A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Photographic Environment and Data Acquisition Methods
2.3. Color Information Collection
2.4. Shape Information Collection
2.5. Three-Dimensional Structure Reconstruction from Contour Information
2.6. Volume Information Collection
2.7. Modeling with Random Forests
3. Results
3.1. Time-Series Changes in Root Color and Volume of Radish
3.2. Modeling Result
3.3. Model Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kato, K.; Sato, K.; Kanazawa, T.; Shono, H.; Kobayashi, N.; Tatsuzawa, F. Relationship between Root Colors and Anthocyanins from Radishes (Raphanus sativus L.). Hortic. Res. 2013, 12, 229–234. [Google Scholar] [CrossRef]
- Iwata, H.; Niikura, S.; Matsuura, S.; Takano, Y.; Ukai, Y. Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 1998, 102, 143–149. [Google Scholar] [CrossRef]
- Kang, Y.; Wan, S. Effect of soil water potential on radish (Raphanus sativus L.) growth and water use under drip irrigation. Sci. Hortic. 2005, 106, 275–292. [Google Scholar] [CrossRef]
- Basnet, B.; Aryal, A.; Neupane, A.; Bishal, K.C.; Rai, N.H.; Adhikari, S.; Khanal, P.; Basnet, M. Effect of integrated nutrient management on growth and yield of radish. J. Agric. Nat. Resour. 2021, 4, 167–174. [Google Scholar] [CrossRef]
- Fukuda, S.; Spreer, W.; Yasunaga, E.; Yuge, K.; Sardsud, V.; Müller, J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water Manag. 2013, 116, 142–150. [Google Scholar] [CrossRef]
- Öz, A.T.; Akyol, B. Effects of calcium chloride plus coating in modified-atmosphere packaging storage on whole-radish postharvest quality. J. Sci. Food Agric. 2020, 100, 3942–3949. [Google Scholar] [CrossRef] [PubMed]
- Utai, K.; Nagle, M.; Hämmerle, S.; Spreer, W.; Mahayothee, B.; Müller, J. Mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’) by linking image processing and artificial neural network. Eng. Agric. Environ. Food 2019, 12, 103–110. [Google Scholar] [CrossRef]
- Spreer, W.; Müller, J. Estimating the mass of mango fruit (Mangifera indica, cv. Chok Anan) from its geometric dimensions by optical measurement. Comput. Electron. Agric. 2021, 75, 125–131. [Google Scholar] [CrossRef]
- Fahad, L.G.; Tahir, S.F.; Rasheed, U.; Saqib, H.; Hassan, M.; Alquhayz, H. Fruits and Vegetables Freshness Categorization Using Deep Learning. Comput. Mater. Contin. 2022, 71, 5083–5098. [Google Scholar] [CrossRef]
- Moon, E.J.; Kim, Y.; Xu, Y.; Na, Y.; Giaccia, A.J.; Lee, J.H. Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer. Sensors 2020, 20, 4299. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Yasunaga, E.; Nagle, M.; Yuge, K.; Sardsud, V.; Spreer, W.; Müller, J. Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. J. Food Eng. 2014, 131, 7–17. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Marra, F.P.; Caruso, T. High-Resolution UAV Imagery for Field Olive (Olea europaea L.) Phenotyping. Horticulturae 2021, 7, 258. [Google Scholar] [CrossRef]
- Kamiwaki, Y.; Fukuda, S. Modeling the Relationship between Root Color, Root Shape, and Weight of Radish using Machine Learning. Jxiv Preprint. [CrossRef]
- Victorino, G.; Poblete-Echeverría, C.; Lopes, C.M. A Multicultivar Approach for Grape Bunch Weight Estimation Using Image Analysis. Horticulturae 2022, 8, 233. [Google Scholar] [CrossRef]
- Amaral, M.H.; Walsh, K.B. In-Orchard Sizing of Mango Fruit: 2. Forward Estimation of Size at Harvest. Horticulturae 2023, 9, 54. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Chen, T.; Zhao, S.; Zhang, J.; Zhang, X. Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: A review. Trends Food Sci. Technol. 2021, 110, 483–492. [Google Scholar] [CrossRef]
- Chopin, J.; Laga, H.; Miklavcic, S.J. A new method for accurate, high-throughput volume estimation from three 2D projective images. Int. J. Food Prop. 2017, 20, 2344–2357. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Chao, Q.; Mecha, P.; Korohou, T.; Yi, Z.; Nyalala, S.; Jiayu, Z.; Chao, L.; Kunjie, C. Weight and volume estimation of single and occluded tomatoes using machine vision. Int. J. Food Prop. 2021, 24, 818–832. [Google Scholar] [CrossRef]
- Huynh, T.; Tran, L.; Dao, S. Real-Time Size and Mass Estimation of Slender Axi-Symmetric Fruit/Vegetable Using a Single Top View Image. Sensors 2020, 20, 5406. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images. Sensors 2018, 18, 3576. [Google Scholar] [CrossRef]
- Itakura, K.; Kamakura, I.; Hosoi, F. Three-Dimensional Monitoring of Plant Structural Parameters and Chlorophyll Distribution. Sensors 2019, 19, 413. [Google Scholar] [CrossRef] [PubMed]
- Tzutalin, D. LabelImg. Available online: https://github.com/tzutalin/labelImg (accessed on 24 January 2024).
- Motonaga, Y.; Kameoka, T.; Hashimoto, A. Constructing Color Image Processing System for Managing the Surface Color of Agricultural Products. J. Jpn. Soc. Agric. Mach. 1997, 59, 13–22. [Google Scholar] [CrossRef]
- Cokelaer, T. Colormap. Available online: https://github.com/cokelaer/colormap (accessed on 24 January 2024).
- Kuhl, F.P.; Giardina, C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 1982, 18, 236–258. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2021, 12, 2825–2830. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Con-ference on Neural Information Processing Systems (NIPS’17), New York, NY, USA, 4–9 December 2017; pp. 4768–4777. Available online: https://dl.acm.org/doi/10.5555/3295222.3295230 (accessed on 27 December 2023).
- Hahn, F.; Sanchez, S. Carrot Volume Evaluation using Imaging Algorithms. J. Agric. Eng. Res. 2000, 75, 243–249. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Nyalala, L.; Makange, N.; Chao, Q.; Chao, L.; Yousaf, K.; Chen, K. Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. J. Food Eng. 2019, 263, 288–298. [Google Scholar] [CrossRef]
- Jadhav, T.; Singh, K.; Abhyankar, A. Volumetric estimation using 3D reconstruction method for grading of fruits. Multimedia Tools Appl. 2019, 78, 1613–1634. [Google Scholar] [CrossRef]
- Omid, M.; Khojastehnazhand, M.; Tabatabaeefar, A. Estimating volume and mass of citrus fruits by image processing technique. J. Food Eng. 2010, 100, 315–321. [Google Scholar] [CrossRef]
- Gálvez, L.; Palmero, D. Incidence and Etiology of Postharvest Fungal Diseases Associated with Bulb Rot in Garlic (Alllium sativum) in Spain. Foods 2021, 10, 1063. [Google Scholar] [CrossRef] [PubMed]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
Models | Explanatory Variables | |||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Irrigation | RGB | HSL | HSV | EFD | Volume_bbox | Volume_convex hull | |
RGB | * | * | * | |||||
RGB+EFD | * | * | * | * | ||||
RGB+3D_bbox | * | * | * | * | ||||
RGB+3D_convex hull | * | * | * | * | ||||
HSL | * | * | * | |||||
HSL+EFD | * | * | * | * | ||||
HSL+3D_bbox | * | * | * | * | ||||
HSL+3D_convex hull | * | * | * | * | ||||
HSV | * | * | * | |||||
HSV+EFD | * | * | * | * | ||||
HSV+3D_bbox | * | * | * | * | ||||
HSV+3D_convex hull | * | * | * | * | ||||
EFD | * | * | * | |||||
EFD+3D_bbox | * | * | * | * | ||||
EFD+3D_convex hull | * | * | * | * |
Model Name | COR | NSE | RMSE |
---|---|---|---|
RGB | 0.829 ± 0.0580 | 0.648 ± 0.126 | 1.62 ± 0.321 |
RGB+EFD | 0.905 ± 0.0582 | 0.793 ± 0.109 | 1.21 ± 0.261 |
RGB+3D_bbox | 0.961 ± 0.0274 | 0.915 ± 0.0557 | 0.765 ± 0.217 |
RGB+3D_convex hull | 0.980 ± 0.0109 | 0.955 ± 0.0234 | 0.571 ± 0.147 |
HSL | 0.856 ± 0.0582 | 0.701 ± 0.113 | 1.49 ± 0.325 |
HSL+EFD | 0.908 ± 0.0574 | 0.798 ± 0.106 | 1.20 ± 0.268 |
HSL+3D_bbox | 0.970 ± 0.0218 | 0.935 ± 0.0449 | 0.671 ± 0.201 |
HSL+3D_convex hull | 0.984 ± 0.00867 | 0.963 ± 0.0196 | 0.519 ± 0.140 |
HSV | 0.870 ± 0.0571 | 0.726 ± 0.112 | 1.42 ± 0.318 |
HSV+EFD | 0.912 ± 0.0561 | 0.806 ± 0.103 | 1.18 ± 0.262 |
HSV+3D_bbox | 0.972 ± 0.0213 | 0.939 ± 0.0437 | 0.645 ± 0.198 |
HSV+3D_convex hull | 0.984 ± 0.00846 | 0.964 ± 0.0188 | 0.509 ± 0.137 |
EFD | 0.887 ± 0.0679 | 0.761 ± 0.138 | 1.30 ± 0.297 |
EFD+3D_bbox | 0.963 ± 0.0235 | 0.918 ± 0.0492 | 0.760 ± 0.218 |
EFD+3D_convex hull | 0.980 ± 0.00966 | 0.953 ± 0.0233 | 0.585 ± 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiwaki, Y.; Fukuda, S. A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae 2024, 10, 142. https://doi.org/10.3390/horticulturae10020142
Kamiwaki Y, Fukuda S. A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae. 2024; 10(2):142. https://doi.org/10.3390/horticulturae10020142
Chicago/Turabian StyleKamiwaki, Yuto, and Shinji Fukuda. 2024. "A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish" Horticulturae 10, no. 2: 142. https://doi.org/10.3390/horticulturae10020142
APA StyleKamiwaki, Y., & Fukuda, S. (2024). A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae, 10(2), 142. https://doi.org/10.3390/horticulturae10020142