ClO2 Prolongs the Vase Life of Paeonia lactiflora ‘Hushui Dangxia’ Cut Flowers by Inhibiting Bacterial Growth at the Stem Base
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Treatments, and Culture Conditions
2.2. Morphological Indices and Moisture Status Analysis
2.3. Soluble Sugar and Soluble Protein Content Analyses
2.4. Antioxidant Enzyme Activity Analysis
2.5. Malondialdehyde Content Analysis
2.6. Ethylene Release Analysis
2.7. Bacteriostatic Effect and Scanning Electron Microscopy Examination
2.8. Browning Rate and Lignin Content Analysis
2.9. Statistical Analysis
3. Results
3.1. Vase Life and Maximum Flower Diameter
3.2. Relative Fresh Weight and Moisture Status
3.3. Soluble Sugar and Soluble Protein Contents
3.4. Antioxidant Enzyme Activities
3.5. Ethylene Release Analysis
3.6. Browning Rate, Lignin Content, and POD Activity
3.7. Bacteriostatic Effect and Scanning Electron Microscopy Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Sun, M.; Li, S.; Chen, Q.; Teixeira da Silva, J.A.; Wang, A.; Yu, X.; Wang, L. Germplasm resources and genetic breeding of Paeonia: A systematic review. Hortic. Res. 2020, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xia, X.; Su, J.; Wei, M.; Wu, Y.; Tao, J. Overexpression of herbaceous peony HSP70 confers high temperature tolerance. BMC Genom. 2019, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, R.; Zhang, K.; Shao, L.; Xu, T.; Shi, X.; Li, D.; Zhang, J.; Xia, Y. Development of a multi-criteria decision-making approach for evaluating the comprehensive application of herbaceous peony at low latitudes. Int. J. Mol. Sci. 2022, 23, 14342. [Google Scholar] [CrossRef] [PubMed]
- Kamenetsky-Goldstein, R.; Yu, X. Cut peony industry: The first 30 years of research and new horizons. Hortic. Res. 2022, 9, uhac079. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Glick, B.R. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.J. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol. 2013, 82, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Nukui, H.; Kudo, S.; Yamashita, A.; Satoh, S. Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation ‘White Candle’: Role of the gynoecium in carnation flower senescence. J. Exp. Bot. 2004, 55, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Anwar, M.; Wang, Y.; Zhang, H.; Ding, J. Impact of inorganic salts on vase life and postharvest qualities of the cut flower of Perpetual Carnation. Braz. J. Biol. 2021, 81, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; He, Y.; Du, T.; Shan, D.; Fan, H.; Wang, W.; Qin, Z.; Xin, C.; Pei, H. Metabolome and transcriptome integration reveals insights into the process of delayed petal abscission in rose by STS. Front. Plant Sci. 2022, 13, 1045270. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.; Hou, H.; Lin, Q.; Zhu, S.; Wang, G. 6-Benzyladenine treatment maintains storage quality of Chinese flowering cabbage by inhibiting chlorophyll degradation and enhancing antioxidant capacity. Plants 2023, 12, 334. [Google Scholar] [CrossRef]
- Labadie, C.; Cerutti, C.; Carlin, F. Fate and control of pathogenic and spoilage micro-organisms in orange blossom (Citrus aurantium) and rose flower (Rosa centifolia) hydrosols. J. Appl. Microbiol. 2016, 121, 1568–1579. [Google Scholar] [CrossRef]
- Naing, A.H.; Win, N.M.; Han, J.S.; Lim, K.B.; Kim, C.K. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci. 2017, 8, 1590. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 2010, 5, 26–33. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Çelikel, F.G.; Pak, C.; Harkema, H. Delay of iris flower senescence by cytokinins and jasmonates. Physiol. Plant. 2013, 148, 105–120. [Google Scholar] [CrossRef]
- Jefri, U.; Khan, A.; Lim, Y.C.; Lee, K.S.; Liew, K.B.; Kassab, Y.W.; Choo, C.Y.; Al-Worafi, Y.M.; Ming, L.C.; Kalusalingam, A. A systematic review on chlorine dioxide as a disinfectant. J. Med. Life 2022, 15, 313–318. [Google Scholar] [CrossRef]
- Mazrou, R.M.; Hassan, S.; Yang, M.; Hassan, F.A.S. Melatonin preserves the postharvest quality of cut roses through enhancing the antioxidant system. Plants 2022, 14, 2713. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L. The safety of water disinfection. Annu. Rev. Public Health 1982, 3, 393–418. [Google Scholar] [CrossRef]
- Malka, S.K.; Park, M.H. Fresh produce safety and quality: Chlorine dioxide’s role. Front. Plant Sci. 2021, 12, 775629. [Google Scholar] [CrossRef]
- Xu, M.Y.; Lin, Y.L.; Zhang, T.Y.; Hu, C.Y.; Tang, Y.L.; Deng, J.; Xu, B. Chlorine dioxide-based oxidation processes for water purification: A review. J. Hazard. Mater. 2022, 436, 129195. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, I.M.; El-Ziat, R.A. Utilization of environmentally friendly essential oils on enhancing the postharvest characteristics of Chrysanthemum morifolium Ramat cut flowers. Heliyon 2021, 7, e05909. [Google Scholar] [CrossRef]
- Bogdan, J.; Zagdańska, B. Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings. Plant Physiol. Biochem. 2006, 44, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Fido, R.J.; Mills, E.N.; Rigby, N.M.; Shewry, P.R. Protein extraction from plant tissues. Method Mol. Biol. 2004, 244, 21–27. [Google Scholar] [CrossRef]
- Wang, W.; Xia, M.X.; Chen, J.; Yuan, R.; Deng, F.N.; Shen, F.F. Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry 2016, 81, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Labancová, E.; Vivodová, Z.; Šípošová, K.; Kollárová, K. Silicon actuates poplar calli tolerance after longer exposure to antimony. Plants 2023, 12, 689. [Google Scholar] [CrossRef] [PubMed]
- Verdini, R.A.; Lagier, C.M. Voltammetric iodometric titration of ascorbic acid with dead-stop end-point detection in fresh vegetables and fruit samples. J. Agric. Food Chem. 2000, 48, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Lai, L.F.; Liu, H.C.; Li, H.M.; Yu, G.H.; Sun, Y.H.; He, S.G. Nano-silver treatment reduces bacterial proliferation and stem bending in cut gerbera flowers: An in vitro and in vivo evaluation. Postharvest Biol. Technol. 2021, 180, 111595. [Google Scholar] [CrossRef]
- Cheng, M.; Wijayawardene, N.N.; Promputtha, I.; de Vries, R.P.; Lan, Y.Z.; Luo, G.; Wang, M.; Li, Q.R.; Guo, X.; Wang, F.; et al. Potential fungi isolated from anti-biodegradable chinese medicine residue to degrade lignocellulose. Front. Microbiol. 2022, 13, 877884. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Wang, S.; Fan, X.; Liu, Y.; Zhao, R.; Hou, H.; Zha, Y.; Zou, J. The combination of graphene oxide and preservatives can further improve the preservation of cut flowers. Front. Plant Sci. 2023, 14, 1121436. [Google Scholar] [CrossRef]
- Lim, P.O.; Kim, H.J.; Nam, H.G. Leaf senescence. Annu. Rev. Plant Biol. 2007, 58, 115–136. [Google Scholar] [CrossRef]
- Mohammadi, M.; Aelaei, M.; Saidi, M. Pre-harvest spray of GABA and spermine delays postharvest senescence and alleviates chilling injury of gerbera cut flowers during cold storage. Sci. Rep. 2021, 11, 14166. [Google Scholar] [CrossRef]
- Montazeri, N.; Manuel, C.; Moorman, E.; Khatiwada, J.R.; Williams, L.L.; Jaykus, L.A. Virucidal activity of fogged chlorine dioxide- and hydrogen peroxide-based disinfectants against human norovirus and its surrogate, feline calicivirus, on hard-to-reach surfaces. Front. Microbiol. 2017, 8, 1031. [Google Scholar] [CrossRef] [PubMed]
- Macnish, A.J.; Leonard, R.T.; Nell, T.A. Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol. Technol. 2008, 50, 197–207. [Google Scholar] [CrossRef]
- Borohov, A.; Tirosh, T.; Halevy, A.H. Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol. 1976, 58, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Brummell, D.A.; Bowen, J.K.; Gapper, N.E. Biotechnological approaches for controlling postharvest fruit softening. Curr. Opin. Biotechnol. 2022, 78, 102786. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.C.; Luz, L.M.; Nascimento, V.L.; Araujo, F.F.; Santos, M.N.S.; França, C.F.M.; Silva, T.P.; Fugate, K.K.; Finger, F.L. Selenium-ethylene interplay in postharvest life of cut flowers. Front. Plant Sci. 2020, 11, 584698. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, H.; Chen, Z.; Li, T.; Zhang, Z.; Yun, Z.; Jiang, Y. Metabolic variations in the pulp of four litchi cultivars during pulp breakdown. Food Res. Int. 2021, 140, 110080. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Luo, D.; Zhang, F. DcWRKY75 promotes ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). Plant J. 2021, 108, 1473–1492. [Google Scholar] [CrossRef]
- del Río, L.A.; Corpas, F.J.; Sandalio, L.M.; Palma, J.M.; Barroso, J.B. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 2003, 55, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Racchi, M.L. Antioxidant defenses in plants with attention to prunus and citrus spp. Antioxidants 2013, 2, 340–369. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, Y.; Qiu, Z.; Luo, P. Gene expression of antioxidant metabolic enzymes in grape extracts. Cell. Mol. Biol. 2022, 67, 200–212. [Google Scholar] [CrossRef]
- van Doorn, W.G.; Sinz, A.; Tomassen, M.M. Daffodil flowers delay senescence in cut Iris flowers. Phytochemistry 2004, 65, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Z.; Guo, X.F.; Zheng, C.S.; Wang, W.L.; Liang, F. Effects of exogenous Ca2+ on leaf photosynthetic apparatus and active oxygen scavenging enzyme system of chrysanthemum under high temperature stress. J. Appl. Ecol. 2008, 19, 1983–1988. [Google Scholar]
- Skutnik, E.; Jędrzejuk, A.; Rabiza-Świder, J.; Rochala-Wojciechowska, J.; Latkowska, M.; Łukaszewska, A. Nanosilver as a novel biocide for control of senescence in garden cosmos. Sci. Rep. 2020, 10, 10274. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.T.T.; Kim, Y.T.; Jeon, Y.H.; Choi, H.W.; In, B.C. Regulation of botrytis cinerea infection and gene expression in cut roses by using nano silver and salicylic acid. Plants 2021, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
- Gururani, M.A.; Atteya, A.K.; Elhakem, A.; El-Sheshtawy, A.A.; El-Serafy, R.S. Essential oils prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels. PLoS ONE 2023, 18, e0281717. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Fan, Y.F.; Luan, W.; Dai, Y.; Wang, M.X.; Wei, C.M.; Wang, Y.; Tao, X.; Mao, P.; Ma, X.R. Titanium ions inhibit the bacteria in vase solutions of freshly cut Gerbera jamesonii and extend the flower longevity. Microb. Ecol. 2019, 77, 967–979. [Google Scholar] [CrossRef]
- Hashemabadi, D.; Liavali, M.H.; Kaviani, B.; Mousavi, M.; Keyghobadi, S.; Zahiri, S. Effect of nano-silver and boric acid on extending the vase life of cut rose (Rosa hybrida L.). J. Environ. Biol. 2014, 35, 833–838. [Google Scholar] [PubMed]
- Thakur, M.; Chandel, A.; Guleria, S.; Verma, V.; Kumar, R.; Singh, G.; Rakwal, A.; Sharma, D.; Bhargava, B. Synergistic effect of graphene oxide and silver nanoparticles as biostimulant improves the postharvest life of cut flower bird of paradise (Strelitzia reginae L.). Front. Plant Sci. 2022, 13, 1006168. [Google Scholar] [CrossRef]
- Shaafi, B.; Kahrizi, D.; Zebarjadi, A.; Azadi, P. The effects of nanosilver on bacterial contamination and increase durability cultivars of Rosa hybrida L. through of stenting method. Cell. Mol. Biol. 2022, 68, 179–188. [Google Scholar] [CrossRef]
- Nontaswatsri, C.; Fukai, S. Carnation (Dianthus caryophylus L.). Method Mol. Biol. 2006, 344, 311–320. [Google Scholar] [CrossRef]
- Jedrzejuk, A.; Rochala, J.; Zakrzewski, J.; Rabiza-Świder, J. Identification of xylem occlusions occurring in cut clematis (Clematis L., fam. Ranunculaceae Juss.) stems during their vase life. Sci. World J. 2012, 2012, 749281. [Google Scholar] [CrossRef]
- Arrom, L.; Munné-Bosch, S. Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers. Plant Sci. 2012, 188–189, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fang, H.; Gong, T.; Zhang, J.; Niu, L.; Huang, D.; Huo, J.; Liao, W. Hydrogen gas alleviates postharvest senescence of cut rose ‘Movie star’ by antagonizing ethylene. Plant Mol. Biol. 2020, 102, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.P.A.; Conte-Junior, C.A. Nanoencapsulation application to prolong postharvest shelf life. Curr. Opin. Biotechnol. 2022, 78, 102825. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Merino, F.C.; Ramírez-Martínez, M.; Castillo-González, A.M.; Trejo-Téllez, L.I. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Sci. Rep. 2020, 10, 4209. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.U.; Lone, M.L.; Farooq, S.; Parveen, S.; Altaf, F.; Tahir, I.; Hefft, D.I.; Ahmad, A.; Ahmad, P. Nitric oxide effectively orchestrates postharvest flower senescence: A case study of Consolida ajacis. Funct. Plant Biol. 2023, 50, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Sharma, P.; Gill, S.S.; Hasanuzzaman, M.; Khan, E.A.; Kachhap, K.; Mohamed, A.A.; Thangavel, P.; Devi, G.D.; Vasudhevan, P.; et al. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res. 2016, 23, 19002–19029. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Guo, Q.; Wang, G.X.; Peng, X.Y.; Wang, J.D.; Che, F.B. Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. J. Food Sci. Technol. 2015, 52, 2247–2255. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Fu, M.; Chen, Q.; Muzammil, J.M. Chlorine dioxide fumigation generated by a solid releasing agent enhanced the efficiency of 1-MCP treatment on the storage quality of strawberry. J. Food Sci. Technol. 2018, 55, 2003–2010. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Duan, Z.; Li, J.; Jiang, Y.; Cheng, S.; Xue, T.; Zhao, F.; Sheng, W.; Duan, Y. Ultra-low concentration of chlorine dioxide regulates stress-caused premature leaf senescence in tobacco by modulating auxin, ethylene, and chlorophyll biosynthesis. Plant Physiol. Biochem. 2022, 186, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Malakar, M.; Paiva, P.D.O.; Beruto, M.; da Cunha Neto, A.R. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Front. Plant Sci. 2023, 14, 1221346. [Google Scholar] [CrossRef] [PubMed]
ClO2 Treatment (mg L−1) | C | ClO2 25 | ClO2 50 | ClO2 75 | ClO2 100 |
---|---|---|---|---|---|
Vase life (days) | 5 e ± 0.24 | 5.5 d ± 0.16 | 6 c ± 0.12 | 8 a ± 0.21 | 7 b ± 0.35 |
Max. flower diameter (cm) | 11.1 e ± 0.20 | 13.0 d ± 0.23 | 13.6 c ± 0.20 | 14.6 a ± 0.26 | 14.2 b ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, Y.; Song, Y.; Zhu, J.; Shang, W.; Jiang, L.; Liu, W.; He, S.; Shen, Y.; Shi, L.; et al. ClO2 Prolongs the Vase Life of Paeonia lactiflora ‘Hushui Dangxia’ Cut Flowers by Inhibiting Bacterial Growth at the Stem Base. Horticulturae 2024, 10, 732. https://doi.org/10.3390/horticulturae10070732
Wang H, Zhang Y, Song Y, Zhu J, Shang W, Jiang L, Liu W, He S, Shen Y, Shi L, et al. ClO2 Prolongs the Vase Life of Paeonia lactiflora ‘Hushui Dangxia’ Cut Flowers by Inhibiting Bacterial Growth at the Stem Base. Horticulturae. 2024; 10(7):732. https://doi.org/10.3390/horticulturae10070732
Chicago/Turabian StyleWang, Hongwei, Yan Zhang, Yinglong Song, Jiale Zhu, Wenqian Shang, Liwei Jiang, Weichao Liu, Songlin He, Yuxiao Shen, Liyun Shi, and et al. 2024. "ClO2 Prolongs the Vase Life of Paeonia lactiflora ‘Hushui Dangxia’ Cut Flowers by Inhibiting Bacterial Growth at the Stem Base" Horticulturae 10, no. 7: 732. https://doi.org/10.3390/horticulturae10070732
APA StyleWang, H., Zhang, Y., Song, Y., Zhu, J., Shang, W., Jiang, L., Liu, W., He, S., Shen, Y., Shi, L., & Wang, Z. (2024). ClO2 Prolongs the Vase Life of Paeonia lactiflora ‘Hushui Dangxia’ Cut Flowers by Inhibiting Bacterial Growth at the Stem Base. Horticulturae, 10(7), 732. https://doi.org/10.3390/horticulturae10070732