Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Experimental Design
2.2. Soil and Hundzsoil Analysis
2.3. Determination of Applied Irrigation Water (AIW.mm)
2.4. Determination Irrigation Water Use Efficiency (IWUE)
2.5. The Studied Vegetative, Physical, and Chemical Properties of Crimson Seedless Grapevines
2.5.1. Studied Vegetative Properties of Crimson Seedless Grapevines
2.5.2. Studied Physical Properties of Crimson Seedless Grapevines
2.5.3. Studied Chemical Properties of Crimson Seedless Grapevines
2.5.4. Statistical Analysis
3. Results
3.1. Vegetative Growth
3.1.1. Shoot Length
3.1.2. Leaf Area
3.1.3. Bud Fertility%
3.1.4. Yield
3.2. Physical Properties
3.2.1. Weight of 100 Berries
3.2.2. Size of 100 Berries
3.2.3. Juice Volume
3.2.4. Berry Length
3.2.5. Berry Diameter
3.2.6. Cluster Length and Width
3.2.7. Clusters and Berries Number
3.2.8. Cluster Weight
3.3. Chemical Properties
3.3.1. Total Soluble Solids (TSSs)
3.3.2. Acidity
3.3.3. TSS/Acidity
3.3.4. Total Anthocyanin
3.4. Irrigation Water Use Efficiency (IWUE)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- FAO and UN Water. Progress on Level of Water Stress; Food and Agriculture Organization of the United Nations and United Nations Water: Rome, Italy, 2021. [Google Scholar]
- Hussain, S.; Hussain, S.; Qadir, T.; Khaliq, A.; Ashraf, U.; Parveen, A.; Saqib, M.; Rafiq, M. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci. Today 2019, 6, 389–402. [Google Scholar] [CrossRef]
- Amer, M.; Hafez, S.; Abdel Ghany, M. Water Saving in Irrigated Agriculture in Egypt; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2017. [Google Scholar]
- Nada, T.A.; Abd Aal, A.; Abd El-Rahman, H. Drought Condition and Management Strategies in Egypt; Egyptian Meteorological Authority (EMA): Cairo, Egypt, 2014. [Google Scholar]
- Nikiel, C.; Eltahir, E. Past and future trends of Egypt’s water consumption and its sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, M.K.; Abd-Elmabod, S.K.; Aldosari, A.A.; Elrys, A.S.; Mohamed, E.S. Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water 2020, 12, 2537. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, E.S.; El-Namas, A.E.; Abd-Elmabod, S.K.; Badr Eldin, R.M. Impacted Application of Water-Hyacinth-Derived Biochar and Organic Manures on Soil Properties and Barley Growth. Sustainability 2022, 14, 13096. [Google Scholar] [CrossRef]
- Chawla, R.; Dubey, S.; Khose, S. Water Productivity in Agriculture: A Key to Sustainable Food Production. Agric. Food 2023, 5, 326–329. [Google Scholar]
- Zhang, W.; Liang, W.; Gao, X.; Li, J.; Zhao, X. Trajectory in water scarcity and potential water savings benefits in the Yellow River basin. J. Hydrol. 2024, 633, 130998. [Google Scholar] [CrossRef]
- Berríos, P.; Temnani, A.; Zapata-García, S.; Sánchez-Navarro, V.; Zornoza, R.; Pérez-Pastor, A. Effect of deficit irrigation and mulching on the agronomic and physiological response of mandarin trees as strategies to cope with water scarcity in a semi-arid climate. Sci. Hortic. 2024, 324, 112572. [Google Scholar] [CrossRef]
- Williams, L.; Ayars, J. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Cabral, I.L.; Teixeira, A.; Lanoue, A.; Unlubayir, M.; Munsch, T.; Valente, J.; Alves, F.; da Costa, P.L.; Rogerson, F.S.; Carvalho, S.M. Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants 2022, 11, 732. [Google Scholar] [CrossRef]
- Keller, M.; Romero, P.; Gohil, H.; Smithyman, R.P.; Riley, W.R.; Casassa, L.F.; Harbertson, J.F. Deficit irrigation alters grapevine growth, physiology, and fruit microclimate. Am. J. Enol. Vitic. 2016, 67, 426–435. [Google Scholar] [CrossRef]
- Khalil, H.A.; Eldin, R.M.B. Chitosan improves morphological and physiological attributes of grapevines under deficit irrigation conditions. J. Hortic. Res. 2021, 29, 9–22. [Google Scholar] [CrossRef]
- Cosic, M.; Djurovic, N.; Todorovic, M.; Radojka, M.; Zecevic, B.; Stricevic, R. Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper. Agric. Water Manag. 2015, 159, 139–147. [Google Scholar] [CrossRef]
- Mohamed, W.; Hammam, A. Poultry manure-derived biochar as a soil amendment and fertilizer for sandy soils under arid conditions. Egypt. J. Soil Sci. 2019, 59, 1–14. [Google Scholar] [CrossRef]
- Consoli, S.; Stagno, F.; Roccuzzo, G.; Cirelli, G.; Intrigliolo, F. Sustainable management of limited water resources in a young orange orchard. Agric. Water Manag. 2014, 132, 60–68. [Google Scholar] [CrossRef]
- Chalmers, D.; Mitchell, P.; Van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning1. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar] [CrossRef]
- Diab, Y.; Mousa, M.; Warnock, D.; Hahn, D. Opportunities for Producing Table Grapes in Egypt for the Export Market: A Decision Case Study. Int. Food Agribus. Manag. Rev. 2009, 12, 57–70. [Google Scholar]
- El-Sayed, M.E.A. Improving fruit quality and marketing of “Crimson Seedless” grape using some preharvest treatments. J. Hortic. Sci. Ornam. Plants 2013, 5, 218–226. [Google Scholar]
- Sadras, V.; McCarthy, M. Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv. Shiraz: A novel approach based on allometric analysis. Aust. J. Grape Wine Res. 2008, 13, 66–71. [Google Scholar] [CrossRef]
- El-Ansary, D.; Okamoto, G. Vine Water Relations and Quality of ‘Muscat of Alexandria’ Table Grapes Subjected to Partial Root-zone Drying and Regulated Deficit Irrigation. Engei Gakkai Zasshi 2007, 76, 13–19. [Google Scholar] [CrossRef]
- Inal, A.; Gunes, A.; Sahin, O.; Taskin, M.; Kaya, E. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use Manag. 2015, 31, 106–113. [Google Scholar] [CrossRef]
- Heikkinen, J.; Ketoja, E.; Seppänen, L.; Luostarinen, S.; Fritze, H.; Pennanen, T.; Peltoniemi, K.; Velmala, S.; Hanajik, P.; Regina, K. Chemical composition controls the decomposition of organic amendments and influences the microbial community structure in agricultural soils. Carbon Manag. 2021, 12, 359–376. [Google Scholar] [CrossRef]
- Azim, K. Organic amendments to alleviate plant biotic stress. In Plant Health Under Biotic Stress; Volume 1: Organic Strategies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–165. [Google Scholar]
- Xu, S.; Zhang, L.; McLaughlin, N.B.; Mi, J.; Chen, Q.; Liu, J. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Tillage Res. 2015, 148, 31–39. [Google Scholar] [CrossRef]
- Elmeknassi, M.; Elghali, A.; de Carvalho, H.W.P.; Laamrani, A.; Benzaazoua, M. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Sci. Total Environ. 2024, 921, 171087. [Google Scholar] [CrossRef] [PubMed]
- Omer, E.; Hendawy, S.; ElGendy, A.; Mannu, A.; Petretto, G.; Pintore, G. Effect of Irrigation Systems and Soil Conditioners on the Growth and Essential Oil Composition of Rosmarinus officinalis L. Cultivated in Egypt. Sustainability 2020, 12, 661. [Google Scholar] [CrossRef]
- Gaser, S.A.; SA Abo El-Wafa, T.; Mokhtar, Y.O.; Allah, N. Increasing Irrigation Water Use Efficiency by Adding Soil Conditioner to Improve Vegetative Growth, Fruit Quality and Yield on Flame Seedless Grapevines Under Water Stress Conditions. Egypt. J. Hortic. 2023, 50, 265–283. [Google Scholar] [CrossRef]
- Shaheen, M.G.; Abdel-Wahab, S.M.; Hassan, E.A.; AbdelAziz, A.M.R.A. Effect of Some Soil Conditioners and Organic Fertilizers on Vegetative Growth and Quality of Crimson Seedless Grapevines. J. Hortic. Sci. Ornam. Plants 2012, 4, 260–266. [Google Scholar]
- Abd-Ella, E.E.K. Effect of Soil conditioners and Irrigation Levels on Growth and Productivity of Pomegranate Trees in the New Reclaimed Region. Alex. Sci. Exch. J. 2011, 32, 26. [Google Scholar]
- Kavi Kishor, P.B.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef]
- Badr Eldin, R.; Hassan, S.M. Seed Priming with Proline as Promising Tool to Mitigate Water Stress on Squash Cultivars. Alex. Sci. Exch. J. 2023, 44, 49–56. [Google Scholar] [CrossRef]
- Lehr, P.P.; Hernández-Montes, E.; Ludwig-Müller, J.; Keller, M.; Zörb, C. Abscisic acid and proline are not equivalent markers for heat, drought and combined stress in grapevines. Aust. J. Grape Wine Res. 2022, 28, 119–130. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Chapman, C.; Yuan, B.; Huang, B. Improved heat tolerance in creeping bentgrass by γ-aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regul. 2021, 93, 231–242. [Google Scholar] [CrossRef]
- El-kenawy, M.A. Effect of Tryptophan, Proline and Tyrosine on Vegetative Growth, Yield and Fruit Quality of Red Roumy grapevines. Egypt. J. Hortic. 2022, 49, 1–14. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis; Soil Science Society of America, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Israelson, O.W.; Hansen, V.E. Irrigation Principles and Practices. Soil Sci. 1963, 95, 218. [Google Scholar] [CrossRef]
- Vermeiren, L.; Jopling, G. Localized Irrigation; FAO Irrigation and Drainage Paper 36; FAO, Irrigation and Drainage: Rome, Italy, 1984. [Google Scholar]
- Allen, R.G. Assessing integrity of weather data for reference evapotranspiration estimation. J. Irrig. Drain. Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- Phocaides, A. Handbook on Pressurized Irrigation Techniques; Food & Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef]
- Bessis, R. Two rapid methods of estimating the number of flowers in vine inflorescences. Compte Rendu Hebd. Seances L‘Acad. D‘Agric. Fr. 1960, 46, 823–828. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Hsia, C.L.; Luh, B.S.; Chichester, C.O. Anthocyanin in Freestone Peaches. J. Food Sci. 1965, 30, 5–12. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Statistical Analysis System Institute. SAS/STAT 9.1: User’s Guide; SAS Institute: Cary, NC, USA, 2004. [Google Scholar]
- El-Ansary, D.O. Effects of Pre-Harvest Deficit and Excess Irrigation Water on Vine Water Relations, Productivity and Quality of Crimson Seedless Table Grapes. J. Plant Prod. 2017, 8, 83–92. [Google Scholar] [CrossRef]
- Okamoto, G.; Ueki, K.; Imai, T.; Hirano, K. A comparative study of drought and excess-water tolerance in Vitis coignetiae and several table grapes grown in Japan. Sci. Rep. Fac. Agric. 2004, 93, 39–43. [Google Scholar]
- Williams, L. Physiological tools to assess vine water status for use in vineyard irrigation management: Review and update. In Proceedings of the IX International Symposium on Grapevine Physiology and Biotechnology, La Serena, Chile, 21–26 April 2013; Volume 1157, pp. 151–166. [Google Scholar]
- Conesa, M.R.; de la Rosa, J.M.; Artés-Hernández, F.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Long-term impact of deficit irrigation on the physical quality of berries in ‘Crimson Seedless’ table grapes. J. Sci. Food Agric. 2015, 95, 2510–2520. [Google Scholar] [CrossRef] [PubMed]
- Pinillos, V.; Chiamolera, F.M.; Ortiz, J.F.; Hueso, J.J.; Cuevas, J. Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color. Agric. Water Manag. 2016, 165, 181–189. [Google Scholar] [CrossRef]
- Levin, A.; Alain, D.; Gambetta, G. Does water deficit negatively impact wine grape yield over the long term? IVES Tech. Rev. Vine Wine 2020. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.M.; Pech, J.M.; Taylor, J.; Clingeleffer, P.; Walker, R.R.; Nicholas, P.R. Effects of irrigation and rootstock on Vitis vinifera (L.) cv. Shiraz berry composition and shrivel, and wine composition and wine score. Aust. J. Grape Wine Res. 2016, 22, 124–136. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Naylor, A.P. ‘Pinot noir’ and ‘Riesling’ Grapevines Respond to Water Stress Duration and Soil Water-holding Capacity. HortScience 1994, 29, 1505–1510. [Google Scholar] [CrossRef]
- Okamoto, G.; Kuwamura, T.; Hirano, K. Effects of water deficit stress on leaf and berry ABA and berry ripening in Chardonnay grapevines (Vitis vinifera). Vitis 2004, 43, 15–17. [Google Scholar]
- Martínez-Moreno, A.; Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Mirás-Avalos, J.M.; López-Urrea, R.; Gil-Muñoz, R.; Lizama, V.; García-Esparza, M.J.; Álvarez, M.I.; Buesa, I. Effects of deficit irrigation with saline water on yield and grape composition of Vitis vinifera L. cv. Monastrell. Irrig. Sci. 2023, 41, 469–485. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agric. Water Manag. 2011, 98, 1171–1179. [Google Scholar] [CrossRef]
- Buesa, I.; Pérez, D.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Aust. J. Grape Wine Res. 2017, 23, 251–259. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, S.D.; Di Gaspero, G. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 2007, 7, 46. [Google Scholar] [CrossRef]
- Stommel, J.R.; Lightbourn, G.J.; Winkel, B.S.; Griesbach, R.J. Transcription Factor Families Regulate the Anthocyanin Biosynthetic Pathway in Capsicum annuum. J. Am. Soc. Hortic. Sci. 2009, 134, 244–251. [Google Scholar] [CrossRef]
- Marín-Martínez, A.; Sanz-Cobeña, A.; Bustamante, M.A.; Agulló, E.; Paredes, C. Effect of organic amendment addition on soil properties, greenhouse gas emissions and grape yield in semi-arid vineyard agroecosystems. Agronomy 2021, 11, 1477. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Dawood, M.G.; Khater, M.A.; El-Awadi, M.E. Physiological role of osmoregulators proline and glycinebetaine in increasing salinity tolerance of Chickpea. Egypt. J. Chem. 2021, 64, 7637–7648. [Google Scholar] [CrossRef]
- Öpik, H.; Rolfe, S.A.; Willis, A.J.; Street, H.E. The Physiology of Flowering Plants, 4th ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Pandey, R.M.; Rao, M.M.; Singh, R.N. Studies on the metabolism of amino acids during development, ripening and senescence of ‘Pusa Seedless’ grapes. Sci. Hortic. 1974, 2, 383–388. [Google Scholar] [CrossRef]
- Mustafa, S.; Al-Atrushy, S. Effect of Tipping and Foliar Application of Proline and Botminn Plus on Yield and Quality of Grapevine (Vitis vinifera L.) cv. Khoshnaw. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 042071. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic compounds: Introduction 50. Nat. Prod. 2013, 1543–1580. [Google Scholar] [CrossRef] [PubMed]
- Belal, B.; El-Kenawy, M.; Uwakiem, M. Foliar application of some amino acids and vitamins to improve growth, physical and chemical properties of flame seedless grapevines. Egypt. J. Hort. 2016, 43, 123–136. [Google Scholar]
- Weiler, C.S.; Merkt, N.; Graeff-Hönninger, S. Impact of water deficit during fruit development on quality and yield of young table grape cultivars. Horticulturae 2018, 4, 45. [Google Scholar] [CrossRef]
Soil Physical Characteristics | Value | Soil Chemical Characteristics | Value |
---|---|---|---|
Sand | 86.28% | pH 1:2.5 | 8.12 |
Silt | 8.87% | EC (dS/m) | 1.90 |
Clay | 4.85% | Ca2+ (mEq/L) | 6.50 |
Soil texture | Sand | Mg2+ (mEq/L) | 2.50 |
Bulk density (kg/m3) | 1.55 | K+ (mEq/L) | 1.00 |
Field capacity (%) | 16.38 | Cl− (mEq/L) | 2.50 |
Permanent wilting point (%) | 7.90 | OM (g·kg−1) | 2.00 |
Characteristic | Value | Characteristic | Value |
---|---|---|---|
Water holding capacity | 270% | pH | 6.48 |
Total nitrogen | 0.55% | EC (ds/m) | 2.01 |
Total phosphorus | 0.1% | Organic carbon (g·kg−1) | 382.4 |
Total potassium | 0.09% | OM (g·kg−1) | 659.4 |
Factors * | Bud Fertility % | Yield (kg/Vine) | IWUE ** | Shoot Length, cm | Leaf Area, cm2 | Weight of 100 Berries, g | Juice Volume, mL | Berry Length, mm | Berries Number | Cluster Length, cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
A | ** | ** | ** | * | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | * | NS | NS | * | * |
B | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | * | ** | ** | NS | NS | ** | ** | NS | NS |
C | ** | ** | ** | ** | ** | ** | * | ** | * | NS | ** | ** | ** | ** | ** | ** | NS | * | ** | NS |
AB | ** | ** | ** | ** | ** | ** | NS | * | NS | NS | ** | NS | ** | ** | ** | NS | ** | ** | NS | ** |
AC | ** | ** | NS | NS | ** | * | ** | ** | ** | NS | NS | ** | ** | ** | NS | * | * | NS | ** | NS |
BC | ** | ** | NS | * | ** | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | ** | ** | ** | NS |
ABC | ** | ** | ** | ** | ** | NS | NS | NS | NS | NS | ** | ** | ** | ** | * | NS | ** | ** | ** | ** |
Irrigation Level | Hundzsoil Level, kg/vine | Shoot Length, (cm) | Size of 100 Berries, (mL) | Berry Diameter, (mm) | Acidity | IWUE | |
---|---|---|---|---|---|---|---|
2023 | 2022 | 2023 | 2023 | 2023 | 2023 | ||
125% FC | 0 | 111.08 g | 425.00 d–f | 420.00 f | 16.00 c | 0.57 b | 0.58 h |
2 | 112.08 fg | 426.25 d–f | 422.50 ef | 16.00 c | 0.57 b | 0.81 e–g | |
4 | 117.58 b–d | 435.00 a | 430.00 a–c | 16.25 bc | 0.61 a | 0.69 gh | |
6 | 117.41 cd | 427.50 c–e | 425.00 de | 16.50 ab | 0.57 b | 0.75 f–h | |
100% FC | 0 | 119.25 a–c | 428.75 b–d | 425.00 de | 16.50 ab | 0.57 b | 1.00 d–g |
2 | 120.16 a–c | 422.50 f | 426.25 c–e | 16.00 c | 0.56 bc | 0.95 d–g | |
4 | 122.00 a | 427.50 c–e | 423.75 ef | 16.75 a | 0.57 b | 1.01 d–f | |
6 | 119.50 a–c | 426.25 d–f | 428.75 b–d | 16.75 a | 0.55 b–e | 1.33 c | |
75% FC | 0 | 116.08 de | 431.25 a–c | 433.75 a | 16.25 bc | 0.55 b–d | 1.20 cd |
2 | 118.25 b–d | 432.50 ab | 430.00 a–c | 16.00 c | 0.57 b | 1.19 cd | |
4 | 120.33 ab | 435.00 a | 431.25 ab | 16.50 ab | 0.54 c–e | 1.15 cd | |
6 | 119.33 a–c | 435.00 a | 432.50 ab | 16.25 bc | 0.57 b | 1.88 b | |
60% FC | 0 | 106.67 h | 423.75 ef | 431.25 ab | 16.00 c | 0.53 e | 1.09 c–e |
2 | 111.33 fg | 431.25 a–c | 430.00 a–c | 16.75 a | 0.54 de | 1.23 cd | |
4 | 111.58 fg | 431.25 a–c | 430.00 a–c | 16.25 bc | 0.53 de | 2.01 b | |
6 | 114.25 ef | 428.75 b–d | 431.25 ab | 16.00 c | 0.53 e | 2.91 a |
Irrigation Level | Proline, ppm | Shoot Length, (cm) | Leaf Area, (cm2) | Size of 100 Berries (mL) | Berry Diameter (mm) | Berry Length (mm) | TSS | IWUE | ||
---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2023 | 2023 | 2023 | ||
125% FC | 0 | 112.37 c | 112.04 d | 152.11 c | 423.12 d | 15.75 d | 15.75 d | 22.12 d | 19.25 d | 0.64 f |
500 | 116.00 b | 117.04 c | 152.21 c | 425.62 cd | 16.62 a | 16.62 a | 22.50 c | 19.62 bc | 0.77 ef | |
100% FC | 0 | 119.16 a | 120.12 a | 154.25 ab | 425.00 cd | 16.25 bc | 16.50 a | 23.12 ab | 19.12 d | 0.96 de |
500 | 119.87 a | 120.33 a | 154.91 a | 426.87 c | 16.37 a–c | 16.50 a | 23.12 ab | 20.12 a | 1.18 c | |
75% FC | 0 | 119.41 a | 118.41 bc | 154.50 ab | 430.00 b | 16.12 c | 16.12 bc | 22.75 bc | 19.50 cd | 1.15 cd |
500 | 116.29 b | 118.58 b | 153.56 b | 433.75 a | 16.50 ab | 16.37 ab | 23.37 a | 20.00 ab | 1.56 b | |
60% FC | 0 | 109.62 d | 109.37 e | 152.08 c | 425.62 cd | 16.12 c | 15.87 cd | 22.50 cd | 19.75 a–c | 1.59 b |
500 | 111.95 c | 112.54 d | 150.16 d | 435.62 a | 16.50 ab | 16.62 a | 23.12 ab | 20.00 ab | 2.03 a |
Hundzsoil Level kg/Vine | Proline, ppm | Shoot Length, (cm) | Berry Diameter, (mm) | TSS | Acidity | TSS/Acidity | |
---|---|---|---|---|---|---|---|
2023 | 2023 | 2022 | 2023 | 2023 | 2023 | ||
0 | 0 | 112.95 c | 15.87 c | 19.37 bc | 19.25 c | 0.55 bc | 34.75 bc |
500 | 113.58 c | 16.50 ab | 19.62 bc | 19.37 bc | 0.56 a–c | 34.78 bc | |
2 | 0 | 114.79 bc | 16.00 c | 19.50 bc | 19.62 b | 0.55 bc | 35.67 b |
500 | 116.12 b | 16.37 b | 19.50 bc | 19.62 b | 0.57 ab | 34.43 cd | |
4 | 0 | 116.20 b | 16.37 b | 19.75 b | 19.25 c | 0.58 a | 33.42 d |
500 | 119.54 a | 16.50 ab | 20.37 a | 20.37 a | 0.55 bc | 37.07 a | |
6 | 0 | 116.00 b | 16.00 c | 19.25 c | 19.50 bc | 0.55 c | 35.44 bc |
500 | 119.25 a | 16.75 a | 20.25 a | 20.37 a | 0.56 a–c | 36.02 ab |
Irrigation Level | Hundzsoil Level, kg/Vine | Proline, ppm | Bud Fertility% | Yield (kg/Vine) | ||
---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | |||
125% FC | 0 | 0 | 51.42 a–d | 41.90 i–k | 12.81 j–l | 12.83 c–g |
500 | 52.37 ab | 47.61 c–f | 12.19 kl | 9.42 h–m | ||
2 | 0 | 46.98 hi | 44.12 g–j | 16.64 d–h | 11.30 e–k | |
500 | 49.83 c–g | 46.34 e–g | 21.96 b | 19.65 a | ||
4 | 0 | 48.88 e–h | 44.43 g–i | 18.41 c–e | 13.62 c–f | |
500 | 53.33 a | 46.97 d–g | 17.92 c–f | 12.83 c–g | ||
6 | 0 | 47.61 g–i | 47.93 c–f | 16.85 d–g | 11.74 d–j | |
500 | 46.67 hi | 41.90 i–k | 25.41 a | 17.08 ab | ||
100% FC | 0 | 0 | 42.53 j–l | 41.26 jk | 12.63 kl | 10.44 f–l |
500 | 53.33 a | 48.56 b–e | 21.09 bc | 15.94 bc | ||
2 | 0 | 49.51 d–g | 41.90 i–k | 12.70 kl | 9.22 i–m | |
500 | 53.33 a | 51.42 ab | 14.65 g–k | 13.46 c–f | ||
4 | 0 | 52.06 a–c | 41.90 i–k | 18.22 c–f | 12.46 d–i | |
500 | 52.06 a–c | 47.61 c–f | 19.54 b–d | 12.86 c–g | ||
6 | 0 | 52.06 a–c | 46.34 e–g | 15.03 f–k | 11.48 d–k | |
500 | 52.06 a–c | 46.98 d–g | 15.98 e–j | 11.98 d–j | ||
75% FC | 0 | 0 | 52.69 a | 48.25 c–e | 16.04 e–j | 10.07 g–l |
500 | 53.33 a | 47.61 c–f | 16.75 d–g | 13.67 c–e | ||
2 | 0 | 52.06 a–c | 49.52 a–d | 14.10 g–k | 8.89 j–n | |
500 | 53.33 a | 52.37 a | 16.33 d–i | 12.57 d–i | ||
4 | 0 | 45.70 i | 39.99 k | 13.32 i–k | 8.29 k–n | |
500 | 53.33 a | 50.47 a–c | 18.85 b–e | 13.39 c–f | ||
6 | 0 | 46.98 hi | 44.44 g–i | 13.91 g–k | 11.31 e–k | |
500 | 52.06 –c | 47.61 c–f | 18.63 c–e | 13.51 c–f | ||
60% FC | 0 | 0 | 29.52 m | 28.56 m | 8.56 m | 6.48 mn |
500 | 30.15 m | 27.93 m | 11.84 kl | 7.92 l–n | ||
2 | 0 | 40.63 l | 35.55 l | 9.70 lm | 5.88 n | |
500 | 40.94 kl | 35.86 i | 14.09 g–k | 8.91 j–n | ||
4 | 0 | 46.98 hi | 42.53 h–k | 16.90 d–g | 10.73 e–l | |
500 | 50.15 b–f | 47.61 c–f | 18.96 b–e | 14.62 b–d | ||
6 | 0 | 48.25 f–h | 45.07 f–h | 13.45 h–k | 11.92 d–j | |
500 | 48.25 f–h | 45.71 e–g | 18.49 c–e | 13.72 c–e |
Irrigation Level | Hundzsoil Level kg/Vine | Proline ppm | Weight of 100 Berries (g) | Juice Volume (mL) | Berry Length (mm) | Berries Number | |||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2022 | 2023 | |||
125% FC | 0 | 0 | 462.33 e–g | 460.00 e | 370.00 g | 370.00 g | 22.00 d | 67.67 h–n | 65.67 f–l |
500 | 465.00 d–f | 460.00 e | 375.00 ef | 370.00 g | 22.00 d | 47.33 o | 36.33 m | ||
2 | 0 | 462.33 e–g | 462.67 de | 372.33 fg | 372.33 fg | 22.00 d | 76.33 f–j | 85.00 b–e | |
500 | 467.33 c–e | 462.33 de | 380.00 cd | 377.33 e | 22.33 cd | 104.00 ab | 83.00 b–f | ||
4 | 0 | 470.00 b–d | 467.33 b–d | 380.00 cd | 377.33 e | 22.00 d | 94.33 a–e | 79.00 b–g | |
500 | 472.33 a–c | 465.00 c–e | 390.00 ab | 385.00 cd | 22.33 cd | 86.00 c–g | 60.00 h–l | ||
6 | 0 | 465.00 d–f | 462.67 de | 377.33 de | 372.67 fg | 22.33 cd | 74.33 f–l | 77.67 b–h | |
500 | 470.00 b–d | 467.33 b–d | 380.00 cd | 377.67 e | 23.00 bc | 106.67 a | 110.00 a | ||
100% FC | 0 | 0 | 467.67 c–e | 460.00 e | 377.33 de | 372.67 fg | 23.00 bc | 71.33 f–m | 68.33 e–l |
500 | 470.00 b–d | 467.33 b–d | 377.67 de | 375.00 ef | 23.67 ab | 97.00 a–d | 92.00 a–d | ||
2 | 0 | 460.00 fg | 467.33 b–d | 380.00 cd | 377.33 e | 23.67 ab | 71.00 f–n | 59.33 h–l | |
500 | 460.00 fg | 462.67 de | 375.00 ef | 375.00 ef | 24.00 a | 54.33 m–o | 55.00 kl | ||
4 | 0 | 465.00 d–f | 462.33 de | 375.00 ef | 372.33 fg | 23.00 bc | 101.00 a–c | 95.67 ab | |
500 | 470.00 b–d | 465.00 c–e | 380.00 cd | 375.00 ef | 23.00 bc | 60.67 j–o | 64.67 g–l | ||
6 | 0 | 465.00 d–f | 467.67 b–d | 377.33 de | 377.67 e | 22.33 cd | 69.33 g–n | 58.33 i–l | |
500 | 467.67 c–e | 470.00 a–c | 382.33 c | 382.67 d | 23.67 ab | 57.33 l–o | 64.00 g–l | ||
75% FC | 0 | 0 | 470.00 b–d | 475.00 a | 380.00 cd | 382.33 d | 22.67 cd | 83.67 c–h | 92.00 a–d |
500 | 465.00 d–f | 467.33 b–d | 387.33 b | 387.33 bc | 23.33 ab | 58.67 k–o | 60.00 h–l | ||
2 | 0 | 467.33 c–e | 467.67 b–d | 380.00 cd | 377.67 e | 23.00 bc | 53.33 no | 69.00 e–l | |
500 | 475.00 ab | 472.67 ab | 392.00 a | 392.33 a | 24.00 a | 67.33 h–n | 59.00 i–l | ||
4 | 0 | 470.00 b–d | 465.00 c–e | 382.67 c | 377.33 e | 22.33 cd | 86.00 c–g | 107.00 a | |
500 | 477.33 a | 475.00 a | 392.33 a | 392.67 a | 23.33 ab | 76.00 f–k | 73.67 e–j | ||
6 | 0 | 472.67 a–c | 470.00 a–c | 382.33 c | 382.67 d | 23.00 bc | 64.67 i–o | 57.00 j–l | |
500 | 477.33 a | 475.00 a | 387.67 b | 390.00 ab | 23.00 bc | 80.33 d–i | 76.00 d–i | ||
60% FC | 0 | 0 | 457.30 g | 462.33 de | 372.33 fg | 372.33 fg | 22.33 cd | 72.33 f–l | 68.33 e–l |
500 | 467.67 c–e | 472.33 ab | 382.67 c | 385.00 cd | 24.00 a | 74.33 f–l | 61.33 g–l | ||
2 | 0 | 465.00 d–f | 465.00 c–e | 377.33 de | 372.67 fg | 22.00 d | 80.00 d–i | 68.00 e–l | |
500 | 475.00 ab | 470.00 a–c | 390.00 ab | 382.33 d | 23.00 bc | 72.33 f–l | 85.67 b–e | ||
4 | 0 | 470.00 b–d | 462.67 de | 382.67 c | 377.33 e | 22.33 cd | 75.67 f–k | 94.67 a–c | |
500 | 465.00 d–f | 467.67 b–d | 382.33 c | 385.00 cd | 22.67 cd | 88.00 b–f | 76.33 c–i | ||
6 | 0 | 462.33 f–g | 462.33 de | 377.33 de | 377.67 e | 22.33 cd | 63.33 i–o | 54.00 lm | |
500 | 472.33 a–c | 475.00 a | 382.33 c | 387.67 bc | 23.33 ab | 77.67 e–j | 72.33 e–k |
Factors | Cluster Width, cm | Cluster Number | Cluster Weight, g | Size of 100 Berries, mL | Berry Diameter, mm | Total Anthocyanin (mg/100 g) | TSS % | Acidity % | TSS/Acidity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
A | ** | ** | ** | ** | ** | * | ** | ** | NS | ** | NS | * | ** | NS | ** | ** | ** | ** |
B | NS | NS | ** | ** | ** | ** | ** | NS | * | NS | ** | ** | ** | ** | NS | NS | ** | NS |
C | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | NS | NS | NS | * |
AB | * | ** | ** | ** | ** | ** | * | * | NS | * | ** | ** | NS | NS | * | * | NS | NS |
AC | NS | NS | ** | ** | NS | NS | NS | ** | * | ** | ** | ** | NS | * | ** | NS | NS | NS |
BC | ** | * | ** | ** | NS | * | NS | NS | NS | * | ** | ** | ** | ** | ** | * | ** | ** |
ABC | ** | ** | ** | ** | ** | ** | NS | NS | NS | NS | ** | ** | NS | NS | * | NS | * | NS |
Irrigation Level | Hundzsoil Level kg/Vine | Proline ppm | Cluster Length (cm) | Cluster Width (cm) | Clusters Number | Cluster Weight (g) | ||||
---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |||
125% FC | 0 | 0 | 19.50 a | 18.00 b–d | 12.50 b–d | 11.00 d–f | 54.00 a–d | 44.00 i–k | 238.33 j–l | 291.67 bc |
500 | 15.50 e–g | 14.50 gh | 11.00 ef | 9.00 g | 55.00 a–c | 50.00 c–f | 221.67 l | 188.33 g–i | ||
2 | 0 | 17.50 a–e | 17.00 c–e | 13.50 ab | 13.00 a–c | 49.33 hi | 46.33 g–j | 338.33 c–e | 244.16 b–g | |
500 | 16.00 d–g | 17.00 c–e | 12.50 b–d | 12.00 b–e | 52.33 c–g | 48.67 e–g | 420.00 b | 404.16 a | ||
4 | 0 | 17.00 b–f | 16.50 d–f | 13.00 a–c | 11.50 c–f | 51.33 e–h | 46.67 g–i | 358.33 c | 293.33 bc | |
500 | 17.50 a–e | 17.00 c–e | 12.00 c–e | 11.50 c–f | 56.00 a | 49.33 d–g | 320.00 c–h | 260.00 b–f | ||
6 | 0 | 18.50 a–c | 18.50 a–c | 13.50 ab | 13.50 ab | 50.00 g–i | 50.33 c–f | 336.67 c–e | 233.33 c–h | |
500 | 18.50 a–c | 19.00 ab | 12.50 b–d | 12.00 b–e | 49.00 hi | 44.00 i–k | 518.33 a | 388.33 a | ||
100% FC | 0 | 0 | 17.00 b–f | 17.50 b–e | 12.00 c–e | 12.00 b–e | 44.67 j | 43.33 jk | 281.67 e–k | 240.83 c–g |
500 | 17.50 a–e | 18.00 b–d | 13.50 ab | 12.00 b–e | 56.00 a | 51.00 b–e | 376.67 bc | 310.00 b | ||
2 | 0 | 18.00 a–d | 16.50 d–f | 12.80 a–d | 10.50 e–g | 52.00 d–g | 44.00 i–k | 243.16 i–l | 210.00 e–i | |
500 | 15.00 fg | 15.00 f–h | 9.00 g | 9.00 g | 56.00 a | 54.00 ab | 261.67 i–l | 248.33 b–g | ||
4 | 0 | 19.00 ab | 17.50 b–e | 11.50 de | 11.50 c–f | 54.67 a–c | 44.00 i–k | 333.33 c–f | 283.33 b–d | |
500 | 14.50 g | 14.00 h | 10.00 fg | 10.50 e–g | 54.67 a–c | 50.00 c–f | 357.50 c | 257.50 b–f | ||
6 | 0 | 15.00 fg | 17.50 b–e | 10.00 fg | 11.00 d–f | 54.67 a–c | 48.67 e–g | 275.00 g–l | 236.67 c–h | |
500 | 15.50 e–g | 16.50 d–f | 11.00 ef | 11.00 d–f | 54.67 a–c | 49.33 d–g | 293.33 d–j | 243.33 b–g | ||
75% FC | 0 | 0 | 17.50 a–e | 18.00 b–d | 12.00 c–e | 13.50 ab | 55.33 a | 50.67 c–e | 290.00 d–j | 198.33 f–i |
500 | 16.50 c–g | 18.50 a–c | 12.00 c–e | 12.00 b–e | 56.00 a | 50.00 c–f | 299.16 d–i | 273.33 b–e | ||
2 | 0 | 18.00 a–d | 17.00 c–e | 12.00 c–e | 11.00 d–f | 54.67 a–c | 52.00 a–d | 256.67 i–l | 171.67 hi | |
500 | 16.50 c–g | 16.00 e–g | 11.50 de | 10.00 fg | 56.00 a | 55.00 a | 291.67 d–j | 228.33 c–h | ||
4 | 0 | 17.50 a–e | 16.00 e–g | 11.50 de | 11.00 d–f | 48.00 i | 42.00 k | 278.33 f–l | 198.33 f–i | |
500 | 17.50 a–e | 18.00 b–d | 12.00 c–e | 11.50 c–f | 56.00 a | 53.00 a–c | 336.67 c–e | 252.50 b–g | ||
6 | 0 | 16.00 d–g | 16.00 d–f | 13.00 a–c | 13.00 a–c | 49.33 hi | 46.67 g–i | 281.67 e–k | 242.50 b–g | |
500 | 16.50 c–g | 17.00 c–e | 11.50 de | 11.00 d–f | 54.67 a–c | 50.00 c–f | 340.00 cd | 270.00 b–e | ||
60% FC | 0 | 0 | 18.50 a–c | 17.50 b–e | 14.00 a | 11.00 d–f | 31.00 k | 30.00 m | 276.50 f–l | 216.33 d–i |
500 | 17.50 a–e | 16.50 d–f | 13.50 ab | 12.20 b–d | 31.67 k | 29.33 m | 373.33 bc | 270.00 b–e | ||
2 | 0 | 18.50 a–c | 20.00 a | 13.00 a–c | 14.50 a | 42.67 j | 37.33 l | 227.50 kl | 156.67 i | |
500 | 18.50 a–c | 17.50 b–e | 11.00 ef | 10.00 fg | 43.00 j | 37.67 l | 327.50 c–g | 235.00 c–h | ||
4 | 0 | 17.00 b–f | 17.00 c–e | 12.00 c–e | 13.50 ab | 49.33 hi | 44.67 h–k | 343.33 cd | 240.00 c–h | |
500 | 18.00 a–d | 18.50 a–c | 13.00 a–c | 12.50 b–d | 52.67 b–f | 50.00 c–f | 360.00 c | 292.333 bc | ||
6 | 0 | 17.00 b–f | 16.50 d–f | 13.00 a–c | 11.00 d–f | 50.67 f–h | 47.33 f–h | 265.00 h–k | 250.00 b–g | |
500 | 19.00 ab | 18.50 a–c | 12.00 c–e | 12.00 b–e | 50.67 f–h | 48.00 e–g | 365.00 bc | 285.83 bc |
Irrigation Level | Hundzsoil Level kg/Vine | Proline ppm | Total Anthocyanin (mg/100 g) | Acidity % | TSS/Acidity | |
---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2022 | |||
125% FC | 0 | 0 | 14.23 mn | 15.47 mn | 0.60 ab | 31.67 k |
500 | 25.39 h–l | 28.85 h | 0.58 a–e | 32.48 jk | ||
2 | 0 | 16.07 mn | 13.93 n | 0.60 ab | 32.53 jk | |
500 | 18.85 k–n | 20.56 j–l | 0.56 c–h | 34.51 d–j | ||
4 | 0 | 14.52 mn | 16.23 l–n | 0.58 a–e | 33.70 f–k | |
500 | 29.82 f–i | 31.30 gh | 0.59 a–c | 33.64 g–k | ||
6 | 0 | 22.72 i–m | 22.70 ij | 0.57 a–f | 33.04 i–k | |
500 | 59.88 a | 69.16 a | 0.55 e–i | 36.08 b–f | ||
100% FC | 0 | 0 | 38.11 c–f | 31.46 gh | 0.53 h–j | 36.44 b–e |
500 | 21.52 i–m | 23.28 ij | 0.59 a–d | 33.90 f–k | ||
2 | 0 | 39.58 c–e | 37.84 ef | 0.58 a–e | 33.33 h–k | |
500 | 27.53 g–k | 28.59 h | 0.55 e–i | 35.16 c–i | ||
4 | 0 | 22.94 i–m | 29.10 h | 0.57 b–g | 34.22 e–j | |
500 | 22.10 i–m | 23.52 ij | 0.54 g–j | 37.95 b | ||
6 | 0 | 28.19 g–j | 27.32 hi | 0.55 e–i | 34.24 e–j | |
500 | 32.08 e–h | 34.55 fg | 0.57 a–f | 35.70 b–h | ||
75% FC | 0 | 0 | 35.29 d–g | 27.04 hi | 0.54 g–j | 36.12 b–f |
500 | 41.76 cd | 45.25 c | 0.58 a–e | 34.48 d–j | ||
2 | 0 | 15.16 mn | 16.54 k–n | 0.55 e–i | 35.13 c–i | |
500 | 27.25 g–k | 30.02 gh | 0.56 c–h | 34.63 d–j | ||
4 | 0 | 21.77 i–m | 20.63 j–l | 0.54 f–j | 36.79 b–d | |
500 | 19.37 j–n | 21.46 jk | 0.54 f–j | 37.61 b | ||
6 | 0 | 22.35 i–m | 19.91 j–m | 0.54 f–j | 35.79 b–g | |
500 | 34.87 d–g | 40.05 de | 0.60 a | 33.87 f–k | ||
60% FC | 0 | 0 | 18.25 l–n | 20.44 j–l | 0.52 jk | 37.69 b |
500 | 52.86 ab | 57.42 b | 0.53 ij | 36.80 b–d | ||
2 | 0 | 45.51 bc | 44.48 cd | 0.55 e–i | 35.16 c–i | |
500 | 27.92 g–j | 31.81 gh | 0.56 d–i | 34.83 d–j | ||
4 | 0 | 20.74 j–n | 19.45 j–m | 0.54 f–j | 36.69 b–d | |
500 | 22.31 i–m | 22.52 ij | 0.49 k | 41.40 a | ||
6 | 0 | 12.60 n | 14.36 n | 0.52 jk | 37.51 bc | |
500 | 25.92 h–l | 27.00 hi | 0.54 f–j | 36.71 b–d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, M.E.A.; Hammam, A.A.; Fayed, A.S.K.; Rebouh, N.Y.; Eldin, R.M.B. Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress. Horticulturae 2024, 10, 576. https://doi.org/10.3390/horticulturae10060576
El-Sayed MEA, Hammam AA, Fayed ASK, Rebouh NY, Eldin RMB. Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress. Horticulturae. 2024; 10(6):576. https://doi.org/10.3390/horticulturae10060576
Chicago/Turabian StyleEl-Sayed, Mohamed E. A., Amr A. Hammam, Ahmed S. K. Fayed, Nazih Y. Rebouh, and Rasha M. Badr Eldin. 2024. "Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress" Horticulturae 10, no. 6: 576. https://doi.org/10.3390/horticulturae10060576
APA StyleEl-Sayed, M. E. A., Hammam, A. A., Fayed, A. S. K., Rebouh, N. Y., & Eldin, R. M. B. (2024). Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress. Horticulturae, 10(6), 576. https://doi.org/10.3390/horticulturae10060576