Changes in Secondary Metabolite Production in Response to Salt Stress in Alcea rosea L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Field Experiments
2.3. Assessment of Total Phenolic Content (TPC)
High Performance Liquid Chromatography (HPLC) of Phenolic Compounds
2.4. Assessment of Total Flavonoid Content
2.5. Diphenyl-2-Picrylhydrazyl (DPPH) Radical Scavenging Assay
2.6. Mucilage Content
2.7. Petal Yield
2.8. Statistical Analysis
3. Results
3.1. Total Phenolic Content
3.2. Total Flavonoid Content (TFC)
3.3. Diphenyl-2-Picrylhydrazyl (DPPH) Radical Scavenging Assay
3.4. Mucilage Content
3.5. Petal Yield
3.6. Effect of Salinity Stress Levels on Secondary Metabolites
3.7. Correlation Analysis
3.8. Principle Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashraf, M. Some Important Physiological Selection Criteria for Salt Tolerance in Plants. Flora 2004, 199, 361–376. [Google Scholar] [CrossRef]
- Tavakoli, A.R.; Liaghat, A.; Oweis, T. The Role of Limited Irrigation and Advanced Management on Improving Water Productivity of Rainfed Wheat at Semi-Cold Region of Upper Karkheh River Basin, Iran. Int. J. Agric. Crop Sci. 2012, 4, 939–948. [Google Scholar]
- Yang, Y.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling Salt Stress Signaling in Plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Said-Al Ahl, H.A.H.; Omer, E.A. Medicinal and Aromatic Plants Production under Salt Stress. A Review. Herba Pol. 2011, 57, 72–87. [Google Scholar]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance: Chapter 13. In Agricultural Salinity. Assessment and Management, 2nd ed.; ASCE: Reston, VI, USA, 2012; pp. 405–459. [Google Scholar]
- Mohammadi-Nejad, G.; Nikbakht, E.; Yousefi, K.; Farahbakhsh, H. Evaluation Salinity Tolerance of Safflower (Carthamus tinctorius L.) Genotypes at Different Vegetative Growth Stages. Int. J. Plant Prod. 2010, 1, 105–111. [Google Scholar]
- Ashrafi, E.; Razmjoo, J.; Zahedi, M. Effect of Salt Stress on Growth and Ion Accumulation of Alfalfa (Medicago sativa L.) Cultivars. J. Plant Nutr. 2018, 41, 818–831. [Google Scholar] [CrossRef]
- Oueslati, S.; Karray-Bouraoui, N.; Attia, H.; Rabhi, M.; Ksouri, R.; Lachaal, M. Physiological and Antioxidant Responses of Mentha pulegium (Pennyroyal) to Salt Stress. Acta Physiol. Plant. 2010, 32, 289–296. [Google Scholar] [CrossRef]
- Martinez, V.; Mestre, T.C.; Rubio, F.; Girones-Vilaplana, A.; Moreno, D.A.; Mittler, R.; Rivero, R.M. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress. Front. Plant Sci. 2016, 7, 838. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential Oil Composition, Total Phenolic and Flavonoid Contents, and Antioxidant Activity of Thymus Species Collected from Different Regions of Iran. Food Chem. 2016, 220, 153–161. [Google Scholar] [CrossRef]
- Kleinwächter, M.; Selmar, D. New Insights Explain That Drought Stress Enhances the Quality of Spice and Medicinal Plants: Potential Applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Kadioglu, A.; Turgut, R. Water Stress Effects on the Content of Low Molecular Weight Carbohydrates and Phenolic Acids in Ctenanthe setosa (Rosc.) Eichler. Can. J. Plant Sci. 2000, 80, 373–378. [Google Scholar] [CrossRef]
- Oraee, A.; Shoor, M.; Oraee, T.; Tehranifar, A.; Nema, H. Organic Amendments Role in Reducing Drought Stress in Alcea rosea L. Adv. Hortic. Sci. 2022, 36, 201–214. [Google Scholar] [CrossRef]
- Ardestani, A.; Yazdanparast, R. Antioxidant and Free Radical Scavenging Potential of Achillea santolina Extracts. Food Chem. 2001, 9, 35–46. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and Multivariate Analyses to Investigate Variations in the Polyphenolic Compounds as Well as Antioxidant and Antiglycative Activities of Some Lamiaceae Species Native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. Sci. World J. 2017, 3, 5873648. [Google Scholar] [CrossRef]
- Sharma, P.K.; Koul, A.K. Mucilage in Seeds of Plantago ovata and Its Wild Allies. J. Ethnopharmacol. 1986, 17, 289–295. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1999, 76, 270–276. [Google Scholar]
- Valifard, M.; Mohsenzadeh, S.; Kholdebarin, B.; Rowshan, V. Effects of Salt Stress on Volatile Compounds, Total Phenolic Content and Antioxidant Activities of Salvia mirzayanii. S. Afr. J. Bot. 2014, 93, 92–97. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, K.J.; Kim, B.K.; Jeong, J.W.; Kim, H.J. Effect of Salinity Stress on Phenolic Compounds and Carotenoids in Buckwheat (Fagopyrum esculentum M.) Sprout. Food Chem. 2012, 135, 1065–1070. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of Salinity Stress on the Physiological Characteristics, Phenolic Compounds and Antioxidant Activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Minh, L.T.; Khang, D.T.; Thu Ha, P.T.; Tuyen, P.T.; Minh, T.N.; Van Quan, N.; Xuan, T.D. Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.). Int. Lett. Nat. Sci. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Iwaniuk, P.; Kaczyński, P.; Pietkun, M.; Łozowicka, B. Evaluation of Titanium and Silicon Role in Mitigation of Fungicides Toxicity in Wheat Expressed at the Level of Biochemical and Antioxidant Profile. Chemosphere 2022, 308, 136284. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic Acids Composition, Total Polyphenols Content and Antioxidant Activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A Two-Years Evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chhabra, M.; Singh, S.K.; Parmar, R.; Kapila, R.K. Genetic Diversity and Population Structure of Critically Endangered Dactylorhiza hatagirea (D. Don) Soo from North-Western Himalayas and Implications for Conservation. Sci. Rep. 2022, 12, 11699. [Google Scholar] [CrossRef] [PubMed]
- Linić, I.; Šamec, D.; Grúz, J.; Vujčić Bok, V.; Strnad, M.; Salopek-Sondi, B. Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress Is Species-Specific among Brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef]
- Ahmad, F.; Kamal, A.; Singh, A.; Ashfaque, F.; Alamri, S.; Siddiqui, M.H. Salicylic Acid Modulates Antioxidant System, Defense Metabolites, and Expression of Salt Transporter Genes in Pisum sativum Under Salinity Stress. J. Plant Growth Regul. 2022, 41, 1905–1918. [Google Scholar] [CrossRef]
- Ates, M.T.; Yildirim, A.B.; Turker, A.U. Enhancement of Alkaloid Content (Galanthamine and Lycorine) and Antioxidant Activities (Enzymatic and Non-Enzymatic) Unders Salt Stress in Summer Snowflake (Leucojum aestivum L.). S. Afr. J. Bot. 2021, 140, 182–188. [Google Scholar] [CrossRef]
- Gohari, G.; Panahirad, S.; Sepehri, N.; Akbari, A.; Zahedi, S.M.; Jafari, H.; Dadpour, M.R.; Fotopoulos, V. Enhanced Tolerance to Salinity Stress in Grapevine Plants through Application of Carbon Quantum Dots Functionalized by Proline. Environ. Sci. Pollut. Res. 2021, 28, 42877–42890. [Google Scholar] [CrossRef]
- Gengmao, Z.; Yu, H.; Xing, S.; Shihui, L.; Quanmei, S.; Changhai, W. Salinity Stress Increases Secondary Metabolites and Enzyme Activity in Safflower. Ind. Crops Prod. 2015, 64, 175–181. [Google Scholar] [CrossRef]
- Shahverdi, M.A.; Omidi, H.; Tabatabaei, S.J. Stevia (Stevia rebaudiana Bertoni) Responses to NaCl Stress: Growth, Photosynthetic Pigments, Diterpene Glycosides and Ion Content in Root and Shoot. J. Saudi Soc. Agric. Sci. 2019, 18, 355–360. [Google Scholar] [CrossRef]
- Santander, C.; Vidal, G.; Ruiz, A.; Vidal, C.; Cornejo, P. Salinity Eustress Increases the Biosynthesis and Accumulation of Phenolic Compounds That Improve the Functional and Antioxidant Quality of Red Lettuce. Agronomy 2022, 12, 598. [Google Scholar] [CrossRef]
- Ahmadi, J.; Pour-Aboughadareh, A.; Ourang, S.F.; Mehrabi, A.A. Screening Wild Progenitors of Wheat for Salinity Stress at Early Stages of Plant Growth: Insight into Potential Sources of Variability for Salinity Adaptation in Wheat. Crop Pasture Sci. 2018, 69, 649–658. [Google Scholar] [CrossRef]
- Edmond Ghanem, M.; Han, R.M.; Classen, B.; Quetin-Leclerq, J.; Mahy, G.; Ruan, C.J.; Qin, P.; Pérez-Alfocea, F.; Lutts, S. Mucilage and Polysaccharides in the Halophyte Plant Species Kosteletzkya virginica: Localization and Composition in Relation to Salt Stress. J. Plant Physiol. 2010, 167, 382–392. [Google Scholar] [CrossRef]
- Golkar, P.; Amooshahi, F.; Arzani, A. The Effects of Salt Stress on Physio-Biochemical Traits, Total Phenolic and Mucilage Content of Plantago ovata Forsk under in Vitro Conditions. J. Appl. Bot. Food Qual. 2017, 90, 224–231. [Google Scholar] [CrossRef]
- Kiani, R.; Arzani, A.; Maibody, S.A.M.M. Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops cylindrica and Their Amphidiploids. Front. Plant Sci. 2021, 12, 646221. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.R.B.; Hamid, A.; Islam, M.S. Drought Stress Effects on Water Relations of Wheat. Bot. Bull. Acad. Sin. 2000, 41, 35–39. [Google Scholar]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Ball, R.A.; Purcell, L.C.; Vories, E.D. Short-Season Soybean Yield Compensation in Response to Population and Water Regime. Crop Sci. 2000, 40, 1070–1078. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of Salinity and Drought Stresses on Growth Parameters and Essential Oil Content of Matricaria chamomila. Int. J. Agric. Biol. 2008, 10, 95–107. [Google Scholar]
- Sodani, R.; Mundiyara, R. Salinity Stress: Its Impact on Plant Growth and Development. Agric. Food E-Newsl. 2021, 3, 535–537. [Google Scholar]
- Ashraf, M.; Orooj, A. Salt Stress Effects on Growth, Ion Accumulation and Seed Oil Concentration in an Arid Zone Traditional Medicinal Plant Ajwain (Trachyspermum ammi [L.] Sprague). J. Arid Environ. 2006, 64, 209–220. [Google Scholar] [CrossRef]
- Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R.; Jaleel, C.A. Triadimefon Induced Salt Stress Tolerance in Withania Somnifera and Its Relationship to Antioxidant Defense System. S. Afr. J. Bot. 2008, 74, 126–132. [Google Scholar]
- Ghanavati, M.; Sengul, S. Salinity Effect on the Germination and Some Chemical Components of Matricaria Spp. Asian J. Chem. 2010, 22, 859–866. [Google Scholar]
- Hejazi Mehrizi, M.; Shariatmadari, H.; Khoshgoftarmanesh, A.H.; Dehghani, F. Copper Effects on Growth, Lipid Peroxidation, and Total Phenolic Content of Rosemary Leaves under Salinity Stress. J. Agric. Sci. Technol. 2012, 14, 205–212. [Google Scholar]
- Martucci, M.E.P.; De Vos, R.C.H.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a Potential Chemotaxonomical Tool: Application in the Genus Vernonia schreb. PLoS ONE 2014, 9, e93149. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M.; Sheded, M.G. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. Plants 2020, 9, 1626. [Google Scholar] [CrossRef]
Varieties | Scientific Name | Petal Shape | Petal Color | Location Sites | State | Latitude/Longitude | Altitude (amsl) |
---|---|---|---|---|---|---|---|
Isfahan | Alcea roesa L. | Ordinary | Pale orange and red | Isfahan | Isfahan, Iran | 32.6883° N 53.2019° E | 1571 m |
Khafr | Alcea rosea L. | Ordinary | Light pink and white | Khafr | Fars, Iran | 28.6883° N 53.2019° E | 1285 m |
Khomeini Shahr | Alcea rosea L. | Ordinary | Dark pink | Khomeini Shahr | Isfahan, Iran | 32.6883° N 51.5304° E | 1602 m |
Mahallat | Alcea rosea L. | Ordinary | Dark violet | Mahallat | Markazi, Iran | 33.9115° N 50.4525° E | 1721 m |
Mashhad | Alcea rosea L. | Ordinary | Dark purple | Mashhad | Khorasan Razavi, Iran | 36.2972° N 59.6067° E | 1050 m |
Saman | Alcea rosea L. | Ordinary | Pink and purple | Saman | Chahar Mahal Bakhtiyari, Iran | 32.4530° N 50.9103° E | 1966 m |
Shahin Shahr | Alcea rosea L. | Ordinary | Pink and red | Shahin Shahr | Isfahan, Iran | 32.8609° N 51.5533° E | 1595 m |
Shiraz 1 | Alcea rosea L. | Queeny | Black | Shiraz | Fars, Iran | 29.5926° N 52.5836° E | 1519 m |
Shiraz 2 | Alcea rosea L. | Queeny | White | Shiraz | Fars, Iran | 29.5926° N 52.5836° E | 1519 m |
Tabriz | Alcea rosea L. | Ordinary | Pale pink | Tabriz | Azerbaijan, Iran | 38.0792° N 46.2887° E | 1345 m |
Source of Variation | Degree of Freedom | TPC | TFC | DPPH | PM | LM | SM | PY |
---|---|---|---|---|---|---|---|---|
Stress | 2 | 1632.92 ** | 54.55 n.s | 846,066 ** | 445.57 ** | 87.087 ** | 38.5 ** | 1,530,848 ** |
Rep (Stress) | 4 | 28.59 n.s | 8.31 n.s | 14,185 n.s | 4.28 n.s | 2.787 n.s | 0.164 n.s | 3503 n.s |
Variety | 9 | 439.5 ** | 54.54 ** | 1,380,007 ** | 175.35 ** | 37.185 ** | 7.6 ** | 51,972 ** |
Stress × Variety | 18 | 874.65 ** | 20.83 ** | 192,164 ** | 43.89 ** | 11.132 ** | 1.15 ** | 6616 ** |
Variety × Rep (Stress) | 54 | 125.76 n.s | 3.41 n.s | 9400 n.s | 7.7 n.s | 1.682 n.s | 0.479 n.s | 2153 n.s |
Year | 1 | 741.44 ** | 0.228 n.s | 216,596 ** | 176.81 ** | 8.192 * | 5.408 ** | 629,415 ** |
Year × Stress | 2 | 296.66 ** | 2.39 n.s | 39,383 * | 9.16 n.s | 1.058 n.s | 0.354 n.s | 24,415 * |
Year × Variety | 9 | 624.5 ** | 20.50 ** | 7908 n.s | 7.36 n.s | 2.192 n.s | 2.686 ** | 3990 n.s |
Year × Rep | 2 | 9.17 n.s | 0.066 n.s | 6715 n.s | 2.35 n.s | 0.802 n.s | 0.53 n.s | 537 n.s |
Stress × Variety × Year | 18 | 565.15 ** | 9.2 ** | 35,886 ** | 3.53 n.s | 1.575 n.s | 0.897 * | 5864 n.s |
Error | 58 | 95.23 | 4.028 | 10,566 | 9.9 | 1.674 | 0.491 | 4051 |
Cv (%) | 18.42 | 14.2 | 21.47 | 27.65 | 17.72 | 24.33 | 13.29 |
Years | Stress | TPC (mgTAEg−1 DW) | TFC (mgQUEg−1 DW) | DPPH (IC50, mg mL−1) | PM (%) | LM (%) | SM (%) | PY (Kg per ha) |
---|---|---|---|---|---|---|---|---|
2019 | C | 47.82 ± 1.71 c | 13.04 ± 0.64 b | 670.71 ± 36.25 a | 8.67 ± 0.53 d | 6.45 ± 0.299 c | 1.81 ± 0.123 e | 556 ± 21.91 b |
MSS | 49.33 ± 2.73 c | 14.01 ± 0.64 b | 476.66 ± 30.78 c | 9.6 ± 1.048 cd | 6.28 ± 0.514 c | 2.94 ± 0.136 c | 424 ± 13.08 c | |
SSS | 55.65 ± 4.26 b | 15.23 ± 0.59 a | 392.7 ± 22.42 de | 13.08 ± 0.686 b | 8.53 ± 0.289 a | 3.36 ± 0.159 b | 227 ± 9.84 e | |
2020 | C | 54.74 ± 2.56 b | 13.57 ± 0.6 b | 542.2 ± 26.25 b | 10.09 ± 0.479 cd | 7.18 ± 0.313 b | 2.21 ± 0.167 d | 718 ± 15.44 a |
MSS | 48.26 ± 2.74 c | 13.82 ± 0.39 b | 438.94 ± 27.46 cd | 11.21 ± 0.712 c | 6.54 ± 0.341 bc | 3.12 ± 0.208 bc | 536 ± 13.41 b | |
SSS | 65.97 ± 3.06 a | 15.11 ± 0.42 a | 350.78 ± 63.3 c | 15.96 ± 1.18 a | 8.81 ± 0.496 a | 3.82 ± 0.298 a | 359 ± 10.95 d |
Varieties | Stress | TPC (mgTAE g−1 DW) | TFC (mgQUEg−1 DW) | DPPH (IC50, mg mL−1) | PM (%) | LM (%) | SM (%) | PY (Kg per ha) |
---|---|---|---|---|---|---|---|---|
C | 49.26 ± 2.9 e–k | 10.6 ± 1.62 k | 620.76 ± 66.37 de | 8.73 ± 1.036 j–o | 7.06 ± 0.443 f–l | 1.8 ± 0.396 k–m | 748 ± 33.62 a | |
Isfahan | MSS | 48.37 ± 4.35 e–k | 14 ± 1.19 f–h | 475.18 ± 74.54 f–h | 13.26 ± 0.727 e–h | 7.06 ± 0.659 f–l | 3.46 ± 0.266 d–f | 515 ± 75.57 h–j |
SSS | 40.97 ± 2.58 jk | 15.3 ± 0.73 b–f | 475.28 ± 116.7 f–h | 14.2 ± 0.608 d–f | 8.26 ± 0.52 d–g | 3.4 ± 0.235 d–g | 330 ± 24.6 op | |
C | 52.79 ± 4.68 c–j | 15.08 ± 0.67 c–g | 777.63 ± 26.96 bc | 13.53 ± 1.928 e–g | 9.8 ± 0.7 bc | 2.86 ± 0.656 g–k | 485 ± 17.89 i–k | |
Khafr | MSS | 50.89 ± 4.44 e–k | 14.75 ± 0.73 c–h | 593.47 ± 96.5 e | 11.06 ± 0.94 f–k | 7.53 ± 0.59 d–j | 3.53 ± 0.348 d–f | 431 ± 20.54 lm |
SSS | 55.95 ± 8.51 c–h | 16.38 ± 0.75 a–d | 314.18 ± 25.66 kl | 15.53 ± 1.458 c–e | 12.33 ± 0.789 a | 5.4 ± 0.626 a | 268 ± 20.06 q | |
C | 41.92 ± 3.66 jk | 7.61 ± 0.55 l | 400.62 ± 42.6 h–k | 18.06 ± 1.579 bc | 10.66 ± 0.552 b | 2.2 ± 0.553 h–l | 585 ± 24.05 c–f | |
Khomeini Shahr | MSS | 27.61 ± 3.63 l | 11.74 ± 0.44 j–i | 331.04 ± 27.33 j–l | 10.46 ± 1.019 g–k | 5.73 ± 0.669 k–n | 3.66 ± 0.247 de | 473 ± 19.01 j–l |
SSS | 64 ± 12.1 b–d | 11.59 ± 1.29 jk | 333.92 ± 36.59 jk | 23.06 ± 1.252 a | 8.8 ± 0.768 c–e | 4.73 ± 0.458 ab | 318 ± 16.09 o–q | |
C | 60.77 ± 4.48 b–e | 14.41 ± 1.26 d–g | 852.5 ± 45.63 b | 10.53 ± 0.994 g–k | 7.13 ± 0.287 f–k | 1.86 ± 0.281 k–m | 738 ± 26.33 ab | |
Mahallat | MSS | 43.16 ± 5.71 h–k | 13.72 ± 1.52 f–i | 395.19 ± 45.63 h–k | 12.8 ± 2.194 e–i | 6.8 ± 0.421 g–k | 2.93 ± 0.247 e–i | 573 ± 21.51 d–g |
SSS | 79.78 ± 1.6 a | 18.23 ± 1.3 a | 356.08 ± 30.76 il | 13.93 ± 0.878 d–f | 11.2 ± 0.52 ab | 3.4 ± 0.24 d–g | 371 ± 28.67 no | |
C | 44.97 ± 3.41 g–k | 13.5 ± 2.27 b–f | 526.53 ± 75.65 e–g | 7.4 ± 1.165 k–p | 6.2 ± 0.616 j–m | 2.06 ± 0.305 j–m | 609 ± 17.49 c–e | |
Mashhad | MSS | 57.92 ± 3.87 c–f | 12.88 ± 1.13 h–j | 313.98 ± 60.86 kl | 10.06 ± 0.817 h–m | 6.4 ± 0.405 i–m | 3.66 ± 0.443 de | 437 ± 35.81 k–m |
SSS | 72.49 ± 4.16 ab | 17.39 ± 0.32 ab | 308.45 ± 186.69 kl | 20.86 ± 0.87 ab | 8 ± 0.285 d–h | 3.86 ± 0.321 cd | 296 ± 28.84 pq | |
C | 38.78 ± 3.48 kl | 10.27 ± 1.28 k | 1068.57 ± 28.17 a | 5.53 ± 0.855 op | 5.26 ± 0.54 m–o | 2.33 ± 0.171 h–k | 706 ± 32.33 ab | |
Saman | MSS | 47.47 ± 10.15 f–k | 10.37 ± 0.57 k | 563.68 ± 64.16 ef | 9.93 ± 0.849 i–m | 6.53 ± 0.636 h–m | 3 ± 0.305 e–h | 537 ± 20.68 f–i |
SSS | 79.12 ± 2.94 a | 16.62 ± 0.49 a–c | 305.81 ± 7.33 kl | 11.6 ± 2.731 f–j | 7.86 ± 0.722 d–i | 2.73 ± 0.352 f–j | 344 ± 30.2 op | |
C | 48.90 ± 9.72 e–k | 14.16 ± 0.93 e–h | 605.6 ± 32.24 e | 10.2 ± 1.348 h–m | 7.53 ± 0.447 d–j | 2.2 ± 0.261 h–l | 691 ± 46.13 b | |
Shahin Shahr | MSS | 56.97 ± 5.7 c–g | 16.39 ± 0.77 a–d | 428.42 ± 18.6 g–j | 13.93 ± 0.961 d–f | 7.26 ± 0.268 f–j | 3.4 ± 0.136 d–g | 529 ± 67.85 g–i |
SSS | 52.18 ± 13.01 d–j | 15.55 ± 1.89 b–f | 269.69 ± 23.61 l | 16.8 ± 0.841 cd | 8.86 ± 0.381 cd | 4.53 ± 0.395 bc | 339 ± 40.75 op | |
C | 72.49 ± 8.05 i–k | 17.39 ± 0.87 ab | 308.45 ± 68.09 kl | 6.6 ± 0.796 n–p | 4.06 ± 0.431 o | 1.4 ± 0.168 l–m | 559 ± 24.17 e–h | |
Shiraz 1 | MSS | 55.33 ± 2.1 c–i | 16.23 ± 0.99 a–e | 393.74 ± 32 h–k | 7.13 ± 1.075 m–p | 4.26 ± 0.546 no | 2.2 ± 0.368 h–l | 414 ± 35.89 mn |
SSS | 42.72 ± 4.98 ab | 13.65 ± 1.08 g–i | 717.35 ± 133.86 cd | 10.13 ± 0.998 h–m | 5.6 ± 0.836 l–n | 2.2 ± 0.348 h–l | 297 ± 33.04 pq | |
C | 42.96 ± 4.97 i–k | 12.97 ± 0.45 g–j | 563.02 ± 28.53 ef | 7.86 ± 1.467 k–p | 6.2 ± 0.386 k–n | 1.33 ± 0.245 m | 620 ± 15.47 cd | |
Shiraz 2 | MSS | 48.62 ± 7.85 e–k | 13.83 ± 0.45 f–i | 446.21 ± 95.96 g–i | 6.4 ± 1.128 n–p | 7.26 ± 0.405 f–j | 3.4 ± 0.422 d–g | 455 ± 28.04 k–m |
SSS | 65.32 ± 4.1 bc | 15.62 ± 0.69 b–f | 273.37 ± 26.91 l | 9.46 ± 0.413 j–n | 8.46 ± 0.421 c–f | 2.2 ± 0.305 h–l | 312 ± 25.74 pq | |
C | 59.97 ± 2.96 b–f | 15.01 ± 1.36 k | 341.01 ± 61 i–l | 5.2 ± 0.516 p | 4.26 ± 0.304 no | 2.06 ± 0.19 j–m | 631 ± 43.39 c | |
Tabriz | MSS | 51.61 ± 3.56 d–k | 15.2 ± 1.03 c–f | 637.06 ± 41 de | 9.0 ± 1.375 j–n | 8.2 ± 0.502 d–g | 2.6 ± 0.225 g–k | 437 ± 27.62 k–m |
SSS | 51.61 ± 1.46 d–k | 15.2 ± 1.28 c–f | 637.06 ± 124.5 de | 9.6 ± 0.855 i–n | 7.33 ± 0.499 e–j | 3.46 ± 0.197 d–f | 303 ± 19.02 pq |
Varieties | Year | TPC (mgTAEg−1 DW) | TFC (mgQUEg−1 DW) | DPPH (IC50, mg mL−1) | PM (%) | LM (%) | SM (%) | PY (kg per ha) |
---|---|---|---|---|---|---|---|---|
Isfahan | 2019 | 45.28 ± 2.23 e–g | 13.81 ± 1.59 d–f | 542.43 ± 73.22 b–d | 10.31 ± 2.51 f–i | 7.46 ± 1.685 d–g | 2.26 ± 0.938 f–h | 468 ± 23.2 c–f |
2020 | 47.12 ± 2.23 d–f | 12.79 ± 1.07 ef | 505.05 ± 78.42 c–e | 13.82 ± 4.035 b–d | 7.46 ± 0.721 d–g | 3.51 ± 1.229 bc | 594 ± 36.54 a | |
Khafr | 2019 | 43.94 ± 6.21 fg | 16.02 ± 6.21 a–c | 618.55 ± 15.3 b | 12.13 ± 2.163 c–f | 9.24 ± 1.964 b | 3.86 ± 1.918 ab | 344 ± 15.69 hi |
2020 | 62.47 ± 3.61 a–c | 14.79 ± 3.61 cd | 504.97 ± 74.92 c–e | 14.62 ± 4.079 bc | 10.53 ± 2.749 a | 4 ± 1.166 ab | 445 ± 14.76 e–g | |
Khomeini Shahr | 2019 | 36.67 ± 7.96 g | 12.03 ± 7.96 f | 401.11 ± 31.22 f–h | 15.73 ± 5.106 ab | 8.13 ± 2.473 b–e | 2.8 ± 0.774 d–f | 399 ± 15.65 gh |
2020 | 52.35 ± 2.64 d–f | 8.59 ± 2.64 g | 309.27 ± 26.24 h | 18.66 ± 8.074 a | 8.6 ± 2.856 b–d | 4.26 ± 0.708 a | 518 ± 23.63 bc | |
Mahallat | 2019 | 51.80 ± 5.25 d–f | 13.9 ± 5.25 d–f | 538.42 ± 21.26 b–d | 11.37 ± 2.06 e–h | 7.73 ± 1.979 d–f | 2.71 ± 0.742 ef | 515 ± 20.88 c |
2020 | 70.66 ± 3.11 a | 17.01 ± 3.11 a | 530.076 ± 22.32 b–e | 13.46 ± 3.538 b–e | 9.02 ± 2.7 bc | 2.75 ± 0.988 ef | 607 ± 25.01 a | |
Mashhad | 2019 | 53.20 ± 3.22 de | 14.81 ± 3.22 cd | 405.41 ± 41.36 f–h | 11.77 ± 7.091 c–g | 6.26 ± 0.721 gh | 2.8 ± 1.058 d–f | 399 ± 23.67 gh |
2020 | 49.31 ± 2.35 d–f | 12.79 ± 2.35 ef | 379.91 ± 152.3 gh | 13.77 ± 7.73 b–d | 7.4 ± 1.876 d–g | 3.42 ± 1 b–d | 484 ± 17.27 c–e | |
Saman | 2019 | 55.64 ± 6.28 b–d | 12.24 ± 6.28 ef | 718.15 ± 25.25 a | 7.55 ± 2.88 i–k | 6.66 ± 1.697 f–h | 2.97 ± 0.918 d–f | 450 ± 21.27 d–g |
2020 | 54.60 ± 5.03 cd | 12.6 ± 5.03 ef | 573.89 ± 50.99 bc | 10.48 ± 3.59 e–i | 6.4 ± 1.837 gh | 2.4 ± 0.4 e–h | 609 ± 34.45 a | |
Shahin Shahr | 2019 | 52.55 ± 12.49 d–f | 13.92 ± 12.49 d–f | 477.26 ± 58.99 c–f | 12.66 ± 3.768 e–f | 7.91 ± 1.83 c–e | 2.71 ± 1.072 ef | 462 ± 41.47 c–f |
2020 | 52.82 ± 6.43 d–f | 16.82 ± 6.43 ab | 391.88 ± 50.7 f–h | 14.62 ± 3.842 bc | 7.86 ± 1.148 c–f | 4.04 ± 1.148 ab | 578 ± 20.88 ab | |
Shiraz 1 | 2019 | 50.53 ± 3.62 d–f | 14.81 ± 3.62 cd | 502.5 ± 70.83 c–e | 7.46 ± 1.876 jk | 5.02 ± 1.662 ij | 2.04 ± 0.733 gh | 337 ± 27.2 i |
2020 | 63.16 ± 5.25 a–c | 16.71 ± 5.25 ab | 443.86 ± 65.03 e–g | 8.44 ± 2.803 h–k | 4.3 ± 1.091 j | 1.77 ± 0.603 h | 510 ± 21.1 cd | |
Shiraz 2 | 2019 | 55.59 ± 5.15 b–d | 14.41 ± 5.15 c–e | 451.42 ± 23.41 d–g | 8.44 ± 1.702 h–k | 6.22 ± 1.733 hi | 1.91 ± 0.843 gh | 413 ± 22.12 fg |
2020 | 49.01 ± 4.33 d–f | 13.87 ± 4.33 d–f | 391.88 ± 69.77 f–h | 7.37 ± 2.316 jk | 6.4 ± 2.645 gh | 1.91 ± 0.625 gh | 511 ± 12.15 c | |
Tabriz | 2019 | 64.11 ± 2.04 ab | 14.97 ± 1.05 b–d | 478.3 ± 39.95 c–f | 6.93 ± 2.465 k | 6.22 ± 1.97 hi | 2.97 ± 0.827 c–e | 395 ± 28.63 g–i |
2020 | 48.42 ± 3.17 d–f | 15.66 ± 1.09 a–d | 396.55 ± 92.36 f–h | 8.93 ± 2.742 f–j | 6.97 ± 1.767 e–h | 2.44 ± 0.705 e–g | 519 ± 30.77 bc |
Source of Variation | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Vanillic Acid | Ellagic Acid | Luteolin | Rutin |
---|---|---|---|---|---|---|---|---|---|
Stress | 17.75 n.s | 121 ** | 3485 ** | 101 ** | 867 ** | 766 ** | 5087 n.s | 132 ** | 7579 ** |
Rep (Stress) | 7.29 n.s | 4.22 n.s | 43.14 n.s | 9.21 n.s | 2.57 n.s | 14.95 n.s | 1611 n.s | 2.37 n.s | 124 n.s |
Variety | 74.15 ** | 116 ** | 2844 ** | 82.24 ** | 314 ** | 1474 ** | 7497 ** | 65.11 ** | 3989 ** |
Stress × Variety | 56.85 ** | 34.99 ** | 1729 ** | 31.24 ** | 161 ** | 1374 ** | 55,132 ** | 123 ** | 2754 ** |
Erorr | 5.8 | 4.25 | 115 | 5.11 | 10.65 | 20.77 | 1962 | 10.69 | 78.86 |
CV (%) | 14.69 | 17.09 | 23.5 | 18.85 | 17.02 | 16.89 | 12.72 | 21.11 | 16.76 |
Varieties | Stress | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Vanillic Acid | Ellagic Acid | Luteolin | Rutin |
---|---|---|---|---|---|---|---|---|---|---|
(mg 100 g−1 DW) | ||||||||||
C | 11.34 ± 1 k–n | 6 ± 0.17 l–o | 30.98 ± 1.4 e–i | 10.92 ± 0.87 e–l | 17.12 ± 0.92 f–k | 15.94 ± 0.13 f–i | 337.4 ± 7.7 d–g | 8.26 ± 0.28 j–l | 18.1 ± 0.24 no | |
Isfahan | MSS | 18.83 ± 1.49 d–g | 8.94 ± 0.6 i–m | 45.46 ± 2.08 de | 26.62 ± 1.43 a | 22.5 ± 0.56 d–f | 37.58 ± 0.14 c | 477.4 ± 2.5 c | 8.18 ± 0.59 c–g | 166.4 ± 1.8 b |
SSS | 17.84 ± 0.19 e–i | 10.44 ± 0.79 g–j | 47.4 ± 2.1 d | 20.44 ± 0.64 b | 16.56 ± 0.26 f–l | 21.64 ± 1.04 d–i | 479.4 ± 13.49 c | 11.84 ± 0.17 g–k | 118.82 ± 7.62 c | |
C | 22.59 ± 0.6 b–e | 13.06 ± 1.19 e–i | 110.18 ± 7.8 b | 12.8 ± 0.9 e–j | 43.04 ± 0.65 bc | 49.36 ± 5.22 b | 228.2 ± 13.2 j–l | 31 ± 3.35 a | 24.74 ± 0.84 l–o | |
Khafr | MSS | 18.43 ± 1.05 d–h | 18.74 ± 1.39 b–d | 68.68 ± 1.56 c | 8.98 ± 0.41 g–m | 20.86 ± 1.27 d–g | 22.44 ± 0.005 d–h | 273.2 ± 3.9 f–j | 14.68 ± 0.45 d–j | 64.06 ± 2.35 ef |
SSS | 16.52 ± 0.95 f–j | 13.1 ± 0.15 e–i | 29.06 ± 1.19 f–j | 10.16 ± 0.24 f–m | 9.14 ± 0.31 m | 20.38 ± 0.58 d–i | 159.4 ± 15.8 k–m | 9.76 ± 0.14 i–l | 25.42 ± 3.4 g–k | |
C | 14.05 ± 0.79 g–l | 3.86 ± 0.18 m–o | 25.46 ± 0.45 f–j | 8.98 ± 1.23 g–m | 24.42 ± 1.57 de | 15.48 ± 0.19 gi | 528.6 ± 16.7 bc | 20.06 ± 0.33 cd | 51.56 ± 0.4 h–l | |
Khomeini Shahr | MSS | 16.13 ± 0.19 g–k | 8.04 ± 0.47 j–o | 26.76 ± 1.27 f–j | 5.82 ± 0.9 c–e | 12.32 ± 1.08 i–m | 18.1 ± 0.95 d–i | 375.8 ± 7.42 d | 19.06 ± 1.03 c–f | 17.72 ± 1.8 no |
SSS | 16.41 ± 0.58 f–j | 5.1 ± 0.33 o | 38.92 ± 0.39 d–f | 18.77 ± 1.5 b–d | 14.24 ± 1.65 g–m | 23.46 ± 3.13 d–g | 244.8 ± 11.41 h–k | 9.8 ± 0.45 d–i | 19.58 ± 0.6 m–o | |
C | 14.12 ± 0.46 g–l | 5.71 ± 0.28 m–o | 16.86 ± 1.1 j–i | 6.28 ± 0.16 l–n | 18.7 ± 0.52 f–i | 14.04 ± 0.58 g–i | 199.2 ± 7.16 j–k | 10.34 ± 1.06 h–l | 48.72 ± 4.1 f–j | |
Mahallat | MSS | 16.21 ± 0.2 g–k | 13.85 ± 0.19 e–h | 25.68 ± 0.39 g–j | 11.14 ± 1.26 e–k | 38.64 ± 0.75 c | 13.86 ± 0.42 hi | 481 ± 5.43 c | 18.76 ± 0.75 c–f | 42.66 ± 1.7 g–l |
SSS | 30.92 ± 1.45 a | 13.85 ± 0.62 e–h | 22.44 ± 0.1 g–i | 14.22 ± 0.43 d–f | 11.24 ± 0.08 k–m | 18.8 ± 0.62 d–i | 357 ± 0.19 d–f | 4.28 ± 0.83 l | 40.36 ± 1.3 h–l | |
C | 8.28 ± 0.26 mn | 12 ± 1.29 f–j | 30.64 ± 4.14 e–i | 8.38 ± 0.89 i–n | 19.16 ± 1.34 f–h | 12.24 ± 0.23 i | 320.4 ± 3.23 d–i | 27.48 ± 1.5 ab | 59.48 ± 4.41 f–i | |
Mashhad | MSS | 7.66 ± 0.8 n | 9.08 ± 0.55 i–m | 19.34 ± 1.57 h–j | 5.82 ± 0.64 mn | 12.08 ± 0.21 i–m | 14.82 ± 1.03 g–i | 270 ± 4.53 f–j | 13.8 ± 2.2 d–j | 32.14 ± 2.22 j–o |
SSS | 11.91 ± 0.47 j–n | 4.54 ± 0.57 m–o | 15.76 ± 0.89 j | 7.36 ± 0.07 k–n | 8.28 ± 0.03 m | 14.12 ± 0.31 g–i | 258.8 ± 7.43 g–j | 9.8 ± 0.19 i–l | 30.94 ± 0.9 j–o | |
C | 14.59 ± 0.55 g–l | 6.92 ± 0.46 k–o | 51.48 ± 5.14 d | 15.22 ± 0.41 c–e | 51.04 ± 2.5 a | 17.5 ± 0.35 e–i | 341.4 ± 15.12 d–g | 19.22 ± 0.94 c–f | 39.1 ± 4.14 g–k | |
Saman | MSS | 12.99 ± 0.16 h–l | 17.28 ± 0.46 b–e | 115.48 ± 3.94 b | 18.44 ± 1.16 b–d | 46.24 ± 1.68 ab | 14.32 ± 1.11 g–i | 579.2 ± 9.9 b | 18.16 ± 1.53 c–g | 196.8 ± 8.51 a |
SSS | 10.35 ± 0.07 l–n | 14.56 ± 0.74 d–g | 27.38 ± 2.24 f–j | 13.6 ± 1.38 e–g | 11.82 ± 1.65 j–m | 17.82 ± 0.45 e–i | 606.2 ± 24.1 b | 12.42 ± 1.5 f–k | 56.62 ± 6.9 f–h | |
C | 21.32 ± 0.66 c–f | 8.42 ± 1.15 j–n | 29.86 ± 0.28 f–j | 9.24 ± 0.43 g–m | 18 ± 1.38 f–j | 23.08 ± 0.42 d–h | 367.2 ± 17.4 dc | 23.88 ± 0.64 bc | 65.54 ± 2.3 ef | |
Shahin Shahr | MSS | 22.83 ± 0.41 b–d | 15.24 ± 1.36 d–f | 36.72 ± 1.2 d–g | 8.18 ± 0.8 j–n | 26.86 ± 2.34 d | 22.28 ± 1.52 d–h | 277 ± 9.2 e–j | 16.68 ± 1.22 d–g | 36.46 ± 1.9 i–m |
SSS | 14.56 ± 0.44 g–l | 7.94 ± 0.31 j–o | 22.96 ± 0.56 g–i | 5.68 ± 0.33 mn | 11.74 ± 0.7 j–n | 26.08 ± 1.04 de | 87 ± 0.83 m | 15.28 ± 0.21 d–i | 28.4 ± 0.61 l–o | |
C | 25.82 ± 2.22 bc | 27.72 ± 1.21 a | 152.18 ± 5.33 a | 10.9 ± 1.3 e–l | 16.86 ± 1.13 f–k | 151.66 ± 0.51 a | 332.8 ± 7.6 d–h | 19.48 ± 0.81 l | 59.48 ± 0.2 fg | |
Shiraz 1 | MSS | 18.16 ± 0.9 d–h | 21.44 ± 0.39 b | 65.76 ± 1.38 cd | 14.28 ± 0.05 d–f | 13.32 ± 0.87 h–m | 27.3 ± 0.02 d | 240.2 ± 8.8 j–k | 10.48 ± 0.64 h–l | 87.8 ± 2.32 d |
SSS | 15.11 ± 0.57 g–l | 10.22 ± 0.7 h–l | 39.58 ± 1.53 e–i | 13.54 ± 0.27 e–h | 9.94 ± 0.49 l–m | 25.22 ± 2.32 d–f | 229.6 ± 17.8 j–l | 13.1 ± 0.47 e–j | 19.22 ± 1.5 m–o | |
C | 15.44 ± 1.6 g–k | 8.3 ± 0.34 j–n | 25.3 ± 1.4 f–j | 3.9 ± 0.5 n | 8.6 ± 0.12 m | 20.38 ± 4.3 d–i | 355.8 ± 19.2 d–f | 4.36 ± 0.37 c–e | 14.06 ± 1.52 o | |
Shiraz 2 | MSS | 16.8 ± 0.47 g–k | 16.6 ± 0.24 c–e | 31.94 ± 0.31 e–h | 19.57 ± 0.84 bc | 11.74 ± 0.51 j–n | 18.18 ± 1.41 d–i | 288 ± 0.26 d–j | 19.8 ± 2.03 c–e | 32.76 ± 3.91 j–n |
SSS | 14.48 ± 0.8 g–l | 7.14 ± 0.49 k–o | 36.58 ± 0.77 d–g | 7.76 ± 0.49 k–n | 26.62 ± 0.07 g–m | 57.58 ± 1.78 b | 146.2 ± 1.8 lm | 33.82 ± 1.11 a | 56.14 ± 0.73 f–h | |
C | 26.79 ± 1.06 ab | 13.38 ± 0.32 e–h | 27.62 ± 0.84 f–j | 8.92 ± 0.59 h–m | 22.22 ± 1.26 f–h | 15.38 ± 1.27 g–i | 287.6 ± 7.54 d–j | 18.72 ± 0.93 c–f | 38.94 ± 1.6 h–l | |
Tabriz | MSS | 13.08 ± 0.32 i–m | 20.28 ± 0.62 bc | 106.28 ± 6.4 b | 11.32 ± 0.81 e–k | 14.74 ± 0.92 g–m | 20.72 ± 0.3 d–i | 342.8 ± 5.1 d–g | 6.2 ± 0.23 kl | 78.44 ± 3.6 d |
SSS | 8.22 ± 0.75 mn | 20.48 ± 1.1 bc | 27.06 ± 0.5 f–j | 12.94 ± 0.72 e–i | 8.82 ± 0.09 m | 39.4 ± 1.96 c | 969.6 ± 61 a | 6.04 ± 0.63 kl | 14.76 ± 0.6 no |
Variables | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Luteolin | Vanillic Acid | Ellagic Acid | Rutin | Total Phenolic | Total Flavonoids |
---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 1 | ||||||||||
Chlorogenic acid | 0.629 | 1 | |||||||||
Caffeic acid | 0.517 | 0.904 ** | 1 | ||||||||
p-Coumaric acid | 0.172 | 0.173 | 0.258 | 1 | |||||||
Ferulic acid | 0.074 | −0.103 | −0.058 | 0.830 ** | 1 | ||||||
Luteolin | 0.260 | 0.302 | 0.159 | 0.519 | 0.513 | 1 | |||||
Vanillic acid | 0.562 | 0.901 ** | 0.994 ** | 0.228 | −0.073 | 0.168 | 1 | ||||
Ellagic acid | −0.205 | −0.231 | −0.050 | −0.023 | −0.137 | −0.033 | −0.069 | 1 | |||
Rutin | 0.219 | 0.336 | 0.336 | 0.152 | 0.006 | 0.454 | 0.310 | 0.030 | 1 | ||
Total phenolic | −0.177 | −0.311 | −0.250 | 0.016 | 0.069 | 0.113 | −0.221 | −0.443 | 0.014 | 1 | |
Total flavonoids | 0.592 | 0.668 * | 0.479 | −0.074 | −0.102 | 0.281 | 0.515 | −0.713 * | 0.444 | 0.113 | 1 |
Variables | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Luteolin | Vanillic Acid | Ellagic Acid | Rutin | Total Phenolic | Total Flavonids |
---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 1 | ||||||||||
Chlorogenic acid | 0.196 | 1 | |||||||||
Caffeic acid | −0.115 | 0.596 | 1 | ||||||||
p-Coumaric acid | 0.218 | −0.174 | 0.135 | 1 | |||||||
Ferulic acid | 0.130 | 0.086 | 0.381 | 0.107 | 1 | ||||||
Luteolin | 0.246 | −0.553 | −0.434 | 0.402 | 0.370 | 1 | |||||
Vanillic acid | 0.526 | −0.033 | −0.018 | 0.539 | −0.258 | −0.132 | 1 | ||||
Ellagic acid | −0.102 | −0.248 | 0.374 | 0.525 | 0.777 * | 0.424 | −0.087 | 1 | |||
Rutin | 0.009 | 0.150 | 0.664 * | 0.618 | 0.541 | 0.007 | 0.381 | 0.672 | 1 | ||
Total phenolic | 1 | 0.570 | 0.367 | 0.096 | 0.005 | −0.439 | 0.697 * | −0.234 | 0.432 | 1 | |
Total flavonoids | 0.196 | 0.648 * | 0.114 | −0.277 | −0.072 | −0.569 | 0.357 | −0.470 | −0.014 | 0.719 | 1 |
Variables | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Luteolin | Vanillic Acid | Ellagic Acid | Rutin | Total Phenolic | Total Flavonoids |
---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 1 | ||||||||||
Chlorogenic acid | −0.064 | 1 | |||||||||
Caffeic acid | 0.024 | −0.095 | 1 | ||||||||
p-Coumaric acid | 0.260 | 0.180 | 0.668 * | 1 | |||||||
Ferulic acid | 0.225 | −0.322 | 0.720 * | 0.505 | 1 | ||||||
Luteolin | −0.217 | −0.498 | 0.364 | −0.298 | 0.514 | 1 | |||||
Vanillic acid | −0.245 | 0.069 | 0.276 | −0.255 | 0.264 | 0.732 | 1 | ||||
Ellagic acid | −0.329 | 0.781 * | −0.019 | 0.386 | −0.146 | −0.452 | 0.053 | 1 | |||
Rutin | 0.182 | −0.026 | 0.490 | 0.390 | 0.670 * | 0.159 | −0.049 | 0.037 | 1 | ||
Total phenolic | 0.546 | −0.006 | −0.303 | −0.078 | −0.254 | −0.070 | −0.116 | −0.252 | −0.468 | 1 | |
Total flavonoids | 0.604 | 0.493 | −0.218 | −0.066 | 0.044 | −0.187 | 0.100 | 0.158 | 0.146 | 0.353 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, A.; Razmjoo, J.; Karimmojeni, H.; Baldwin, T.C.; Mastinu, A. Changes in Secondary Metabolite Production in Response to Salt Stress in Alcea rosea L. Horticulturae 2024, 10, 139. https://doi.org/10.3390/horticulturae10020139
Sadeghi A, Razmjoo J, Karimmojeni H, Baldwin TC, Mastinu A. Changes in Secondary Metabolite Production in Response to Salt Stress in Alcea rosea L. Horticulturae. 2024; 10(2):139. https://doi.org/10.3390/horticulturae10020139
Chicago/Turabian StyleSadeghi, Arezoo, Jamshid Razmjoo, Hassan Karimmojeni, Timothy C. Baldwin, and Andrea Mastinu. 2024. "Changes in Secondary Metabolite Production in Response to Salt Stress in Alcea rosea L." Horticulturae 10, no. 2: 139. https://doi.org/10.3390/horticulturae10020139
APA StyleSadeghi, A., Razmjoo, J., Karimmojeni, H., Baldwin, T. C., & Mastinu, A. (2024). Changes in Secondary Metabolite Production in Response to Salt Stress in Alcea rosea L. Horticulturae, 10(2), 139. https://doi.org/10.3390/horticulturae10020139