Selenocysteine Formation by Enterococcus faecium ABMC-05 Follows a Mechanism That Is Not Dependent on Genes selA and selD but on Gene cysK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Growing Conditions
2.3. Bacterium Identification
2.4. MALDI-TOF MS
2.5. 16S rDNA Identification and Phylogenetic Analysis
2.6. Minimum Inhibitory Concentration of Na2SeO3
2.7. Selenization of E. faecium ABMC-05
2.8. Quantification of Total Selenium Content by Inductively Coupled Optical Emission Spectrometry (ICP-OES)
2.9. Selenocysteine Determination
2.10. Gene Amplification: selA, selD, and cysK
2.11. Statistical Analysis
3. Results and Discussion
3.1. Identification
3.2. Minimum Concentration of the Inhibition and Selenization of E. faecium ABMC-05
3.3. Determination of Selenium Accumulation in Bacteria by ICP
3.4. Selenocysteine Determination
3.5. Determination of the Presence of the Genes selD, selA, and cysK in E. faecium ABMC-05
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, S.; Boylan, M.; Selvam, A.; Spallholz, J.E.; Björnstedt, M. Redox-active selenium compounds from toxicity and cell death to cancer treatment. Nutrients 2015, 7, 3536–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental selenium and human health: An update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef] [PubMed]
- Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food prospects of selenium enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods 2017, 35, 466–473. [Google Scholar] [CrossRef]
- Maseko, T.; Callahan, D.L.; Dunshea, F.R.; Doronila, A.; Kolev, S.D.; Ng, K. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chem. 2013, 141, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Galano, E.; Mangiapane, E.; Bianga, J.; Palmese, A.; Pessione, E.; Szpunar, J.; Lobinski, R.; Amoresano, A. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol. Cell Proteom. 2013, 12, 2196–2204. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 2017, 101, 1930–1942. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.T.; Weiner, J.H.; Taylor, D.E. Selenium metabolism in Escherichia coli. Biometals 1998, 11, 223–227. [Google Scholar] [CrossRef]
- Rigger, L.; Schmidt, R.L.; Holman, K.M.; Simonović, M.; Micura, R. The synthesis of methylated, phosphorylated, and phosphonated 3′-aminoacyl-tRNASec mimics. Chem. Eur. J. 2013, 19, 15872–15878. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Ovando, A.; Segovia-Cruz, J.A.; Flores-Aguilar, J.F.; Rodríguez-Serrano, G.M.; Salazar-Pereda, V.; Ramírez-Godínez, J.; Contreras-López, E.; Jaimez-Ordaz, J.; González-Olivares, L.G. Serine-enriched minimal medium enhances conversion of selenium into selenocysteine by Streptococcus thermophilus. J. Dairy Sci. 2019, 102, 6781–6789. [Google Scholar] [CrossRef]
- Mariotti, M.; Ridge, P.G.; Zhang, Y.; Lobanov, A.V.; Pringle, T.H.; Guigo, R.; Hatfield, D.L.; Gladyshev, V.N. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS ONE 2012, 7, e33066. [Google Scholar] [CrossRef]
- Santesmasses, D.; Mariotti, M.; Guigó, R. Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput. Biol. 2017, 13, e1005383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Turanov, A.A.; Hatfield, D.L.; Gladyshev, V.N. In silico identification of genes involved in selenium metabolism: Evidence for a third selenium utilization trait. BMC Genom. 2008, 9, 11–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, A.M.; Olivares, L.G.G.; López, E.C.; Serrano, G.R. SelA and SelD genes involved in selenium absorption metabolism in lactic acid bacteria isolated from Mexican cheeses. Int. Dairy J. 2020, 103, 104629. [Google Scholar] [CrossRef]
- Palomo, M.; Gutiérrez, A.M.; Pérez-Conde, M.C.; Cámara, C.; Madrid, Y. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 2014, 164, 371–379. [Google Scholar] [CrossRef]
- Deng, Y.; Man, C.; Fan, Y.; Wang, Z.; Li, L.; Ren, H.; Cheng, W.; Jiang, Y. Preparation of elemental selenium-enriched fermented milk by newly isolated Lactobacillus brevis from kefir grains. Int. Dairy J. 2015, 44, 31–36. [Google Scholar] [CrossRef]
- Calomme, M.R.; Van den Branden, K.; Vanden Berghe, D.A. Selenium and Lactobacillus species. J. Appl. Microbiol. 1995, 79, 331–340. [Google Scholar] [CrossRef]
- Alzate, A.; Cañas, B.; Pérez-Munguía, S.; Hernández-Mendoza, H.; Pérez-Conde, C.; Gutiérrez, A.M.; Cámara, C. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J. Agric. Food Chem. 2007, 55, 9776–9783. [Google Scholar] [CrossRef]
- Krittaphol, W.; Wescombe, P.A.; Thomson, C.D.; McDowell, A.; Tagg, J.R.; Fawcett, J.P. Metabolism of L-selenomethionine and selenite by probiotic bacteria: In vitro and in vivo studies. Biol. Trace Elem. Res. 2011, 144, 358–1369. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, Y.; Yang, H.; Liao, Y.; Ma, T.; Wang, F. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2023, 107, 2843–2854. [Google Scholar] [CrossRef]
- Escobar-Ramírez, M.C.; Jaimez-Ordaz, J.; Escorza-Iglesias, V.A.; Rodríguez-Serrano, G.M.; Contreras-López, E.; Ramírez-Godínez, J.; Castañeda-Ovando, A.; Morales-Estrada, A.I.; Felix-Reyes, N.; González-Olivares, L.G. Lactobacillus pentosus ABHEAU-05: An in vitro digestion resistant lactic acid bacterium isolated from a traditional fermented Mexican beverage. Rev. Argent Microbiol. 2020, 52, 305–314. [Google Scholar] [CrossRef]
- Escobar-Ramírez, M.C.; Rodríguez-Serrano, G.M.; Salazar-Pereda, V.; Castañeda-Ovando, A.; Pérez-Escalante, E.; Jaimez-Ordaz, J.; González-Olivares, L.G. Biogenic production of selenocysteine by Enterococcus faecium ABMC-05: An indigenous lactic acid bacterium from fermented Mexican beverage. Food Sci. Technol. 2022, 43, e63622. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strahsburger, E.; Retamales, P.; Estrada, J.; Seeger, M. Microdot method: Used with chromogenic agar is a useful procedure for sanitary monitoring in aquaculture. Lat. Am. J. Aquat. Res. 2016, 44, 742–749. [Google Scholar] [CrossRef]
- Turło, J.; Gutkowska, B.; Malinowska, E. Relationship between the selenium, selenomethionine, and selenocysteine content of submerged cultivated mycelium of Lentinula edodes (Berk.). Acta Chromatogr. 2007, 18, 36–48. [Google Scholar]
- Vázquez-Ortíz, F.A.; Caire, G.; Higuera-Ciapara, I.; Hernández, G. High-performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chromatogr. 1995, 18, 2059–2068. [Google Scholar] [CrossRef]
- Jones, B.N. Amino acid analysis by o-phthaldialdehyde precolumn derivatization and reverse-phase HPLC. In Methods Protein Microcharacterization: Biological Methods, 1st ed.; Shively, J.E., Ed.; Humana Press: Totowa, NJ, USA, 1986; pp. 121–151. [Google Scholar] [CrossRef]
- Castillo-Portela, G.; Villar-Delgado, J.; Montano-Martínez, R.; Martínez, C.; Pérez-Alfocea, F.; Albacete, A.; Sánchez-Bravo, J.; Acosta-Echeverria, M. Cuantificación por HPLC del contenido de aminoácidos presentes en el FOTOMAS-E. ICIDCA Sobre Los Deriv. Caña Azúcar 2011, 45, 64–67. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16s rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Sarmiento, W.; Peña-Ocaña, B.A.; Lam-Gutiérrez, A.; Guzmán-Albores, J.M.; Jasso-Chávez, R.; Ruíz-Valdiviezo, V.M. Microbial community structure, physicochemical characteristics and predictive functionalities of the Mexican tepache fermented beverage. Microbiol. Res. 2022, 260, 127045. [Google Scholar] [CrossRef]
- Moreno-Terrazas, R.D. Determinación de las características microbiológicas, bioquímicas y sensoriales para la estandarización del proceso de elaboración de tepache. Doctoral Dissertation, Universidad Autónoma Metropolitana (Unidad Xochimilco), México City, Mexico, 27 January 2005. [Google Scholar]
- Cervantes-Contreras, M.; Pedroza, A.M. Caracterización microbiológica del pulque y cuantificación de su contenido de etanol mediante espectroscopia Raman. Superf. Y Vacio. 2008, 21, 1–5. [Google Scholar]
- de la Fuente-Salcido, N.M.; Castañeda-Ramírez, J.C.; García-Almendárez, B.E.; Bideshi, D.K.; Salcedo-Hernández, R.; Barboza-Corona, J.E. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México. Food Sci. Nutr. 2015, 3, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Pusztahelyi, T.; Kovács, S.; Pócsi, I.; Prokisch, J. Selenite-stress selected mutant strains of probiotic bacteria for Se source production. J. Trace Elem. Med. Biol. 2015, 30, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.; Wang, C. Factors affecting selenium-enrichment efficiency, metabolic mechanisms and physiological functions of selenium-enriched lactic acid bacteria. J. Future Foods 2022, 2, 285–293. [Google Scholar] [CrossRef]
- Martínez, F.G.; Cuencas-Barrientos, M.E.; Mozzi, F.; Pescuma, M. Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res. Int. 2019, 123, 115–124. [Google Scholar] [CrossRef]
- Krausova, G.; Kana, A.; Hyrslova, I.; Mrvikova, I.; Kavkova, M. Development of selenized lactic acid bacteria and their selenium bioaccummulation capacity. Fermentation. 2020, 6, 91. [Google Scholar] [CrossRef]
- Kim, E.K.; Cha, C.J.; Cho, Y.J.; Cho, Y.B.; Roe, J.H. Synthesis of gama-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp. Biochem. Biophys. Res. Commun. 2008, 369, 1047–1051. [Google Scholar] [CrossRef]
- Masip, L.; Veeravalli, K.; Georgiou, G. The many faces of glutathione in bacteria. Antioxid. Redox Signal. 2006, 8, 753–762. [Google Scholar] [CrossRef]
- Xia, S.K.; Chen, L.; Liang, J.Q. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 2007, 55, 2413–2417. [Google Scholar] [CrossRef]
- Lampis, S.; Zonaro, E.; Bertolini, C.; Cecconi, D.; Monti, F.; Micaroni, M.; Turner, R.J.; Butler, C.S.; Vallini, G. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. J. Hazar. Mater. 2017, 324, 3–14. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of selenium by lactic acid bacteria: Formation of seleno-nanoparticles and seleno-amino acids. Front. Bioeng. Biotechnol. 2020, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Pieniz, S.; Andreazza, R.; Mann, M.B.; Camargo, F.; Brandelli, A. Bioaccumulation and distribution of selenium in Enterococcus durans. J. Trace Elem. Med. Biol. 2017, 40, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Stabnikova, O.; Khonkiv, M.; Kovshar, I.; Stabnikov, V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J. Microbiol. Biotechnol. 2023, 39, 230. [Google Scholar] [CrossRef]
- Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016, 100, 2555–2566. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Siguero, M.; Gutiérrez, A.M.; Pérez-Conde, C.; Madrid, Y. Effect of selenite and selenium nanoparticles on lactic bacteria: A multi-analytical study. Microchem. J. 2016, 126, 488–495. [Google Scholar] [CrossRef]
- Lampis, S.; Zonaro, E.; Bertolini, C.; Bernardi, P.; Butler, C.S.; Vallini, G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeiTE01 as a consequence of selenite reduction under aerobic conditions. Microb. Cell Factories 2014, 13, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Llamosas, H.; Castro, L.; Blázquez, M.L.; Díaz, E.; Carmona, M. Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci. Rep. 2017, 7, 16046. [Google Scholar] [CrossRef] [Green Version]
- Kousha, M.; Yeganeh, S.; Amirkolaie, A.K. Effect of sodium selenite on the bacteria growth, selenium accumulation, and selenium biotransformation in Pediococcus acidilactici. Food Sci. Biotechnol. 2017, 26, 1013–1018. [Google Scholar] [CrossRef]
- Sarret, G.; Avoscan, L.; Carrière, M.; Collins, R.; Geoffroy, N.; Carrot, F.; Covès, J.; Gouget, B. Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl. Environ. Microbiol. 2005, 71, 2331–2337. [Google Scholar] [CrossRef] [Green Version]
- Kessi, J.; Hanselmann, K.W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J. Biol. Chem. 2004, 279, 50662–50669. [Google Scholar] [CrossRef]
- Kessi, J.; Ramuz, M.; Wehrli, E.; Spycher, M.; Bachofen, R. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 1999, 65, 4734–4740. [Google Scholar] [CrossRef] [PubMed]
- Pophaly, S.D.; Singh, R.; Pophaly, S.D.; Kaushik, J.K.; Tomar, S.K. Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb. Cell Factories 2012, 11, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scortecci, J.F.; Serrão, V.H.B.; Fernandes, A.F.; Basso, L.G.M.; Gutierrez, R.F.; Araujo, A.P.U.; Neto, M.O.; Thiemann, O.H. Initial steps in selenocysteine biosynthesis: The interaction between selenocysteine lyase and selenophosphate synthetase. Int. J. Biol. Macromol. 2020, 156, 18–26. [Google Scholar] [CrossRef]
- Manzine, L.R.; Cassago, A.; da Silva, M.T.A.; Thiemann, O.H. An efficient protocol for the production of tRNA-free recombinant Selenocysteine Synthase (SELA) from Escherichia coli and its biophysical characterization. Protein Expr. Purif. 2013, 88, 80–84. [Google Scholar] [CrossRef]
- Müller, S.; Heider, J.; Böck, A. The path of unspecific incorporation of selenium in Escherichia coli. Arch. Microbiol. 1997, 168, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Young, P.A.; Kaiser, I.I. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. Arch. Biochem. Biophys. 1975, 171, 483–489. [Google Scholar] [CrossRef] [PubMed]
Log CFU/mL | ||
---|---|---|
Na2SeO3 (mg/L) | 36 h | 48 h |
0 | 8.48 a ± 0.13 | 8.28 a ± 0.13 |
100 | 5.29 bc ± 0.08 | 5.63 c ± 0.10 |
200 | 5.95 b ± 0.13 | 6.13 b ± 0.13 |
300 | 5.15 c ± 0.09 | 5.78 bc ± 0.13 |
400 | 6.10 b ± 0.24 | 5.65 c ± 0.33 |
500 | 5.40 bc ± 0.52 | 4.59 d ± 0.06 |
R2 | 0.8774 | 0.9363 |
80 mg/L | 102 mg/L | 184 mg/L | ||||
---|---|---|---|---|---|---|
Time (h) | Selenium in Cells (mg/L) | Bioaccumulation (µg Se/Log CFU) | Selenium in Cells (mg/L) | Bioaccumulation (µg Se/Log CFU) | Selenium in Cells (mg/L) | Bioaccumulation (µg de Se/Log CFU) |
24 | 10.87 ± 0.13 a | 1.85 ± 0.70 ab | 4.26 ± 0.51 a | 0.72 ± 0.38 b | 13.34 ± 2.59 a | 2.19 ± 0.44 a |
48 | 15.99 ± 1.04 b | 2.77 ± 0.63 a | 7.33 ± 1.78 b | 1.64 ± 0.80 a | 15.25 ± 1.32 a | 2.76 ± 0.92 a |
72 | 15.89 ± 0.55 b | 2.71 ± 0.52 a | 14.72 ± 0.56 c | 2.59 ± 0.10 a | 20.26 ± 1.89 b | 3.35 ± 0.63 a |
96 | 15.98 ± 0.10 b | 2.64 ± 0.68 b | 13.39 ± 0.76 c | 2.16 ± 0.24 b | 26.08 ± 3.53 b | 4.28 ± 0.86 a |
120 | 21.44 ± 0.13 c | 3.40 ± 0.88 b | 13.27 ± 0.41 c | 2.31 ± 0.37 c | 28.88 ± 2.99 a | 4.82 ± 0.87 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar-Ramírez, M.C.; Rodríguez-Serrano, G.M.; Zúñiga-León, E.; García-Montes, M.A.; Pérez-Escalante, E.; González-Olivares, L.G. Selenocysteine Formation by Enterococcus faecium ABMC-05 Follows a Mechanism That Is Not Dependent on Genes selA and selD but on Gene cysK. Fermentation 2023, 9, 684. https://doi.org/10.3390/fermentation9070684
Escobar-Ramírez MC, Rodríguez-Serrano GM, Zúñiga-León E, García-Montes MA, Pérez-Escalante E, González-Olivares LG. Selenocysteine Formation by Enterococcus faecium ABMC-05 Follows a Mechanism That Is Not Dependent on Genes selA and selD but on Gene cysK. Fermentation. 2023; 9(7):684. https://doi.org/10.3390/fermentation9070684
Chicago/Turabian StyleEscobar-Ramírez, Meyli Claudia, Gabriela Mariana Rodríguez-Serrano, Eduardo Zúñiga-León, Mario Adolfo García-Montes, Emmanuel Pérez-Escalante, and Luis Guillermo González-Olivares. 2023. "Selenocysteine Formation by Enterococcus faecium ABMC-05 Follows a Mechanism That Is Not Dependent on Genes selA and selD but on Gene cysK" Fermentation 9, no. 7: 684. https://doi.org/10.3390/fermentation9070684
APA StyleEscobar-Ramírez, M. C., Rodríguez-Serrano, G. M., Zúñiga-León, E., García-Montes, M. A., Pérez-Escalante, E., & González-Olivares, L. G. (2023). Selenocysteine Formation by Enterococcus faecium ABMC-05 Follows a Mechanism That Is Not Dependent on Genes selA and selD but on Gene cysK. Fermentation, 9(7), 684. https://doi.org/10.3390/fermentation9070684