Epigenetic Modifications and Breeding Applications in Horticultural Plants
1. Introduction
2. Epigenetic Regulations in Horticultural Plants
3. Breeding Applications in Horticultural Plants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Narváez, G.; Muñoz-Espinoza, C.; Soto, E.; Rothkegel, K.; Bastías, M.; Gutiérrez, J.; Bravo, S.; Hasbún, R.; Meneses, C.; Almeida, A.M. Global Methylation Analysis Using MSAP Reveals Differences in Chilling-Associated DNA Methylation Changes during Dormancy Release in Contrasting Sweet Cherry Varieties. Horticulturae 2022, 8, 962. https://doi.org/10.3390/horticulturae8100962.
- Tian, Y.; Zeng, J.; Fan, R. Comprehensive Analysis of N6-Methyladenosine Regulatory Genes from Citrus Grandis and Expression Profilings in the Fruits of “Huajuhong” (C. grandis “Tomentosa”) during Various Development Stages. Horticulturae 2022, 8, 462. https://doi.org/10.3390/horticulturae8050462.
- Jin, Q.; Chachar, M.; Ahmed, N.; Zhang, P.; Chachar, Z.; Geng, Y.; Guo, D.; Chachar, S. Harnessing Epigenetics through Grafting: Revolutionizing Horticultural Crop Production. Horticulturae 2023, 9, 672.
- Shaikh, A.A.; Chachar, S.; Chachar, M.; Ahmed, N.; Guan, C.; Zhang, P. Recent Advances in DNA Methylation and Their Potential Breeding Applications in Plants. Horticulturae 2022, 8, 562.
- Jin, Q.; Mo, R.; Chen, W.; Zhang, Q.; Sheng, F.; Wu, C.; Zhang, R.; Luo, Z. Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). Horticulturae 2022, 8, 136. https://doi.org/10.3390/horticulturae8020136.
- Zaman, F.; Zhang, M.; Wu, R.; Zhang, Q.; Luo, Z.; Yang, S. Recent Research Advances of Small Regulatory RNA in Fruit Crops. Horticulturae 2023, 9, 294.
- Wang, J.; Feng, Y.; Ding, X.; Huo, J.; Nie, W.F. Identification of Long Non-Coding RNAs Associated with Tomato Fruit Expansion and Ripening by Strand-Specific Paired-End RNA Sequencing. Horticulturae 2021, 7, 522. https://doi.org/10.3390/horticulturae7120522.
- Tian, Y.; Fan, R.; Zeng, J. Comprehensive Analysis of Jumonji Domain c Family from Citrus Grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus Grandis “Tomentosa”) during Various Development Stages. Horticulturae 2021, 7, 592. https://doi.org/10.3390/horticulturae7120592.
- Mo, R.; Zhang, N.; Li, J.; Jin, Q.; Zhu, Z.; Dong, Z.; Li, Y.; Zhang, C.; Yu, C. Transcriptomic Analysis Provides Insights into Anthocyanin Accumulation in Mulberry Fruits. Horticulturae 2022, 8, 920. https://doi.org/10.3390/horticulturae8100920.
- Karim, S.K.A.; Allan, A.C.; Schaffer, R.J.; David, K.M. Cell Division Controls Final Fruit Size in Three Apple (Malus x Domestica) Cultivars. Horticulturae 2022, 8, 657. https://doi.org/10.3390/horticulturae8070657.
- Yang, S.; Zhang, M.; Xu, L.; Zhang, Q.; Zhou, C.; Hu, X.; Luo, Z. Recent Advances in Natural Deastringency and Genetic Improvement of Chinese PCNA Persimmon (Diospyros kaki). Horticulturae 2023, 9, 1273.
- Yang, S.; Zhang, M.; Zeng, M.; Wu, M.; Zhang, Q.; Luo, Z.; Hu, X. Assessment of Fruit Quality and Genes Related to Proanthocyanidins Biosynthesis and Stress Resistance in Persimmon (Diospyros kaki Thunb.). Horticulturae 2022, 8, 844. https://doi.org/10.3390/horticulturae8090844.
- Jin, Q.; Zhang, R.; Chen, L.; Luo, Z. Isolation of FLOWERING LOCUS C and Preliminary Characterization in the Floral Transition of Xinjiang Precocious Walnut. Horticulturae 2023, 9, 582. https://doi.org/10.3390/horticulturae9050582.
- Wu, Q.; Zhao, M.; Li, Y.; Li, D.; Ma, X.; Deng, Z. Identification of the Transcription Factors RAP2-13 Activating the Expression of CsBAK1 in Citrus Defence Response to Xanthomonas Citri Subsp. Citri. Horticulturae 2022, 8, 1012. https://doi.org/10.3390/horticulturae8111012.
- Cao, Y.; Yu, H.; Tian, D.; Sun, E.; Zuo, L.; Jiang, D.; Zuo, C.; Fan, R. Phylogeny, Expression Profiling, and Coexpression Networks Reveals the Critical Roles of Nucleotide-BindingLeucine-Rich Repeats on Valsa Canker Resistance. Horticulturae 2023, 9, 345. https://doi.org/10.3390/horticulturae9030345.
- Hayat, F.; Ma, C.; Iqbal, S.; Huang, X.; Omondi, O.K.; Ni, Z.; Shi, T.; Tariq, R.; Khan, U.; Gao, Z. Rootstock-Mediated Transcriptional Changes Associated with Cold Tolerance in Prunus Mume Leaves. Horticulturae 2021, 7, 572. https://doi.org/10.3390/horticulturae7120572.
- Wang, Y.; Du, X.; Liu, M.; Liu, X.; Zhao, L.; Cao, L.; Zhang, S.; Song, L.; Sun, Y.; Liu, D.; et al. Genome-Wide Analysis of the AP2/ERF Family in Oily Persimmon (Diospyros oleifera) and Their Preliminary Roles Exploration in Response to Polyamines for Adventitious Root Formation in Cultivated Persimmon (D. Kaki). Horticulturae 2023, 9, 191. https://doi.org/10.3390/horticulturae9020191.
- Mo, R.; Zhang, N.; Hu, D.; Jin, Q.; Li, J.; Dong, Z.; Zhu, Z.; Li, Y.; Zhang, C.; Yu, C. Identification of Phenological Growth Stages of Four Morus Species Based on the Extended BBCH-Scale and Its Application in Fruit Development with Morphological Profiles and Color Characteristics. Horticulturae 2022, 8, 1140. https://doi.org/10.3390/horticulturae8121140.
- Han, Z.; Lu, Y.; Zhao, Y.; Wang, Y.; Han, Z.; Han, Y.; Zhang, J. Analysis of Relative Expression of Key Enzyme Genes and Enzyme Activity in Nitrogen Metabolic Pathway of Two Genotypes of Potato (Solanum tuberosum L.) under Different Nitrogen Supply Levels. Horticulturae 2022, 8, 769. https://doi.org/10.3390/horticulturae8090769.
- Zhang, N.; Li, J.; Qiu, C.; Wei, W.; Huang, S.; Li, Y.; Deng, W.; Mo, R.; Lin, Q. Multivariate Analysis of the Phenological Stages, Yield, Bioactive Components, and Antioxidant Capacity Effects in Two Mulberry Cultivars under Different Cultivation Modes. Horticulturae 2023, 9, 1334.
- Jin, Q.; Gao, S.; Mo, R.; Sheng, F.; Zhang, Q.; Wu, C.; Zhang, R.; Luo, Z. A Preliminary Study for Identifying Genes Associated with Pellicle Development in Xinjiang Walnut (Juglans regia L.). Horticulturae 2022, 8, 784. https://doi.org/10.3390/horticulturae8090784.
References
- Chachar, S.; Liu, J.; Zhang, P.; Riaz, A.; Guan, C.; Liu, S. Harnessing Current Knowledge of DNA N6-Methyladenosine from Model Plants for Non-Model Crops. Front. Genet. 2021, 12, 668317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, X.; Wang, Y.; Guo, W.; Chachar, S.; Riaz, A.; Geng, Y.; Gu, X.; Yang, L. PRMT6 Physically Associates with Nuclear Factor Y to Regulate Photoperiodic Flowering in Arabidopsis. aBIOTECH 2021, 2, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, V.; Kumar, M.; Vijayaraghavalu, S. Advances in Epigenetics for Crop Improvement and Sustainable Agriculture. In Plant Genomics for Sustainable Agriculture; Springer Nature Singapore: Singapore, 2022. [Google Scholar]
- Campa, M.; Miranda, S.; Licciardello, C.; Lashbrooke, J.G.; Dalla Costa, L.; Guan, Q.; Spök, A.; Malnoy, M. Application of New Breeding Techniques in Fruit Trees. Plant Physiol. 2023, kiad374. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, X.; Sun, M.; Xue, C.; Korban, S.S.; Wu, J. Genomic Insights into Domestication and Genetic Improvement of Fruit Crops. Plant Physiol. 2023, 192, Kiad273. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Gallusci, P.; Lang, Z. Fruit Development and Epigenetic Modifications. New Phytol. 2020, 228, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.B.; Lee, Y.S.; Sung, S. Epigenetic Regulation by Long Noncoding RNAs in Plants. Chromosome Res. 2013, 21, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Chen, Y.; Zhou, X. The Roles of MicroRNAs in Epigenetic Regulation. Curr. Opin. Chem. Biol. 2019, 51, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Van Nocker, S.; Gardiner, S.E. Breeding Better Cultivars, Faster: Applications of New Technologies for the Rapid Deployment of Superior Horticultural Tree Crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, N.; Wang, K.; Xian, Q.; Dong, J.; Chen, X. Exploring New Strategies in Diseases Resistance of Horticultural Crops. Front. Sustain. Food Syst. 2022, 6, 1021350. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Abiotic Stress Effects on Performance of Horticultural Crops. Horticulturae 2019, 5, 67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Wei, Z.; Zhang, P.; Guan, C.; Chachar, S.; Zhang, J. Epigenetic Modifications and Breeding Applications in Horticultural Plants. Horticulturae 2024, 10, 143. https://doi.org/10.3390/horticulturae10020143
Shi M, Wei Z, Zhang P, Guan C, Chachar S, Zhang J. Epigenetic Modifications and Breeding Applications in Horticultural Plants. Horticulturae. 2024; 10(2):143. https://doi.org/10.3390/horticulturae10020143
Chicago/Turabian StyleShi, Meiyan, Ziwei Wei, Pingxian Zhang, Changfei Guan, Sadaruddin Chachar, and Jinzhi Zhang. 2024. "Epigenetic Modifications and Breeding Applications in Horticultural Plants" Horticulturae 10, no. 2: 143. https://doi.org/10.3390/horticulturae10020143
APA StyleShi, M., Wei, Z., Zhang, P., Guan, C., Chachar, S., & Zhang, J. (2024). Epigenetic Modifications and Breeding Applications in Horticultural Plants. Horticulturae, 10(2), 143. https://doi.org/10.3390/horticulturae10020143