Pathogenic Fungi Associated with Soursop Fruits (Annona muricata L.) during Postharvest in Nayarit, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fungi Isolation
2.3. Morphological Characterization of Fungi
2.4. Pathogenicity Tests
2.5. Molecular Identification
2.5.1. Extraction of DNA
2.5.2. Polymerase Chain Reaction (PCR) Conditions
3. Results
3.1. Isolation and Morphological Identification
3.2. Pathogenicity Test on Soursop (Annona muricate L.)
3.3. Molecular Identification of Pathogenic Fungi
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández, L.; Gómez, R.; Agustín, J. Importancia de las Plagas Insectiles y Enfermedades Fungosas del Cultivo Del Guanábano. IntechOpen Publishing Inifap. 2013. Available online: http://inifapcirpac.gob.mx/publicaciones_nuevas/Importancia,%20plagas%20insectiles%20y%20enfermedades%20fungosas%20del%20cultivo%20del%20Guanabano.pdf (accessed on 18 May 2019).
- SIAP. 2019. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 10 January 2019).
- Hernández, L.; Moctezuma, H.; Martínez, N.; Bello, R.; Rocha, D.; Contreras, R. La situación de las annonaceae en México: Principales plagas, enfermedades y su control. Rev. Bras. Frutic. 2014, 36, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Vinay, G.; Sakthivel, T.; Priyanka, H. Recent Advances in Annona Breeding: A Review. Int. J. Pure App. Biosci. 2017, 5, 1168–1181. [Google Scholar] [CrossRef]
- Janick, J.; Paull, R.E. The Encyclopedia of Fruit & Nuts; CABI: Manoa, HI, USA, 2008. [Google Scholar]
- Hernández, L.; Nolasco, Y.; Cruz, E. Selección y Caracterización de Guanábana y Recomendaciones Para su Manejo Agronómico. IntechOpen. 2017. Available online: http://biblioteca.inifap.gob.mx:8080/jspui/bitstream/handle/123456789/4419/4720%20Slecci%C3%B3%20y%20caracterizaci%C3%B3n%20de%20guan%C3%A1bana%20y%20recomendaciones%20para%0su%20manejo%20agron%C3%B3mico.pdf?sequence=1 (accessed on 10 January 2019).
- Coria, A.; Montalvo, E.; Obledo, E. Soursop (Annona muricata). In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E., Ed.; Wiley: New York, NY, USA, 2017; pp. 1243–1251. [Google Scholar]
- Berumen-Varela, G.; Hernández-Oñate, M.A.; Tiznado-Hernández, M.E. Utilization of biotechnological tools in soursop (Annona muricata L.). Sci. Hortic. 2019, 245, 269–273. [Google Scholar] [CrossRef]
- Cayeros, S.E.; Robles, F.J.; Jiménez, A. Guanábana en el municipio de Compostela, Nayarit. Educateconciencia 2017, 13, 27–36. [Google Scholar]
- Andrades, I.; Yender, F.; Labarca, J.; Ulacio, D.; Paredes, C.; Marín, Y. Evaluación de la antracnosis (Colletotrichum sp.) en guanábana (Annona muricata L.) tipo Gigante en el sector Moralito del estado Zulia, Venezuela. Rev. UDO Agric. 2009, 9, 148–157. [Google Scholar]
- Agrios, G.F. Fitopatología, 2nd ed.; Ed. Limusa: Cd de México, México, 1999. [Google Scholar]
- Barnett, H.L.; Hunter, B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: St. Paul, MN, USA, 1998. [Google Scholar]
- Watanabe, T. Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species; CRC: Boca Raton, FL, USA, 2010; in press. [Google Scholar]
- Benbow, J.M.; Sugar, D. Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Dis. 1999, 83, 839–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allers, T.; Lichten, M. A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Res. 2000, 28, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfeld, M.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Micol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.; Menezes, M. Identification and pathogenic characterization of endophytic species from cowpea sedes. AAPCA 2006, 3, 203–215. [Google Scholar]
- Sreekanth, D.; Sushim, G.K.; Syed, A.; Khan, B.M.; Ahmad, A. Molecular and Morphological Characterization of a Taxol-Producing Endophytic Fungus, Gliocladium sp., from Taxus baccata. Microbiology 2011, 39, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Castillo, H.; Rojas, R.; Villalta, M. Gliocladium sp., agente biocontrolador con aplicaciones prometedoras. Rev. Tecnol. Marcha. 2016, 29, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Arauz, L.F. Fitopatología: Un Enfoque Agroecológico, 1st ed.; Editorial Universidad de Costa Rica; UCR: San José, SJ, Costa Rica, 2011. [Google Scholar]
- Picos, P.A.; García, R.S.; León, J.; Sañudo, A.; Allende, R. Lasiodiplodia theobromae en Cultivos Agrícolas de México: Taxonomía, Hospedantes, Diversidad y Control. Rev. Mex. Fitopatol. 2015, 33, 54–74. [Google Scholar]
- Chethana, C.; Chowdappa, P.; Pavani, K.; Biju, C.; Praveena, R.; Sujatha, A. Morphological and multi-loci gene analysis of five species of Colletotrichum responsible for anthracnose on black pepper in South India. Int. J. Adv. Biotechnol. Res. 2015, 6, 327–342. [Google Scholar]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [Green Version]
- Trigos, Á.; Ramírez, K.; Salinas, A. Presencia de hongos fitopatógenos en frutas y hortalizas y su relación en la seguridad alimentaria. Rev. Mex. Mic. 2008, 28, 125–129. [Google Scholar]
- Pitt, J.; Hocking, A. Fungi, and Food Spoilage; Springer Nature: Boston, MA, USA, 2009. [Google Scholar]
- Damm, U.; Cannon, P.; Crous, P. The Colletotrichum boninense species complex. Stud. Mycol. 2012, 73, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Netto, S.B.; Assuncao, I.P.; Lima, S.A.; Marques, M.W.; Lima, W.G.; Monteiro, H.A.; de Queiroz, B.V.; Michereff, S.J.; Phillips, J.L.; Camara, P.S. Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Divers. 2014, 67, 127–141. [Google Scholar] [CrossRef]
- Chávez, M.; Espinosa, K.; Vázquez, L. Lasiodiplodia theobromae en la atmósfera de La Habana. RCCB 2016, 5, 130–134. [Google Scholar]
- Cambero, C.B.; Luna, G.; Rios, C.; Díaz, M.; Rodríguez, M.; Betancourt, A.; Cambero, O.J. Causal agents of rot in Soursop fruit (Annona muricata L.) in Nayarit, Mexico. Rev. Bio. Cienc. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Alves, A.; Crous, P.W.; Correia, A.; Phillips, A. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 2008, 28, 1–13. [Google Scholar]
- Félix, C.; Meneses, R.; Gonçalves, M.F.; Tilleman, L.; Duarte, A.S.; Jorrín, J.V.; Van de Peer, Y.; Deforce, D.; Van Nieuwerburgh, F.; Esteves, A.; et al. A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence-and pathogenicity-related genes. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolinelli, M.; Villalobos, J.; Rolshausen, P.; Herrera, A.; Galiendo, C.; López, J.; Hernandez, R. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genom. 2016, 17, 615. [Google Scholar] [CrossRef] [Green Version]
- Arbeláez-Torres, G. Algunos aspectos de los hongos del genero Fusarium y de la especie Fusarium oxysporum. Agron. Colomb. 2000, 17, 11–22. [Google Scholar]
- Glenn, A.E. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol. 2007, 137, 213–240. [Google Scholar] [CrossRef]
- Nesic, K.; Ivanovic, S.; Nesic, V. Fusarial Toxins: Secondary Metabolites of Fusarium Fungi. In Reviews of Environmental Contamination and Toxicology, 1st ed.; Whitacre, D.M., Ed.; Springer: Basilea, Switzerland, 2014; pp. 101–120. [Google Scholar]
- Naureen, Z.; Price, A.H.; Wilson, M.J.; Hafeez, F.Y.; Roberts, M.R. Suppression of rice blast disease by bioantagonistic bacterial strains isolated from the rice grown in Pakistan. Crop Prot. 2009, 28, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Guerrero, S.E.; Balois-Morales, R.; Bautista-Rosales, P.U.; López-Guzmán, G.G.; Berumen-Varela, G.; Palomino-Hermosillo, Y.A.; Jiménez-Zurita, J.O.; Bello-Lara, J.E.; León-Fernandez, A.E. Identification of Fungal Pathogens of Mango and Soursop Fruits Using Morphological and Molecular Tools and Their Control Using Papaya and Soursop Leaf and Seed Extracts. Int. J. Agron. 2020, 2020, 8962328. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Melgarejo, A.; Balois-Morales, R.; Ochoa-Jiménez, V.A.; Casas-Junco, P.P.; Jiménez-Zurita, J.O.; Bautista-Rosales, P.U.; Berumen-Varela, G. Differential Responses of Antioxidative System during the Interaction of Soursop Fruits (Annona muricata L.) and Nectria haematococca at Postharvest Storage. Plants 2021, 10, 1432. [Google Scholar] [CrossRef]
- Alberto, R.T.; Otanes, A.T. Morphological and molecular identification and fungicide sensitivity assay of pathogens attacking guyabano (Annona muricata) in Philippines. Plant Pathol. Quarant. 2016, 6, 60–79. [Google Scholar] [CrossRef]
- Ploetz, R.C. Diseases of Tropical Fruit Crops; CABI: Egham, UK, 2003. [Google Scholar]
- Helyer, N.; Cattlin, N.D.; Brown, K.C. Biological Control in Plant Protection: A Colour Handbook; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Velázquez-del Valle, M.G.; Bautista, S.; Hernández, A.N.; Guerra, M.G.; Amora, E. Estrategias de control de Rhizopus stolonifera Ehrenb. (Ex Fr.) Lind, agente causal de pudriciones postcosecha en productos agrícolas. Rev. Mex. Fitopatol. 2008, 26, 49–55. [Google Scholar]
- Palemón, F.; Cruz, B.; Reyes, G.; Damián, A.; Toribio, J.; Romero, Y.; Vargas, D.; Bello, J. First report of Rhizopus soft rot on soursop (Annona muricata) caused by Rhizopus oryzae in México. J. Plant Dis. Protec. 2019, 127, 275–277. [Google Scholar] [CrossRef]
- Nweke, C.N.; Ibiam, O.F. Pre and postharvest fungi associated with the soft rot of the fruit of Annona muricata and their effects on the nutrient content of the pulp. Am. J. Food Nutr. 2012, 2, 78–85. [Google Scholar] [CrossRef]
- Talamantes, C.A.; Cortés, M.; Balois, R.; López, G.; Palomino, Y.A. Análisis molecular de la diversidad genética en guanábana (Annona muricata L.) mediante marcadores SRAP. Rev. Fitotec. Mex. 2019, 42, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.O.; Balois, R.; Alia, I.; Juárez, P.; Jiménez, E.I.; Sumaya, M.T.; Bello, J.E. Tópicos del manejo poscosecha del fruto de guanábana (Annona muricata L.). Rev. Mex. Cienc. Agric. 2017, 8, 1155–1167. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, J.; Hernández, L.; Latisnere, H.; León de la Luz, J.; Larrarlde, C. Aislamiento e identificación de hongos patógenos de naranja Citrus sinensis L. osbeck cultivada en Baja California Sur, México. Cienc. Tecnol. Aliment. 2007, 5, 352–359. [Google Scholar] [CrossRef]
- González, R.; Blancas, F.; Velázquez, R.M.; Montaño, B.; Ramos, A.; Aguirre, L.; Moreni, C.; Coronado, L.; Herrera, J.; Rodriguez, C.; et al. 2019 Alternative Eco-Friendly Methods in the Control of Post-Harvest Decay of Tropical and Subtropical Fruits. In Modern Fruit Industry. IntechOpen. Available online: https://www.intechopen.com/online-first/alternative-eco-friendly-methods-in-the-control-of-post-harvest-decay-of-tropical-and-subtropical-fr (accessed on 18 May 2019).
- Mohamed, Z.; AbdLatif, I.; Mahir Abdullah, A. 1-Economic importance of tropical and subtropical fruits. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 3rd ed.; Elhadi, M.Y., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 1–20. [Google Scholar]
Isolates | Severity Damage (mm) |
---|---|
TonG5 | 82.66 ± 7.79 a |
TonG6 | 75.00 ± 3.4 ab |
TonG9 | 66.66 ± 10.8 abcd |
TonG1 | 66.12 ± 1.86 abcde |
TonG7 | 32.00 ± 4.69 efghijk |
TonG2 | 29.66 ± 6.63 fghijkl |
TonG8 | 29.33 ± 4.69 fghijkl |
TonG3 | 8.33 ± 0.49 ijkl |
TonG10 | 9.33 ± 1.76 ijkl |
TonG4 | 6.50 ± 1.85 ijkl |
VcaG8 | 71.33 ± 4.63 abc |
VcaG10 | 49 ± 14.15 abcdefdh |
VcaG6 | 39.83 ± 8.16 cdefghi |
VcaG9 | 29.17 ± 1.43 fghijkl |
VcaG12 | 28.27 ± 1.73 ghijkl |
VcaG3 | 16.33 ± 8.57 hijkl |
VcaG4 | 9.33 ± 0.87 ijkl |
VcaG5 | 7.26 ± 0.50 ijkl |
VcaG2 | 6.67 ± 1.42 ijkl |
VcaG13 | 5.50 ± 0.28 jkl |
VcaG1 | 5.00 ± 1.15kl |
TeG3 | 67.00±2.64 abcd |
TeG8 | 63.00 ± 11.46 abcdef |
TeG4 | 63.33 ± 11.46 abcdef |
TeG9 | 60.00 ± 10.53 abcdefg |
TeG1 | 43.70 ± 13.22 bcdefgh |
TeG6 | 39.30 ± 10.35 cdefghij |
TeG5 | 37.00 ± 4.61 defghijk |
TeG7 | 21.33 ± 8.94 hijkl |
TeG10 | 18.17 ± 5.64 hijkl |
TeG2 | 8.00 ± 1.73 ijkl |
Isolated | Identification | ||||||
---|---|---|---|---|---|---|---|
ITS a | Homology (%) | NL b | Homology (%) | NS c | Homology (%) | Access Number (NCBI) | |
TeG3 | Lasiodiplodia pseudotheobromae | 99 | Lasiodiplodia pseudotheobromae | 99 | Lasiodiplodia theobromae | 98 | OK636411 |
TeG4 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 98 | Lasiodiplodia theobromae | 97 | OK636157 |
TeG8 | Nectria haematococca | 97 | Nectria haematococca | 97 | Nectria haematococca | 95 | OK636158 |
TeG9 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 98 | Lasiodiplodia theobromae | 98 | OK647292 |
TonG1 | Lasiodiplodia pseudotheobromae | 100 | Lasiodiplodia pseudotheobromae | 99 | Lasiodiplodia pseudotheobromae | 99 | OK647294 |
TonG5 | Lasiodiplodia theobromae | 100 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 99 | OK636236 |
TonG6 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 98 | Lasiodiplodia theobromae | 99 | OK636403 |
TonG9 | Lasiodiplodia theobromae | 100 | Lasiodiplodia theobromae | 100 | Lasiodiplodia theobromae | 98 | OK636404 |
VcaG8 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 96 | OK636405 |
VcaG10 | Lasiodiplodia theobromae | 99 | Lasiodiplodia theobromae | 100 | Lasiodiplodia theobromae | 97 | OK636410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ruíz, A.V.; Palomino-Hermosillo, Y.A.; Balois-Morales, R.; Ochoa-Jiménez, V.A.; Casas-Junco, P.P.; López-Guzmán, G.G.; Berumen-Varela, G.; Bautista-Rosales, P.U. Pathogenic Fungi Associated with Soursop Fruits (Annona muricata L.) during Postharvest in Nayarit, Mexico. Horticulturae 2021, 7, 471. https://doi.org/10.3390/horticulturae7110471
González-Ruíz AV, Palomino-Hermosillo YA, Balois-Morales R, Ochoa-Jiménez VA, Casas-Junco PP, López-Guzmán GG, Berumen-Varela G, Bautista-Rosales PU. Pathogenic Fungi Associated with Soursop Fruits (Annona muricata L.) during Postharvest in Nayarit, Mexico. Horticulturae. 2021; 7(11):471. https://doi.org/10.3390/horticulturae7110471
Chicago/Turabian StyleGonzález-Ruíz, Alejandra Verónica, Yolotzin Apatzingan Palomino-Hermosillo, Rosendo Balois-Morales, Verónica Alhelí Ochoa-Jiménez, Paloma Patricia Casas-Junco, Graciela Guadalupe López-Guzmán, Guillermo Berumen-Varela, and Pedro Ulises Bautista-Rosales. 2021. "Pathogenic Fungi Associated with Soursop Fruits (Annona muricata L.) during Postharvest in Nayarit, Mexico" Horticulturae 7, no. 11: 471. https://doi.org/10.3390/horticulturae7110471
APA StyleGonzález-Ruíz, A. V., Palomino-Hermosillo, Y. A., Balois-Morales, R., Ochoa-Jiménez, V. A., Casas-Junco, P. P., López-Guzmán, G. G., Berumen-Varela, G., & Bautista-Rosales, P. U. (2021). Pathogenic Fungi Associated with Soursop Fruits (Annona muricata L.) during Postharvest in Nayarit, Mexico. Horticulturae, 7(11), 471. https://doi.org/10.3390/horticulturae7110471