
- Zarembinski, T.I.; Theologis, A. Ethylene biosynthesis and action: A case of conservation. Plant Mol. Biol. 1994, 26, 1579–1597. [Google Scholar] [CrossRef] [PubMed]
- Jerie, P.H.; Hall, M.A.; Jones, B. Aspects of the role of ethylene in fruit ripening. Acta Hortic. 1978, 80, 325–332. [Google Scholar] [CrossRef]
- Haji, T.; Yaegaki, H.; Yamaguchi, M. Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Sci. Hortic. 2005, 105, 241–248. [Google Scholar] [CrossRef]
- Bailey, J.S.; French, A.P. The inheritance of certain characters in the peach. Proc. Am. Soc. Hortic. Sci. 1932, 29, 127–130. [Google Scholar]
- Tatsuki, M.; Yamaguchi, H.M. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, PpACS1, in peach fruit softening. J. Exp. Bot. 2006, 57, 1281–1289. [Google Scholar] [CrossRef]
- Tatsuki, M.; Haji, T.; Yamaguchi, M. The peach 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, is required for fruit softening. In Advances in Plant Ethylene Research; Springer: Dordrecht, Germany, 2007; pp. 227–228. [Google Scholar] [CrossRef]
- Tatsuki, M.; Nakajima, N.; Fujii, H.; Shimada, T.; Nakano, M.; Hayashi, K.-I.; Hayama, H.; Yoshioka, H.; Nakamura, Y. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J. Exp. Bot. 2013, 64, 1049–1059. [Google Scholar] [CrossRef]
- Pan, L.; Zeng, W.; Liang, N. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. J. Exp. Bot. 2015, 22, 7031–7044. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Ding, Y.; Pan, L.; Wang, X.; Niu, L.; Lu, Z.; Cui, G.; Wang, Z. A CACTA transposable element in a PpYUC11 gene promoter is associated with the stony hard phenotype in peach. J. Fruit Sci. 2017, 4, 1239–1248. [Google Scholar] [CrossRef]
- Tadiello, A.; Ziosi, V.; Negri, A.S.; Noferini, M.; Fiori, G.; Busatto, N.; Espen, L.; Costa, G.; Trainotti, L. On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol. 2016, 16, 44. [Google Scholar] [CrossRef] [Green Version]
- Busatto, N.; Tadiello, A.; Trainotti, L.; Costa, F. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. Plant Signal. Behav. 2016, 12, e1268312. [Google Scholar] [CrossRef] [Green Version]
- Khaksar, G.; Sirikantaramas, S. Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening Through Auxin-Ethylene Crosstalk in Durian. Front. Plant Sci. 2020, 11, 543747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, W.; Xie, R.; Xu, L.; Zhou, Y.; Li, H.; Yuan, C.; Zheng, X.; Xiao, L.; Liu, K. CpARF2 and CpEIL1 interact to mediate auxin–ethylene interaction and regulate fruit ripening in papaya. Plant J. 2020, 103, 1318–1337. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, G.; Breitel, D.; Liu, M.; Mila, I.; Frasse, P.; Fu, Y.; Aharoni, A.; Bouzayen, M.; Zouine, M. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato. PLoS Genet. 2015, 11, e1005649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Pang, S.; Zheng, Q.; Quan, S.; Liu, Y.; Xu, T.; Liu, Y.; Qi, M. Function Analysis of the ERF and DREB Subfamilies in Tomato Fruit Development and Ripening. Front. Plant Sci. 2022, 13, 849048. [Google Scholar] [CrossRef] [PubMed]
- Trainotti, L.; Tadiello, A.; Casadoro, G. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 2007, 58, 3299–3308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, T.; Jia, S.; Huang, X.; Wang, L.; Fu, W.; Huo, G.; Gan, L.; Ding, J.; Li, Y. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 2019, 250, 145–162. [Google Scholar] [CrossRef]
- Liu, G.S.; Li, H.L.; Grierson, D.; Fu, D.Q. NAC transcription factor family regulation of fruit ripening and quality: A Review. Cells 2022, 11, 525. [Google Scholar] [CrossRef]
- Xie, F.; Hua, Q.; Chen, C.; Zhang, Z.; Zhang, R.; Zhao, J.; Hu, G.; Chen, J.; Qin, Y. Genome-Wide Characterization of R2R3-MYB Transcription Factors in Pitaya Reveals a R2R3-MYB Repressor HuMYB1 Involved in Fruit Ripening through Regulation of Betalain Biosynthesis by Repressing Betalain Biosynthesis-Related Genes. Cells 2021, 10, 1949. [Google Scholar] [CrossRef]
- Jiang, G.; Zeng, J.; Li, Z.; Song, Y.; Yan, H.; He, J.; Jiang, Y.; Duan, X. Redox Regulation of the NOR Transcription Factor Is Involved in the Regulation of Fruit Ripening in Tomato. Plant Physiol. 2020, 183, 671–685. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Liu, Z.; Liu, Z.Q.; Shu, P.; Wang, R.; Hao, Y.; Su, D.; Pirrello, J.; Liu, Y.; et al. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. Plant Cell. 2022, 4, 1250–1272. [Google Scholar] [CrossRef]
- Wang, X.; Pan, L.; Wang, Y.; Meng, J.; Deng, L.; Niu, L.; Liu, H.; Ding, Y.; Yao, J.-L.; Nieuwenhuizen, N.J.; et al. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Sci. 2021, 313, 111084. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, K.; Grierson, D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytol. 2019, 221, 1724–1741. [Google Scholar] [CrossRef] [Green Version]
- Vrebalov, J.; Ruezinsky, D.; Padmanabhan, V.; White, R.; Medrano, D.; Drake, R.; Schuch, W.; Giovannoni, J. A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science 2002, 296, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, R.J.; Ireland, H.S.; Ross, J.J.; Ling, T.J. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AOB Plants 2013, 5, 047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elitzur, T.; Yakir, E.; Quansah, L.; Zhangjun, F.; Vrebalov, J.; Khayat, E.; Giovannoni, J.J.; Friedman, H. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security. Plant Physiol. 2016, 171, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, F.; Qian, M.; Han, M.; Liu, H.; Zhang, D.; Ma, J.; Zhao, C. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. Plant Sci. 2017, 257, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Pi, M.; Hu, S.; Cheng, L.; Zhong, R.; Cai, Z.; Liu, Z.; Yao, J.-L.; Kang, C. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Hortic. Res. 2021, 8, 247. [Google Scholar] [CrossRef]
- Lu, S.; Ye, J.; Zhu, K.; Zhang, Y.; Zhang, M.; Xu, Q.; Deng, X. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. J. Exp. Bot. 2021, 72, 3028–3043. [Google Scholar] [CrossRef]
- Slugina, M.A. Transcription Factor Ripening Inhibitor and Its Homologs in Regulation of Fleshy Fruit Ripening of Various Plant Species. Russ. J. Plant Physiol. 2021, 68, 783–799. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Z.; Hua, X.; Zhang, Y.Q.; Oliveira, M.M. Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch). Tree Genet. Genomes 2008, 4, 693–703. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.; Yao, Q.; Guo, X.; Nguyen, V.; Li, F.; Chen, G. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci. Rep. 2018, 8, 3413. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Xu, C.; Li, M.; Tian, J.; Wang, Y.; Zhang, X.; Xu, X.; Han, Z.; Wu, T. MdMADS6 Recruits Histone Deacetylase MdHDA19 to Repress the Expression of the Carotenoid Synthesis-Related Gene MdCCD1 during Fruit Ripening. Plants 2022, 11, 668. [Google Scholar] [CrossRef]
- Qi, X.; Liu, C.; Song, L.; Li, M. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. Plant Sci. 2020, 301, 110634. [Google Scholar] [CrossRef] [PubMed]
- Tani, E.; Polidoros, A.; Flemetakis, E.; Stedel, C.; Kalloniati, C.; Demetriou, K.; Katinakis, P.; Tsaftaris, A.S. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit. Plant Physiol. Biochem. 2009, 47, 690–700. [Google Scholar] [CrossRef]
- Li, M.; Galimba, K.; Xiao, Y.; Dardick, C.; Mount, S.M.; Callahan, A.; Liu, Z. Comparative transcriptomic analysis of apple and peach fruits: Insights into fruit type specification. Plant J. 2022, 109, 1614–1629. [Google Scholar] [CrossRef]
- Li, C.; Lei, C.; Wang, K.; Tan, M.; Xu, F.; Wang, J.; Zheng, Y. A novel MADS-box gene regulated a priming defence in postharvest peach through SA- and ABA-signaling collaboration. J. Exp. Bot. 2022, erac099, accepted manuscript. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.; Oeller, P.W.; Theologis, A. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 1994, 91, 326–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stortenbeker, N.; Bemer, M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 2018, 70, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Mcclure, B.A.; Guilfoyle, T. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol. Biol. 1987, 9, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Hagen, G.; Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385. [Google Scholar] [CrossRef]
- Jain, M.; Tyagi, A.K.; Khurana, J.P. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, S.; He, Y.; Guan, X.; Zhu, X.; Cheng, L.; Wang, J.; Lu, G. Genome-wide analysis of SAUR gene family in Solanaceae species. Gene 2012, 509, 38–50. [Google Scholar] [CrossRef]
- Wang, P.; Lu, S.; Xie, M.; Wu, M.; Ding, S.; Khaliq, A.; Ma, Z.; Mao, J.; Chen, B. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in apple by inducing of auxin. Gene 2020, 750, 144725. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, Y.S.; Yoon, H.K.; Park, C.M. Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Sci. 2007, 172, 150–157. [Google Scholar] [CrossRef]
- Hong, R.; Gray, W.M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol. Plant 2015, 8, 1153–1164. [Google Scholar] [CrossRef] [Green Version]
- Kathare, P.K.; Dharmasiri, S.; Arellano, I.; Dharmasiri, N. Interaction of SAUR53 and its close homologs with calmodulin may play a role in early development in Arabidopsis. Plant Mol. Biol. Rep. 2020, 38, 343–351. [Google Scholar] [CrossRef]
- Yang, T.; Poovaiah, B.W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 2000, 275, 3137. [Google Scholar] [CrossRef] [Green Version]
- Kathare, P.K.; Dharmasiri, S.; Dharmasiri, N. SAUR53 regulates organ elongation and apical hook development in Arabidopsis. Plant Signal. Behav. 2018, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sun, N.; Zhang, F.; Yu, R. Differential regulation of Arabidopsis PP2C-D1 by SAUR17 and SAUR50 in apical hook development and cotyledon opening. Plant Cell 2020, 32, 3792–3811. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, Q.; Hu, Z.; Sun, X.; Fan, S.; Zhang, H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop. J. 2018, 6, 181–190. [Google Scholar] [CrossRef]
- Gastaldi, V.; Lucero, L.E.; Ariel, F.D.; Gonzalez, D.H. Class-I TCP transcription factors activate the SAUR63 gene subfamily in gibberellin-dependent stamen filament elongation. Plant Physiol. 2020, 182, 01501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Wen, Z.W.; Mei, Y.Y.; Gonzalez, D.H. The mechanism underlying the role of SAUR72 in Arabidopsis leaf senescence regulation. Plant Physiol. J. 2018, 54, 379–385. [Google Scholar] [CrossRef]
- Wen, Z.; Mei, Y.; Zhou, J.; Cui, Y.; Wang, D.; Wang, N.N. SAUR49 Can Positively Regulate Leaf Senescence by Suppressing SSPP in Arabidopsis. Plant Cell Physiol. 2019, 61, 644–658. [Google Scholar] [CrossRef]
- Wong, J.H.; Spartz, A.K.; Park, M.Y.; Gonzalez, D.H. Mutation of a conserved motif of PP2C.D phosphatases confers SAUR immunity and constitutive activity. Plant Physiol. 2019, 181, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strader, L.; Ak, S.; Sang, H.L.; Wenger, J.P. Faculty Opinions recommendation of The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 2012, 70, 978–990. [Google Scholar] [CrossRef]
- Kant, S.; Rothstein, S. Auxin-responsiveSAUR39gene modulates auxin level in rice. Plant Signal. Behav. 2009, 4, 1174–1175. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, Y.; Li, M.; Lamin-Samu, A.T.; Yang, D.; Yu, X.; Izhar, M.; Jan, I.; Ali, M.; Lu, G. The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. Front. Plant Sci. 2021, 12, 625493. [Google Scholar] [CrossRef]
- Goda, H.; Sawa, S.; Asami, T.; Fujioka, S.; Shimada, Y.; Yoshida, S. Comprehensive Comparison of Auxin-Regulated and Brassinosteroid-Regulated Genes in Arabidopsis. Plant Physiol. 2004, 134, 1555–1573. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.G.; Chen, H.W.; Li, Q.T.; Shimada, Y. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci. Rep. 2015, 5, 12477. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y. Functional analysis of ERF19 and the ERF19 downstream gene SAUR32 in Arabidopsis. Ph.D. Thesis, Institute of Biotechnology, National Chung Hsing University, Taiwan, China, 2016. [Google Scholar]
- Shin, J.Y.; Mila, I.; Liu, M.; Rodrigues, M.A. The RIN-regulated small auxin-up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. New Phytol. 2019, 222, 820–836. [Google Scholar] [CrossRef]
- Carrasco-Valenzuela, T.; Muñoz-Espinoza, C.; Riveros, A.; Pedreschi, R.; Arús, P.; Campos-Vargas, R.; Meneses, C. Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated with Fruit Flesh Softening Rate in Peach [Prunus persica (L.) Batsch]. Front. Plant Sci. 2019, 10, 1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.; Munné-Bosch, S. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 2011, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Zhang, D.; Li, Y.; Zhao, C.; Zhang, S.; Shen, Y.; An, N.; Han, M. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom. 2014, 15, 1125. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yang, Q.; Niu, Q.; Li, J.; Zheng, X. PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in ‘suli’ pear (Pyrus pyrifolia White Pear Group). Plant Physiol. Biochem. 2018, 127, 355–365. [Google Scholar] [CrossRef]
- Jia, H.-F.; Chai, Y.-M.; Li, C.-L.; Qin, L.; Shen, Y.-Y. Cloning and Characterization of the H Subunit of a Magnesium Chelatase Gene (PpCHLH) in Peach. J. Plant Growth Regul. 2011, 30, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.; Xu, Z.; Zhang, Z.; Li, Q.; Yan, X.; Liu, H.; Han, M.; Li, F.; Zheng, J.; Zhang, D.; et al. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. Planta 2021, 254, 22. [Google Scholar] [CrossRef]
- Gray, J.; Picton, S.; Shabbeer, J.; Schuch, W.; Grierson, D. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol. 1992, 19, 69–87. [Google Scholar] [CrossRef]
- Liu, M.; Pirrello, J.; Chervin, C.; Roustan, J.-P.; Bouzayen, M. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiol. 2015, 169, 2380–2390. [Google Scholar] [CrossRef] [Green Version]
- Adams-Phillips, L.; Barry, C.; Giovannoni, J. Signal transduction systems regulating fruit ripening. Trends Plant Sci. 2004, 9, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Spalding, E.P.; Gray, W.M. Rapid auxin-mediated cell expansion. Annu. Rev. Plant Biol. 2020, 71, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J. Evolution by gene duplication: An update. Trends Ecol. Evol. 2003, 18, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Hanada, K.; Zou, C.; Lehti-Shiu, M.D.; Shinozaki, K.; Shiu, S.-H. Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli. Plant Physiol. 2008, 148, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Nemhauser, J.L.; Hong, F.; Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 2006, 126, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Boivin, S.; Fonouni-Farde, C.; Frugier, F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. Front. Plant Sci. 2016, 7, 1240. [Google Scholar] [CrossRef] [Green Version]
- Jeffares, D.C.; Penkett, C.J.; Jürg, B. Rapidly regulated genes are intron poor. Trends Genet. 2008, 24, 375–378. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, C.-B.; Sun, X.-J.; Hu, Z.; Fan, S.-J.; Jiang, Q.-Y.; Zhang, H. TaSAUR78 enhances multiple abiotic stress tolerance by regulating the interacting gene TaVDAC1. J. Integr. Agric. 2019, 18, 2682–2690. [Google Scholar] [CrossRef]
- Bank, A.D. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 2006, 33, 103–119. [Google Scholar] [CrossRef]
- Orfila, C.; Huisman, M.M.; Willats, W.G.; van Alebeek, G.-J.W.; Schols, H.A.; Seymour, G.B.; Knox, P.J. Altered cell wall disassembly during ripening of Cnr tomato fruit: Implications for cell adhesion and fruit softening. Planta 2002, 215, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Payasi, A.; Mishra, N.N.; Chaves, A.L.S.; Singh, R. Biochemistry of fruit softening: An overview. Physiol. Mol. Biol. Plants 2009, 15, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, M.; Zhang, Y.; Yan, X.; Han, M.; Li, J.; Li, F.; Li, F.; Zhang, D.; Zhao, C. Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening. Int. J. Mol. Sci. 2016, 17, 1933. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Bi, Y.M.; Tong, Z. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Signal. Behav. 2009, 151, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palme, K.; Gälweiler, L. PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 1999, 2, 375–381. [Google Scholar] [CrossRef]
- Zeng, W.F.; Pan, L.; Niu, L.; Lu, Z.H. Bioinformatics analysis and expression of the nectarine indole-3-aceticacid-amido synthase (GH3) gene family during fruit development. Acta Hortic. Sin. 2015, 42, 833–842. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Deng, L.; Wang, Y.; Liu, H.; Yao, J.-L.; Nieuwenhuizen, N.J.; Wang, Z.; Zeng, W. Diverse Functions of IAA-Leucine Resistant PpILR1 Provide a Genic Basis for Auxin-Ethylene Crosstalk During Peach Fruit Ripening. Front. Plant Sci. 2021, 12, 655758. [Google Scholar] [CrossRef]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef]
- Shinshi, O.T. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995, 7, 173–182. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Gene ID | pI | MW (KDa) | Length (aa) |
---|---|---|---|---|
PpSAUR1 | Prupe.1G000200 | 8.38 | 15.51 | 139 |
PpSAUR2 | Prupe.1G067400 | 9.8 | 18.59 | 165 |
PpSAUR3 | Prupe.1G221300 | 9.51 | 18.52 | 163 |
PpSAUR4 | Prupe.1G235700 | 9.79 | 17.03 | 104 |
PpSAUR5 | Prupe.1G368100 | 8.52 | 21.20 | 149 |
PpSAUR6 | Prupe.1G455700 | 10.42 | 19.38 | 187 |
PpSAUR7 | Prupe.2G131400 | 7.95 | 14.73 | 124 |
PpSAUR8 | Prupe.2G131500 | 8.37 | 14.62 | 120 |
PpSAUR9 | Prupe.2G131600 | 6.85 | 15.43 | 124 |
PpSAUR10 | Prupe.2G140600 | 9.22 | 21.23 | 171 |
PpSAUR11 | Prupe.2G194600 | 8.48 | 16.60 | 125 |
PpSAUR12 | Prupe.2G211600 | 10.63 | 19.44 | 125 |
PpSAUR13 | Prupe.2G317100 | 9.51 | 19.73 | 129 |
PpSAUR14 | Prupe.3G023900 | 6.43 | 14.37 | 187 |
PpSAUR15 | Prupe.3G024000 | 5.93 | 15.19 | 144 |
PpSAUR16 | Prupe.3G024100 | 6.31 | 16.11 | 152 |
PpSAUR17 | Prupe.3G035100 | 8.66 | 14.37 | 103 |
PpSAUR18 | Prupe.4G136800 | 9.8 | 23.31 | 138 |
PpSAUR19 | Prupe.5G076200 | 8.98 | 17.14 | 165 |
PpSAUR20 | Prupe.5G147100 | 9.76 | 17.12 | 174 |
PpSAUR21 | Prupe.6G108300 | 6.83 | 14.27 | 127 |
PpSAUR22 | Prupe.6G108400 | 8.42 | 14.82 | 137 |
PpSAUR23 | Prupe.6G108500 | 6.32 | 21.34 | 141 |
PpSAUR24 | Prupe.6G232300 | 11.12 | 16.71 | 139 |
PpSAUR25 | Prupe.6G234900 | 9.56 | 11.35 | 124 |
PpSAUR26 | Prupe.7G048400 | 8.2 | 9.27 | 206 |
PpSAUR27 | Prupe.7G048500 | 5.59 | 12.31 | 151 |
PpSAUR28 | Prupe.7G048600 | 5.72 | 11.11 | 152 |
PpSAUR29 | Prupe.7G104000 | 4.53 | 9.46 | 128 |
PpSAUR30 | Prupe.7G120400 | 6.25 | 9.91 | 131 |
PpSAUR31 | Prupe.7G192900 | 6.39 | 11.17 | 105 |
PpSAUR32 | Prupe.8G072200 | 6.71 | 9.998 | 191 |
PpSAUR33 | Prupe.8G072300 | 10 | 9.20 | 97 |
PpSAUR34 | Prupe.8G072400 | 9.2 | 14.43 | 95 |
PpSAUR35 | Prupe.8G078300 | 6.06 | 10.37 | 82 |
PpSAUR36 | Prupe.8G078600 | 5.55 | 10.19 | 108 |
PpSAUR37 | Prupe.8G078700 | 6.72 | 10.32 | 96 |
PpSAUR38 | Prupe.8G078900 | 5.21 | 10.13 | 89 |
PpSAUR39 | Prupe.8G079000 | 6.71 | 11.63 | 98 |
PpSAUR40 | Prupe.8G079100 | 5.53 | 11.01 | 89 |
PpSAUR41 | Prupe.8G079200 | 5.73 | 11.08 | 89 |
PpSAUR42 | Prupe.8G079400 | 6.04 | 10.17 | 128 |
PpSAUR43 | Prupe.8G079500 | 5.73 | 11.07 | 92 |
PpSAUR44 | Prupe.8G079600 | 7.88 | 11.24 | 90 |
PpSAUR45 | Prupe.8G079700 | 6.04 | 10.15 | 92 |
PpSAUR46 | Prupe.8G079900 | 5.73 | 11.15 | 76 |
PpSAUR47 | Prupe.8G080000 | 6.06 | 11.11 | 92 |
PpSAUR48 | Prupe.8G080100 | 7.78 | 11.22 | 103 |
PpSAUR49 | Prupe.8G080200 | 7.78 | 11.10 | 99 |
PpSAUR50 | Prupe.8G080300 | 8.93 | 11.25 | 99 |
PpSAUR51 | Prupe.8G080400 | 9.2 | 11.19 | 73 |
PpSAUR52 | Prupe.8G080500 | 7.92 | 11.23 | 92 |
PpSAUR53 | Prupe.8G080600 | 5.27 | 10.96 | 99 |
PpSAUR54 | Prupe.8G080700 | 5.27 | 9.07 | 99 |
PpSAUR55 | Prupe.8G080800 | 8.85 | 10.59 | 92 |
PpSAUR56 | Prupe.8G081000 | 9.21 | 16.86 | 99 |
PpSAUR57 | Prupe.8G081100 | 8.66 | 10.12 | 99 |
PpSAUR58 | Prupe.8G081200 | 8.54 | 10.49 | 100 |
PpSAUR59 | Prupe.8G081300 | 8.52 | 10.56 | 99 |
PpSAUR60 | Prupe.8G081400 | 6.89 | 11.09 | 100 |
PpSAUR61 | Prupe.8G081500 | 6.64 | 11.23 | 98 |
PpSAUR62 | Prupe.8G081600 | 10 | 11.20 | 100 |
PpSAUR63 | Prupe.8G081700 | 9.56 | 17.30 | 98 |
PpSAUR64 | Prupe.8G081800 | 9.38 | 15.99 | 80 |
PpSAUR65 | Prupe.8G081900 | 7.82 | 15.99 | 93 |
PpSAUR66 | Prupe.8G082200 | 9.48 | 11.94 | 149 |
PpSAUR67 | Prupe.8G157700 | 8.66 | 14.19 | 90 |
PpSAUR68 | Prupe.8G157800 | 8.96 | 14.25 | 93 |
PpSAUR69 | Prupe.8G157900 | 9.62 | 11.20 | 93 |
PpSAUR70 | Prupe.8G158000 | 9.1 | 13.71 | 100 |
PpSAUR71 | Prupe.8G158100 | 6.27 | 8.77 | 96 |
PpSAUR72 | Prupe.8G158200 | 8.73 | 11.79 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Su, W.; Liu, K.; Xu, Z.; Shah, K.; Ma, J.; Zhang, D.; Hu, Y.; Zhao, C. PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae 2022, 8, 379. https://doi.org/10.3390/horticulturae8050379
Wang J, Su W, Liu K, Xu Z, Shah K, Ma J, Zhang D, Hu Y, Zhao C. PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae. 2022; 8(5):379. https://doi.org/10.3390/horticulturae8050379
Chicago/Turabian StyleWang, Jiahui, Weijing Su, Kun Liu, Ze Xu, Kamran Shah, Juanjuan Ma, Dong Zhang, Yanan Hu, and Caiping Zhao. 2022. "PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches" Horticulturae 8, no. 5: 379. https://doi.org/10.3390/horticulturae8050379
APA StyleWang, J., Su, W., Liu, K., Xu, Z., Shah, K., Ma, J., Zhang, D., Hu, Y., & Zhao, C. (2022). PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae, 8(5), 379. https://doi.org/10.3390/horticulturae8050379