Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Preparation and Application of the Edible Coating
2.3. Fruit Weight Loss and Decay Incidence
2.4. Respiration Rate and Ethylene Production
2.5. Fruit Senescence Characteristics
2.5.1. Membrane Leakage
2.5.2. Malondialdehyde Content
2.5.3. Hydrogen Peroxide (H2O2) Concentration
2.6. Non-Enzymatic Antioxidant Measurements
2.6.1. Total Phenolic Content (TPC)
2.6.2. Total Flavonoid Content (TFC)
2.6.3. Ascorbic Acid Concentration (AA)
2.6.4. Free Radical Scavenging Activity (RSA)
2.6.5. Soluble Tannin Content (ST)
2.7. Antioxidant Enzyme Activities
2.7.1. Ascorbate Peroxidase (APX) Activity
2.7.2. Catalase (CAT) Activity
2.7.3. Superoxide Dismutase (SOD) Activity
2.7.4. Peroxidase (POD) Activity
2.7.5. Protein Content
2.8. Fruit Color and Total Carotenoid Content
2.9. Determination of Fruit Tissue Softening
2.9.1. Fruit Firmness
2.9.2. Pectinmethylesterase (PME) Activity
2.9.3. Polygalacturonase (PG) and Cellulase (CX) Activity
2.10. Determination of Fruit Quality
2.10.1. Total Soluble Solids and Titratable Acidity
2.10.2. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fruit Weight Loss
3.2. Decay Incidence
3.3. Respiration and Ethylene Production
3.4. Fruit Senescence Characteristics
3.4.1. Membrane Leakage
3.4.2. Malondialdehyde (MDA) Content
3.4.3. Hydrogen Peroxide (H2O2)
3.5. Non-Enzymatic Antioxidant Measurements
3.5.1. Total Phenolic Content (TPC)
3.5.2. Total Flavonoids Content (TFC)
3.5.3. Ascorbic Acid (AA) Content
3.5.4. Free Radical Scavenging Activity (RSA)
3.5.5. Soluble Tannin (ST) Content
3.6. Antioxidant Enzymes Activities
3.7. Fruit Color
3.7.1. Hue Angle and Chroma
3.7.2. Total Carotenoids Content
3.8. Fruit Tissue Softening
3.8.1. Fruit Firmness
3.8.2. Softening Enzyme Activities
3.9. Fruit Quality
3.9.1. Total Soluble Solids (TSS)
3.9.2. Titratable Acidity (TA)
3.9.3. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denoya, G.I.; Pataro, G.; Ferrari, G. Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biol. Technol. 2020, 160, 111055. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Lin, H.; Lin, M.; Chen, Y.; Lin, Y. 1-Methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in anxi persimmon fruit during storage. Int. J. Biol. Macromol. 2020, 151, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Plaza, L.; Colina, C.; De Ancos, B.; Sánchez-Moreno, C.; Pilar Cano, M. Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem. 2012, 130, 591–597. [Google Scholar] [CrossRef]
- Luo, Z. Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit. LWT Food Sci. Technol. 2007, 40, 285–291. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Luo, Z.; Sun, J.; Li, L.; Yin, X.; Li, J.; Xu, Y. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chem. 2021, 349, 129161. [Google Scholar] [CrossRef]
- Niazi, Z.; Razavi, F.; Khademi, O.; Aghdam, M.S. Exogenous Application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, Cv. Karaj) during cold storage. Sci. Hortic. 2021, 285, 110198. [Google Scholar] [CrossRef]
- Imahori, Y.; Bai, J.; Baldwin, E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic. 2016, 198, 398–406. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Mohamed Amin Tawakkal, I.S.; Muda Mohamed, M.T. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 2017, 37, 959–973. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Sardar, H.; Saddiq, B. Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits. Int. J. Biol. Macromol. 2020, 163, 2439–2447. [Google Scholar] [CrossRef]
- Khaliq, G.; Muda Mohamed, M.T.; Ghazali, H.M.; Ding, P.; Ali, A. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol. Technol. 2016, 111, 362–369. [Google Scholar] [CrossRef]
- Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Hussain, S.; Ali, S.; Canan, İ. Postharvest application of gum arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. J. Food Process. Preserv. 2020, 44, e14583. [Google Scholar] [CrossRef]
- Etemadipoor, R.; Mirzaalian Dastjerdi, A.; Ramezanian, A.; Ehteshami, S. Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci. Hortic. 2020, 266, 109255. [Google Scholar] [CrossRef]
- Pasquariello, M.S.; Di Patre, D.; Mastrobuoni, F.; Zampella, L.; Scortichini, M.; Petriccione, M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biol. Technol. 2015, 109, 45–56. [Google Scholar] [CrossRef]
- Gol, N.B.; Chaudhari, M.L.; Rao, T.V.R. Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. J. Food Sci. Technol. 2015, 52, 78–91. [Google Scholar] [CrossRef]
- Shakir, M.S.; Ejaz, S.; Hussain, S.; Ali, S.; Sardar, H.; Azam, M.; Ullah, S.; Khaliq, G.; Saleem, M.S.; Nawaz, A.; et al. Synergistic effect of gum arabic and carboxymethyl cellulose as biocomposite coating delays senescence in stored tomatoes by regulating antioxidants and cell wall degradation. Int. J. Biol. Macromol. 2022, 201, 641–652. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Kadkhodaee, R.; Emadzadeh, B.; Koocheki, A. Preparation and characterization of tragacanth-locust bean gum edible blend films. Carbohydr. Polym. 2016, 139, 20–27. [Google Scholar] [CrossRef]
- Nazarzadeh Zare, E.; Makvandi, P.; Tay, F.R. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr. Polym. 2019, 212, 450–467. [Google Scholar] [CrossRef]
- Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Tragacanth gum containing zataria multiflora boiss. essential oil as a natural preservative for storage of button mushrooms (Agaricus bisporus). Food Hydrocoll. 2017, 72, 202–209. [Google Scholar] [CrossRef]
- Ali, S.; Zahid, N.; Nawaz, A.; Naz, S.; Ejaz, S.; Ullah, S. Tragacanth Gum Coating Suppresses the Disassembly of Cell Wall Polysaccharides and Delays Softening of Harvested Mango (Mangifera indica L.) Fruit. Int. J. Biol. Macromol. 2022, 222, 521–532. [Google Scholar] [CrossRef]
- Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Application of tragacanth gum impregnated with satureja khuzistanica essential oil as a natural coating for enhancement of postharvest quality and shelf life of button mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2018, 106, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, F.; Cheng, J. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 2011, 127, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Tian, S. Effect of oxalic acid on control of postharvest browning of litchi Fruit. Food Chem. 2006, 96, 519–523. [Google Scholar] [CrossRef]
- Velikova, V.; Loreto, F. On the relationship between isoprene emission and thermotolerance in phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ. 2005, 28, 318–327. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Rastegar, S. Preservation of mango fruit with guar-based edible coatings enriched with spirulina platensis and aloe vera extract during storage at ambient temperature. Sci. Hortic. 2020, 265, 109258. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef]
- Taira, S. Astringency in Persimmon. In Modern Method of Plant Analysis, Fruit Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin, Germany, 1996; pp. 97–110. [Google Scholar]
- Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar]
- Liu, D.; Zou, J.; Meng, Q.; Zou, J.; Jiang, W. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 2009, 18, 134–143. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Liu, K.; Liu, J.; Li, H.; Yuan, C.; Zhong, J.; Chen, Y. Influence of postharvest citric acid and chitosan coating treatment on ripening attributes and expression of cell wall related genes in cherimoya (Annona cherimola Mill.) fruit. Sci. Hortic. 2016, 198, 1–11. [Google Scholar] [CrossRef]
- Awad, M.; Young, R.E. Postharvest variation in cellulase, polygalacturonase, and pectinmethylesterase in avocado (Persea americana Mill, cv. fuerte) fruits in relation to respiration and ethylene production. Plant Physiol. 1979, 64, 306–308. [Google Scholar] [CrossRef]
- Yoshida, O.; Nakagawa, H.; Ogura, N.; Sato, T. Effect of heat treatment on the development of polygalacturonase activity in tomato fruit during ripening. Plant Cell Physiol. 1984, 25, 505–509. [Google Scholar]
- Deng, Y.; Wu, Y.; Li, Y. Changes in firmness, cell wall composition and cell wall hydrolases of grapes stored in high oxygen atmospheres. Food Res. Int. 2005, 38, 769–776. [Google Scholar] [CrossRef]
- Horwitz, W. Official and Tentative Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1960; pp. 314–320. [Google Scholar]
- Khaliq, G.; Muda Mohamed, M.T.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci. Hortic. 2015, 190, 187–194. [Google Scholar] [CrossRef]
- Daisy, L.L.; Nduko, J.M.; Joseph, W.M.; Richard, S.M. Effect of edible gum arabic coating on the shelf life and quality of mangoes (Mangifera indica) during storage. J. Food Sci. Technol. 2020, 57, 79–85. [Google Scholar] [CrossRef]
- Etemadipoor, R.; Ramezanian, A.; Mirzaalian Dastjerdi, A.; Shamili, M. The Potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava (Psidium guajava L.) Fruit. Sci. Hortic. 2019, 251, 101–107. [Google Scholar] [CrossRef]
- Alali, A.A.; Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Postharvest gum arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf Life. Sci. Hortic. 2018, 237, 51–58. [Google Scholar] [CrossRef]
- Anjum, M.A.; Akram, H.; Zaidi, M.; Ali, S. Effect of gum arabic and aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of ‘Gola’ guava fruits. Sci. Hortic. 2020, 271, 109506. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Jiyong, S.; Mahunu, G.K.; Zhai, X.; Mariod, A.A. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia Senegal) edible coating. J. Food Biochem. 2018, 42, e12527. [Google Scholar] [CrossRef]
- Dong, F.; Wang, X. Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT Food Sci. Technol. 2018, 89, 117–122. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Saleem, M.S.; Tul-Ain Haider, S.; Ul Hasan, M. Effect of gum arabic coating on antioxidative enzyme activities and quality of apricot (Prunus armeniaca L.) fruit during ambient storage. J. Food Biochem. 2021, 45, e13656. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Ali, S.; Hussain, S.; Nawaz, A.; Naz, S.; Maqbool, M.; Abbas, A.M. Aloe vera gel coating delays softening and maintains quality of stored persimmon (Diospyros kaki Thunb.) Fruits. J. Food Sci. Technol. 2022, 59, 3296–3306. [Google Scholar] [CrossRef]
- Kumar, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. The effect of edible coating based on arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem. 2018, 245, 820–828. [Google Scholar] [CrossRef]
- Khaliq, G.; Saleh, A.; Bugti, G.A.; Hakeem, K.R. Guggul gum incorporated with basil essential oil improves quality and modulates cell wall-degrading enzymes of jamun fruit during storage. Sci. Hortic. 2020, 273, 109608. [Google Scholar] [CrossRef]
- Nasr, F.; Pateiro, M.; Rabiei, V.; Razzvi, F.; Formaneck, S.; Gohari, G.; Lorenzo, J.M. Chitosan-Phenylalanine Nanoparticles (Cs-Phe Nps) Extend the Postharvest Life of Persimmon (Diospyros Kaki) Fruits under Chilling Stress. Coatings 2021, 11, 819. [Google Scholar] [CrossRef]
- Xue, J.; Huang, L.; Zhang, S.; Sun, H.; Gao, T. Study on the evaluation of carboxymethyl-chitosan concentration and temperature treatment on the quality of “Niuxin” persimmon during cold storage. J. Food Process. Preserv. 2020, 44, e14560. [Google Scholar] [CrossRef]
- Saleem, M.S.; Anjum, M.A.; Naz, S.; Ali, S.; Hussain, S.; Azam, M.; Sardar, H.; Khaliq, G.; Canan, İ.; Ejaz, S. Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. Int. J. Biol. Macromol. 2021, 189, 160–169. [Google Scholar] [CrossRef]
- Kou, J.; Zhao, Z.; Wang, W.; Wei, C.; Guan, J.; Ference, C. Comparative study of ripening related gene expression and postharvest physiological changes between astringent and nonastringent persimmon cultivars. J. Am. Soc. Hortic. Sci. 2020, 145, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Kou, J.; Wei, C.; Zhao, Z.; Guan, J.; Wang, W. Effects of ethylene and 1-methylcyclopropene treatments on physiological changes and ripening-related gene expression of ‘Mopan’ persimmon fruit during storage. Postharvest Biol. Technol. 2020, 166, 111185. [Google Scholar] [CrossRef]
- Sanchís, E.; González, S.; Ghidelli, C.; Sheth, C.C.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. Cv. Rojo Brillante) by apple pectin-based edible coatings. Postharvest Biol. Technol. 2016, 112, 186–193. [Google Scholar] [CrossRef]
- Formiga, A.S.; Pinsetta, J.S.; Pereira, E.M.; Cordeiro, I.N.F.; Mattiuz, B.H. Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. [Google Scholar] [CrossRef]
- Sousa, F.F.; Pinsetta Junior, J.S.; Oliveira, K.T.E.F.; Rodrigues, E.C.N.; Andrade, J.P.; Mattiuz, B.H. Conservation of ‘Palmer’ mango with an edible coating of hydroxypropyl methylcellulose and beeswax. Food Chem. 2021, 346, 128925. [Google Scholar] [CrossRef]
- Bignell, G.; Bruun, D.; Oag, D.; Nissen, B.; George, A. Persimmon Postharvest Manual, 2nd ed.; Department of Agriculture and Fisheries: Brisbane City, QLD, Australia, 2017.
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef]
Storage Days | Coating | TPC (mg GAE 100 g−1 FW) | TFC (mg QE 100 g−1 FW) | AA (mg 100 g−1 FW) | RSA (mM TE 100 g−1 FW) | ST (%) |
---|---|---|---|---|---|---|
0 | 363.63 ± 12.48 a | 181.81 ± 6.24 a | 51.30 ± 1.62 a | 181.59 ± 5.49 a | 0.224 ± 0.012 a | |
4 | Control | 335.88 ± 5.10 bcd | 163.13 ± 3.86 bcd | 47.19 ± 1.11 bcd | 175.59 ± 5.32 abc | 0.219 ± 0.016 ab |
TCG 0.5% | 341.54 ± 8.49 abc | 166.60 ± 4.14 bcd | 49.96 ± 0.57 abc | 180.32 ± 4.39 ab | 0.224 ± 0.017 a | |
TCG 1% | 355.29 ± 5.05 ab | 173.31 ± 2.46 ab | 50.82 ± 0.63 ab | 185.53 ± 4.59 a | 0.225 ± 0.021 a | |
TCG 1.5% | 345.54 ± 5.00 abc | 168.55 ± 2.44 bc | 50.10 ± 0.34 abc | 177.35 ± 5.76 ab | 0.220 ± 0.013 ab | |
8 | Control | 303.07 ± 5.54 ef | 144.32 ± 2.64 fgh | 42.17 ± 1.28 fg | 151.40 ± 8.07 efg | 0.169 ± 0.008 cde |
TCG 0.5% | 325.25 ± 5.05 cde | 154.88 ± 2.40 def | 46.41 ± 1.35 cde | 162.22 ± 2.65 cde | 0.184 ± 0.008 bcd | |
TCG 1% | 335.29 ± 5.00 bcd | 159.66 ± 2.38 cde | 48.56 ± 0.85 a–d | 166.41 ± 2.85 bcd | 0.200 ± 0.015 abc | |
TCG 1.5% | 316.98 ± 7.64 def | 150.94 ± 3.64 efg | 47.52 ± 0.45 a–d | 161.40 ± 3.31 cde | 0.191 ± 0.012 abc | |
12 | Control | 265.51 ± 4.86 hi | 123.49 ± 2.26 j | 38.32 ± 1.49 hij | 131.67 ± 3.69 hij | 0.133 ± 0.016 efg |
TCG 0.5% | 293.26 ± 4.20 fg | 136.31 ± 2.89 hi | 43.31 ± 1.02 efg | 142.82 ± 3.11 ghi | 0.144 ± 0.009 d–g | |
TCG 1% | 305.67 ± 5.07 ef | 142.17 ± 2.36 gh | 45.79 ± 0.62 def | 158.67 ± 2.39 def | 0.166 ± 0.012 cde | |
TCG 1.5% | 296.66 ± 5.14 fg | 136.40 ± 1.95 hi | 43.33 ± 1.65 efg | 152.13 ± 6.78 d–g | 0.163 ± 0.013 c-f | |
16 | Control | 228.14 ± 5.74 jk | 104.00 ± 1.25 kl | 30.69 ± 0.81 k | 120.23 ± 2.74 jk | 0.087 ± 0.013 hij |
TCG 0.5% | 262.90 ± 2.65 hi | 118.50 ± 4.20 j | 40.91 ± 0.78 ghi | 133.72 ± 6.02 hij | 0.118 ± 0.010 ghi | |
TCG 1% | 274.02 ± 736 gh | 124.55 ± 3.35 ij | 41.94 ± 0.74 gh | 146.05 ± 4.56 fgh | 0.125 ± 0.014 fgh | |
TCG 1.5% | 249.00 ± 6.71 ij | 113.18 ± 1.33 jk | 40.01 ± 0.74 ghi | 131.77 ± 3.68 hij | 0.112 ± 0.013 ghi | |
20 | Control | 178.78 ± 7.80 l | 79.46 ± 3.46 m | 27.02 ± 1.41 k | 100.48 ± 3.51 l | 0.036 ± 0.010 k |
TCG 0.5% | 228.32 ± 8.61 jk | 101.47 ± 4.82 kl | 35.66 ± 1.46 j | 122.56 ± 6.11 jk | 0.063 ± 0.010 jk | |
TCG 1% | 235.57 ± 6.95 j | 104.69 ± 2.20 kl | 39.76 ± 1.28 ghi | 130.44 ± 2.14 ij | 0.080 ± 0.007 ij | |
TCG 1.5% | 209.19 ± 10.19 k | 96.07 ± 3.98 l | 37.13 ± 1.91 ij | 115.07 ± 4.97 kl | 0.060 ± 0.011 jk |
Storage Days | Coating | Hue Angle (h°) | Chroma | Total Carotenoids (µg g−1 FW) |
---|---|---|---|---|
0 | 66.14 ± 0.84 a | 29.49 ± 10.9 h | 0.103 ± 0.005 l | |
4 | Control | 63.05 ± 0.70 ab | 32.20 ± 1.22 fgh | 0.125 ± 0.006 jkl |
TCG 0.5% | 63.52 ± 0.76 ab | 31.76 ± 0.67 fgh | 0.113 ± 0.002 kl | |
TCG 1% | 64.22 ± 0.82 ab | 30.86 ± 0.74 gh | 0.106 ± 0.002 kl | |
TCG 1.5% | 63.74 ± 0.76 ab | 32.11 ± 0.80 fgh | 0.124 ± 0.004 jkl | |
8 | Control | 59.43 ± 0.94 cd | 34.87 ± 0.57 c–f | 0.160 ± 0.010 ghi |
TCG 0.5% | 60.88 ± 0.88 bcd | 33.83 ± 0.78 d–i | 0.133 ± 0.002 ijk | |
TCG 1% | 61.88 ± 0.44 bc | 32.71 ± 0.46 e–h | 0.125 ± 0.004 jkl | |
TCG 1.5% | 60.86 ± 0.91 bcd | 33.80 ± 1.06 d–j | 0.144 ± 0.004 hij | |
12 | Control | 53.60 ± 1.30 fg | 36.10 ± 1.18 cde | 0.209 ± 0.019 ef |
TCG 0.5% | 55.89 ± 0.72 ef | 34.92 ± 0.95 c–f | 0.163 ± 0.004 gh | |
TCG 1% | 57.90 ± 0.94 de | 33.63 ± 0.57 d–g | 0.171 ± 0.002 gh | |
TCG 1.5% | 54.52 ± 1.52 ef | 34.01 ± 0.89 d–g | 0.186 ± 0.006 fg | |
16 | Control | 47.37 ± 1.24 ij | 38.10 ± 1.13 bc | 0.256 ± 0.007 bc |
TCG 0.5% | 49.59 ± 1.34 hi | 35.75 ± 1.28 cde | 0.241 ± 0.004 cd | |
TCG 1% | 52.88 ± 0.78 fgh | 34.37 ± 1.13 def | 0.202 ± 0.010 ef | |
TCG 1.5% | 50.28 ± 1.07 ghi | 36.25 ± 0.98 cd | 0.221 ± 0.010 de | |
20 | Control | 40.31 ± 2.20 l | 42.56 ± 1.59 a | 0.308 ± 0.008 a |
TCG 0.5% | 44.55 ± 1.34 jk | 38.2 ± 1.36 bc | 0.264 ± 0.016 bc | |
TCG 1% | 46.82 ± 1.75 ij | 36.65 ± 2.00 cd | 0.247 ± 0.005 cd | |
TCG 1.5% | 42.03 ± 1.49 kl | 40.50 ± 1.22 ab | 0.283 ± 0.011 ab |
Storage Days | Coating | TSS (%) | TA (%) | Taste (Score) | Aroma (Score) | Overall Acceptability (Score) |
---|---|---|---|---|---|---|
0 | 12.80 ± 0.621 m | 0.502 ± 0.005 a | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 5.17 ± 0.144 k | |
4 | Control | 15.06 ± 0.263 g–k | 0.465 ± 0.006 ab | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 5.9 ± 0.144 g–j |
TCG 0.5% | 13.32 ± 0.210 lm | 0.476 ± 0.009 a | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 5.33 ± 0.382 jk | |
TCG 1% | 13.13 ± 0.168 lm | 0.492 ± 0.008 a | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 5.42 ± 0.289 ijk | |
TCG 1.5% | 13.30 ± 0.442 lm | 0.475 ± 0.008 a | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 5.83 ± 0.144 hij | |
8 | Control | 16.97 ± 0.412 cde | 0.398 ± 0.018 cd | 6.67 ± 0.38 f | 6.67 ± 0.382 d | 6.83 ± 0.144 de |
TCG 0.5% | 14.14 ± 0.147 klm | 0.447 ± 0.005 abc | 5.17 ± 0.29 h | 5.25 ± 0.250 e | 6.58 ± 0.382 ef | |
TCG 1% | 13.80 ± 0.696 klm | 0.479 ± 0.25 a | 5.00 ± 0.00 h | 5.17 ± 0.289 e | 6.00 ± 0.250 f–i | |
TCG 1.5% | 14.68 ± 0.844 h–l | 0.444 ± 0.012 abc | 5.75 ± 0.25 gh | 5.25 ± 0.250 e | 6.50 ± 0.250 efg | |
12 | Control | 19.79 ± 482 b | 0.308 ± 0.017 fg | 8.41 ± 0.52 ab | 8.33 ± 0.144 ab | 8.00 ± 0.250 a |
TCG 0.5% | 16.12 ± 0.354 d–h | 0.365 ± 0.026 def | 6.92 ± 0.14 def | 6.75 ± 0.250 d | 7.33 ± 0.144 bcd | |
TCG 1% | 14.27 ± 0.439 klm | 0.414 ± 0.032 bcd | 6.75 ± 0.25 ef | 6.58 ± 0.144 d | 6.92 ± 0.144 cde | |
TCG 1.5% | 15.88 ± 0.336 e–i | 0.361 ± 0.023 def | 7.33 ± 0.29 c–f | 7.25 ± 0.250 cd | 7.50 ± 0.250 abc | |
16 | Control | 21.00 ± 0.742 ab | 0.251 ± 0.030 gh | 8.33 ± 0.58 ab | 6.67 ± 0.144 bc | 7.50 ± 0.000 abc |
TCG 0.5% | 16.79 ± 0.505 cde | 0.308 ± 0.013 fg | 7.67 ± 0.29 bcd | 8.00 ± 0.000 abc | 7.92 ± 0.144 ab | |
TCG 1% | 15.84 ± 0.177 efg | 0.375 ± 0.030 de | 8.00 ± 0.25 abc | 7.92 ± 0.144 abc | 7.75 ± 0.250 ab | |
TCG 1.5% | 16.36 ± 0.233 def | 0.326 ± 0035 ef | 7.58 ± 0.38 b–e | 8.08 ± 0.144 ab | 7.92 ± 0.144 ab | |
20 | Control | 21.76 ± 0.237 a | 0.193 ± 0.019 h | 6.50 ± 0.50 fg | 5.75 ± 0.250 d | 6.42 ± 0.144 e–h |
TCG 0.5% | 18.12 ± 0.62 c | 0.241 ± 0.014 h | 8.25 ± 0.43 ab | 8.02 ± 0.433 ab | 7.58 ± 0.144 ab | |
TCG 1% | 16.47 ± 0.230 de | 0.313 ± 0.014 f | 8.83 ± 0.38 a | 8.58 ± 0.382 a | 7.92 ± 0.144 ab | |
TCG 1.5% | 17.67 ± 0.523 cd | 0.220 ± 0.019 h | 7.92 ± 0.14 abc | 7.67 ± 0.144 abc | 7.33 ± 0.144 bcd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Ali, S.; Hussain, S.; Ercisli, S.; Ilhan, G.; Marc, R.A.; Skrovankova, S.; Mlcek, J. Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application. Horticulturae 2022, 8, 1045. https://doi.org/10.3390/horticulturae8111045
Saleem MS, Ejaz S, Anjum MA, Ali S, Hussain S, Ercisli S, Ilhan G, Marc RA, Skrovankova S, Mlcek J. Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application. Horticulturae. 2022; 8(11):1045. https://doi.org/10.3390/horticulturae8111045
Chicago/Turabian StyleSaleem, Muhammad Shahzad, Shaghef Ejaz, Muhammad Akbar Anjum, Sajid Ali, Sajjad Hussain, Sezai Ercisli, Gulce Ilhan, Romina Alina Marc, Sona Skrovankova, and Jiri Mlcek. 2022. "Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application" Horticulturae 8, no. 11: 1045. https://doi.org/10.3390/horticulturae8111045
APA StyleSaleem, M. S., Ejaz, S., Anjum, M. A., Ali, S., Hussain, S., Ercisli, S., Ilhan, G., Marc, R. A., Skrovankova, S., & Mlcek, J. (2022). Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application. Horticulturae, 8(11), 1045. https://doi.org/10.3390/horticulturae8111045