Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Table Grape Cultivars
2.2. Determination of Linalool Content in Berries
2.3. Isolation and Sequence Analysis of CYP76F14
2.4. Quantitative Real Time PCR (qRT-PCR)
2.5. Site-Directed Mutagenesis (SM)
2.6. In Vitro Enzymatic Activity Assay
2.7. Statistical Analysis
3. Results
3.1. Determination of Linalool Content in Three Different Flavor Type Table Grape Varieties
3.2. Cloning of the CYP76F14 Gene and Analysis of the Encoded Protein Sequence
3.3. Relative Expression of CYP76F14 Genes in Three Different Table Grape Varieties
3.4. Site-Directed Mutagenesis of CYP76F14 (CYP76F14-SMs) and Heterologous Expression of CYP76F14 Protein in E. coli
3.5. In Vitro Enzyme Activity Assay of CYP76F14 and CYP76F14-SMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alegre, Y.; Saenz-Navajas, M.P.; Hernandez-Orte, P.; Ferreira, V. Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes. Food Chem. 2020, 331, 127207. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Z.; Tang, M.L.; Xiao, H.L.; Xu, H.H.; Shi, M.; Dark, A.; Xie, Z.Q.; Peng, B. Unraveling the trisubstrate-triproduct reaction mechanisms of wine grape VvCYP76F14 to improve wine bouquet. Food Chem. 2025, 474, 143077. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 2. Chemical and sensory analysis. Am. J. Enol. Vitic. 2014, 65, 25–42. [Google Scholar] [CrossRef]
- Thomas-Danguin, T.; Ishii-Foret, A.; Atanasova, B.; Etievant, P. Wine bouquet: The perceptual integration of chemical complexity. In Wine Active Compounds; Conference Object; Oenoplurimédia: Beaune, France, 2011. [Google Scholar]
- Zhai, H.Y.; Li, S.Y.; Zhao, X.; Lan, Y.B.; Zhang, X.K.; Shi, Y.; Duan, C.Q. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: A review. Food Chem. 2023, 403, 134467. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Santiago, J.L.; Martinez, M.C.; Simal-Gandara, J. Aroma potential of Brancellao grapes from different cluster positions. Food Chem. 2012, 132, 112–124. [Google Scholar] [CrossRef]
- Lukic, I.; Lotti, C.; Vrhovsek, U. Evolution of free and bound volatile aroma compounds and phenols during fermentation of Muscat blanc grape juice with and without skins. Food Chem. 2017, 232, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Tao, Y.S.; Wu, Y.; An, R.Y.; Yue, Z.Y. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chem. 2017, 226, 41–50. [Google Scholar] [CrossRef]
- Kunert, M.; Langley, C.; Lucier, R.; Ploss, K.; López, C.Z.R.; Guerrero, A.D.S.; Rothe, E.; O’Connor, S.E. Promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants. Nat. Plants 2023, 9, 1607–1617. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. J. Agric. Food Chem. 2017, 66, 2281–2286. [Google Scholar] [CrossRef]
- Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. A sensory study of the ageing bouquet of red Bordeaux wines: A three-step approach for exploring a complex olfactory concept. Food Qual. Prefer. 2015, 42, 110–122. [Google Scholar] [CrossRef]
- Ghaste, M.; Narduzzi, L.; Carlin, S.; Vrhovsek, U.; Shulaev, V.; Mattivi, F. Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chem. 2015, 188, 309–319. [Google Scholar] [CrossRef]
- Lin, J.; Massonnet, M.; Cantu, D. The genetic basis of grape and wine aroma. Hortic. Res. 2019, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Giaccio, J.; Capone, D.L.; Håkansson, A.E.; Smyth, H.E.; Elsey, G.M.; Sefton, M.A.; Taylor, D.K. The formation of wine lactone from grape-derived secondary metabolites. J. Agric. Food Chem. 2011, 59, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Ilc, T.; Halter, D.; Miesch, L.; Lauvoisard, F.; Kriegshauser, L.; Ilg, A.; Baltenweck, R.; Hugueney, P.; Werck-Reichhart, D.; Duchêne, E.; et al. A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine. N. Phytol. 2017, 213, 264–274. [Google Scholar] [CrossRef]
- Peng, B.; Ran, J.G.; Li, Y.Y.; Tang, M.L.; Xiao, H.L.; Shi, S.P.; Ning, Y.Z.; Dark, A.; Guan, X.Q.; Song, Z.Z. Site-directed mutagenesis of VvCYP76F14 (cytochrome P450) unveils its potential for selection in wine grape varieties linked to the development of wine bouquet. J. Agric. Food Chem. 2024, 72, 3683–3694. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.X.; Wang, Y.J.; Liang, Z.C.; Fan, P.G.; Wu, B.H.; Yang, L.; Wang, Y.N.; Li, S.H. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC–MS. Food Chem. 2009, 114, 1106–1114. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, H.; Shi, M.; Tang, M.; Song, Z. D299T mutation in CYP76F14 led to a decrease in wine bouquet precursor production in wine grape. Genes 2024, 15, 1478. [Google Scholar] [CrossRef]
- Xia, G.; Shi, M.; Xu, W.; Dark, A.; Song, Z. Cytochrome P450 VvCYP76F14 dominates the production of wine bouquet precursors in wine grapes. Front. Plant Sci. 2024, 15, 1450251. [Google Scholar] [CrossRef]
- Xie, Z.; Peng, B.; Shi, M.; Yang, G.; Song, Z. Table grape ferritin1 is implicated in iron accumulation, iron homeostasis, and plant tolerance to iron toxicity and H2O2 induced oxidativestress. Horticulturae 2025, 11, 146. [Google Scholar] [CrossRef]
- Song, Z.Z.; Peng, B.; Gu, Z.X.; Tang, M.L.; Li, B.; Liang, M.X.; Wang, L.M.; Guo, X.T.; Wang, J.P.; Sha, Y.F.; et al. Site-directed mutagenesis identified the key active site residues of alcohol acyltransferase PpAAT1 responsible for aroma biosynthesis in peach fruits. Hortic. Res. 2021, 8, 32. [Google Scholar] [CrossRef]
- Hofer, R.; Boachon, B.; Renault, H.; Gavira, C.; Miesch, L.; Iglesias, J.; Ginglinger, J.F.; Allouche, L.; Miesch, M.; Grec, S.; et al. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol. 2014, 166, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Renault, H.; Bassard, J.E.; Hamberger, B.; Werck-Reichhart, D. Cytochrome P450-mediated metabolic engineering: Current progress and future challenges. Curr. Opin. Plant Biol. 2014, 19, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bathe, U.; Frolov, A.; Porzel, A.; Tissier, A. CYP76 oxidation network of abietane diterpenes in lamiaceae reconstituted in yeast. J. Agric. Food Chem. 2019, 67, 3437–13450. [Google Scholar] [CrossRef] [PubMed]
- Grausem, B.; Widemann, E.; Verdier, G.; Nosbusch, D.; Aubert, Y.; Beisson, F.; Schreiber, L.; Franke, R.; Pinot, F. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant. Plant Cell Environ. 2014, 37, 2102–2115. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Chai, Y.; Huang, Y.; Li, L.; Wang, D.; Wang, Z. Targeted mutagenesis of CYP76AK2 and CYP76AK3 in Salvia miltiorrhiza reveals their roles in tanshinones biosynthetic pathway. Int. J. Biol. Macromol. 2021, 189, 455–463. [Google Scholar] [CrossRef]
Cultivar | Flavor Type | Content of Linalool (μg·g−1 FW) | ||||
---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 3 | Stage 4 | Stage 5 | ||
Irsai Oliver | Muscat | 0.46 ± 0.04 a | 1.07 ± 0.012 a | 1.66 ± 0.14 a | 1.68 ± 0.17 a | 1.62 ± 0.13 a |
Yanhong | Neutral | 0.008 ± 0.0009 b | 0.013 ± 0.0014 b | 0.017 ± 0.0015 b | 0.016 ± 0.0014 b | 0.016 ± 0.0016 b |
Venus Seedless | Berry-like | 0.0031 ± 0.00043 c | 0.0054 ± 0.00062 c | 0.0091 ± 0.0011 c | 0.0094 ± 0.0013 c | 0.0093 ± 0.0014 c |
Protein | km (μM) | kcat (S−1) | Remaining Amount of Linalool (mmol∙min−1∙mg−1 Protein) |
---|---|---|---|
CYP76F14 | 69.20 ± 5.26 b | 12.93 ± 1.42 a | 8.02 ± 0.89 c |
CYP76F14-N146S | 70.52 ± 7.53 b | 12.27 ± 1.33 a | 8.43 ± 0.94 c |
CYP76F14-T107I | 76.84 ± 8.27 b | 13.14 ± 1.48 a | 7.79 ± 0.82 c |
CYP76F14-N111K | 68.24 ± 6.65 b | 11.26 ± 1.21 a | 7.80 ± 0.91 c |
CYP76F14-R175Q | 75.56 ± 8.21 b | 13.45 ± 1.44 a | 8.24 ± 0.78 c |
CYP76F14-L222V | 67.25 ± 6.23 b | 12.24 ± 1.51 a | 7.87 ± 0.83 c |
CYP76F14-M264I | 71.39 ± 6.96 b | 11.78 ± 1.09 a | 8.11 ± 0.74 c |
CYP76F14-S286N | 74.08 ± 7.24 b | 12.15 ± 1.18 a | 8.39 ± 0.90 c |
CYP76F14-K325T | 70.57 ± 8.16 b | 11.08 ± 1.02 a | 8.33 ± 0.76 c |
CYP76F14-E378G | 269.35 ± 25.18 a | 8.35 ± 0.89 b | 16.67 ± 1.85 b |
CYP76F14-T380A | 134.91 ± 14.67 a | 7.15 ± 0.83 b | 23.72 ± 0.94 a |
CYP76F14-E383D | 66.95 ± 7.02 b | 11.85 ± 1.16 a | 7.92 ± 0.81 c |
CYP76F14-T386A | 83.27 ± 9.12 b | 13.24 ± 1.46 a | 8.11 ± 0.85 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhang, J.; Shi, M.; Li, D.; Liu, X. Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries. Horticulturae 2025, 11, 651. https://doi.org/10.3390/horticulturae11060651
Song Z, Zhang J, Shi M, Li D, Liu X. Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries. Horticulturae. 2025; 11(6):651. https://doi.org/10.3390/horticulturae11060651
Chicago/Turabian StyleSong, Zhizhong, Jinjin Zhang, Matthew Shi, Dong Li, and Xiaohua Liu. 2025. "Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries" Horticulturae 11, no. 6: 651. https://doi.org/10.3390/horticulturae11060651
APA StyleSong, Z., Zhang, J., Shi, M., Li, D., & Liu, X. (2025). Cytochrome P450 CYP76F14 Mediates the Conversion of Its Substrate Linalool in Table Grape Berries. Horticulturae, 11(6), 651. https://doi.org/10.3390/horticulturae11060651