Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Winemaking
2.3. Analytical Determinations
2.3.1. Determination of Biomass
2.3.2. Quantification of Ethanol Concentration
2.3.3. Determination of Reducing Sugars
2.3.4. Determination of °Brix
2.3.5. Determination of Kinetic Parameters
2.3.6. Fermentation Process Performance
2.4. Experimental Design
3. Results and Discussion
3.1. Behaviour of the Biomass Concentration of Saccharomyces Cerevisiae During Ultrasound-Assisted Fermentation in Three Isaño Genotypes
3.2. Ethanol Production Behaviour in Ultrasound-Assisted Fermentation of Three Isaño Genotypes
3.3. Behaviour of Reducing Sugars in the Ultrasound-Assisted Fermentation Process Evaluated in Three Isaño Genotypes
3.4. Behaviour of Soluble Solids in the Fermentation Process
3.5. Application of the Monod Kinetic Model Based on the °Brix Parameter in Ultrasound-Assisted Fermentation of Yeast
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aruquipa, R.; Trigo, R.; Bosque, H.; Mercado, G.; Condori, J. El Isaño (Tropaeolum uberosum) Un Cultivo de Consumo y Medicina Tradicional En Huatacana Para El Beneficio de La Población Boliviana. RIIARn 2017, 3, 146–151. [Google Scholar]
- Valle-Parra, M.; Pomboza-Tamaquiza, P.; Buenaño-Sánchez, M.; Guevara-Freire, D.; Chasi-Vizuete, P.; Vásquez, C.; Pérez-Salinas, M. Morphology, Phenology, Nutrients and Yield of Six Accessions of Tropaeolum tuberosum Ruiz y Pav (Mashua). Trop. Subtrop. Agroecosystem 2018, 21, 131–139. [Google Scholar] [CrossRef]
- Guevara-Freire, D.; Valle-Velástegui, L.; Barros-Rodríguez, M.; Vásquez, C.; Zurita-Vásquez, H.; Dobronski-Arcos, J.; Pomboza-Tamaquiza, P. Nutritional Composition and Bioactive Components of Mashua (Tropaeolum tuberosum Ruiz and Pavón). Trop. Subtrop. Agroecosystems 2018, 21, 53–68. [Google Scholar] [CrossRef]
- Benítez, L.; Pagán, M.J.; Martínez-Monzó, J.; García-Segovia, P. Propiedades Funcionales de Tuberculos Andinos de La Región Andina de Chimborazo (Ecuador): Una Revisión. Rev. Esp. Nutr. Comunitaria 2016, 22, 28–33. [Google Scholar]
- Campos, D.; Chirinos, R.; Gálvez Ranilla, L.; Pedreschi, R. Bioactive Potential of Andean Fruits, Seeds, and Tubers, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 84. [Google Scholar]
- Aguilar-Galvez, A.; Pedreschi, R.; Carpentier, S.; Chirinos, R.; García-Ríos, D.; Campos, D. Proteomic Analysis of Mashua (Tropaeolum tuberosum) Tubers Subjected to Postharvest Treatments. Food Chem. 2020, 305, 125485. [Google Scholar] [CrossRef]
- Apaza, L.; Tena, V.; Serban, A.M.; Alonso, M.J.; Rumbero, A. Alkamides from Tropaeolum tuberosum Inhibit Inflammatory Response Induced by TNF–α and NF–ΚB. J. Ethnopharmacol. 2019, 235, 199–205. [Google Scholar] [CrossRef]
- Apaza Ticona, L.N.; Tena Pérez, V.; Bermejo Benito, P. Local/Traditional Uses, Secondary Metabolites and Biological Activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol. 2020, 247, 112152. [Google Scholar]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic Compound Contents and Antioxidant Activity in Plants with Nutritional and/or Medicinal Properties from the Peruvian Andean Region. Ind. Crops Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- Ticona, L.A.; Sánchez, Á.R.; Gonzáles, Ó.O. Antimicrobial Compounds Isolated from Tropaeolum tuberosum. Nat. Prod. Res. 2020, 35, 4698–4702. [Google Scholar] [CrossRef]
- Apaza, T.L.; Peña-Rojas, G.; Andía-Ayme, V.; Durán, B.; Rumbero, A. Anti-Glycative and Anti-Inflammatory Effects of Macamides Isolated from Tropaeolum tuberosum in Skin Cells. Nat. Prod. Res. 2022, 1, 1–25. [Google Scholar]
- Pacheco, M.T.; Escribano-Bailón, M.T.; Moreno, F.J.; Villamiel, M.; Dueñas, M. Determination by HPLC-DAD-ESI/MSn of Phenolic Compounds in Andean Tubers Grown in Ecuador. J. Food Compos. Anal. 2019, 84, 103258. [Google Scholar] [CrossRef]
- Flores Mamani, E.; Apaza Ticona, J.; Calsina Ponce, W.C.; Quille Calizaya, G.; Huanca Rojas, F.; Coloma Paxi, A.; Inquilla Mamani, J.; Huata Panca, P.; Zayra Churata, A. Conocimiento Ancestral En La Curación de La Próstata a Base de Isaño (Tropaeolum tuberosum Ruiz y Pavón). Idesia 2020, 38, 7–16. [Google Scholar] [CrossRef]
- Vásconez-Barrera, F.; Oleas-López, J.; Bonilla-Lucero, M.; Benítez-Santillán, L. Homemade Bread Made with Mashua and Wheat Flour: Added Value to the Raw Material and Nutritional Contribution to the Health of Children and Adults. Surv. Fish. Sci. 2023, 10, 348–358. [Google Scholar]
- González, M.; Georgina, M.; Georgina, M. Determining the Nutritional Value of Sausages Made with Llama and Alpaca Meat with the Addition of Goose Flour and Mashua. ESPOCH Congr. Ecuadorian J. S.T.E.A.M. 2022, 2, 52–67. [Google Scholar] [CrossRef]
- Velásquez-barreto, F.F.; Ramírez Tixe, E.; Chuquilín Goicochea, R.; Aliaga-barrera, I. Optimization of the Functional Properties of a Drink Based on Tubers of Purple Mashua (Tropaeolum tuberosum Ruíz y Pavón). Agroindustrial Sci. 2020, 10, 63–70. [Google Scholar] [CrossRef]
- Valcárcel-Yamani, B.; Rondán-Sanabria, G.G.; Finardi-Filho, F. The Physical, Chemical and Functional Characterization of Starches from Andean Tubers: Oca (Oxalis tuberosa Molina), Olluco (Ullucus tuberosus Caldas) and Mashua (Tropaeolum tuberosum Ruiz & Pavón). Brazilian J. Pharm. Sci. 2013, 49, 453–464. [Google Scholar]
- Ferreyra, M.M.; Schvab, M.d.C.; Gerard, L.M.; Zapata, L.M.; Davies, C.V.; Hours, R.A. Alcoholic Fermentation of Orange Juice with S. Cerevisiae. Cienc. Docencia Tecnol. 2009, 39, 143–158. [Google Scholar]
- Ronquillo, A.; Lazcano, V.; Pérez, I.; Cabrera, S.; Lazcano, M. Elaboracion y Caracterización de Vino de Frutas e Infusión de Hierbas. Investig. Desarro. Cienc. Tecnol. Aliment. 2016, 1, 366–371. [Google Scholar]
- Oré, F.; De la Cruz, R.; Montalvo, J.; Muñoz, K. Evaluation of the Acceptability and Alcohol Content of Goose Wine (Oxalis tuberosa) of Five Varieties. J. Agro-Industry Sci. 2019, 1, 39–43. [Google Scholar] [CrossRef]
- Das, S.R.; Basak, N. Enhancing Biohydrogen Production by Optimization of Waste Potato Concentration in Dark and Photo Fermentation. J. Clean. Prod. 2025, 494, 145000. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.A.; Wang, T.T. Effect of Ultrasound Irradiation on the Evolution of Color Properties and Major Phenolic Compounds in Wine during Storage. Food Chem. 2017, 234, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Galván-D’Alessandro, L.; Carciochi, R.A. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review. Fermentation 2018, 4, 1. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential Applications of Pulsed Electric Field in the Fermented Wine Industry. Front. Nutr. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Yu, Z.; Su, Y.; Zhang, Y.; Zhu, P.; Mei, Z.; Zhou, X.; Yu, H. Potential Use of Ultrasound to Promote Fermentation, Maturation, and Properties of Fermented Foods: A Review. Food Chem. 2021, 357, 129805. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Tirado-Gallegos, J.M.; Sanchez-Vega, R.; Huerta-Jimenez, M.; Ashokkumar, M.; Alarcon-Rojo, A.D. Recent Advances in the Application of Ultrasound in Dairy Products: Effect on Functional, Physical, Chemical, Microbiological and Sensory Properties. Ultrason. Sonochem. 2021, 73, 105467. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Salameh, D.; Maroun, R.G.; Louka, N.; Vorobiev, E. Ultrasound-Assisted Fermentation for Cider Production from Lebanese Apples. Ultrason. Sonochem. 2020, 63, 104952. [Google Scholar] [CrossRef]
- Pulidindi, I.; Gedanken, A.; Schwarz, R.; Sendersky, E. Mild Sonication Accelerates Ethanol Production by Yeast Fermentation. Energy Fuels 2012, 26, 2352–2356. [Google Scholar]
- Choi, E.J.; Ahn, H.; Kim, M.; Han, H.; Kim, W.J. Effect of Ultrasonication on Fermentation Kinetics of Beer Using Six-Row Barley Cultivated in Korea. J. Inst. Brew. 2015, 121, 510–517. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, F.; Wang, Y.; Dai, C.; Xing, Z.; Dabbour, M.; Mintah, B.; He, R.; Ma, H. Fermentation of Saccharomyces Cerevisiae in a One Liter Flask Coupled with an External Circulation Ultrasonic Irradiation Slot: Influence of Ultrasonic Mode and Frequency on the Bacterial Growth and Metabolism Yield. Ultrason. Sonochem. 2019, 54, 39–47. [Google Scholar] [CrossRef]
- Klomklieng, W.; Prateepasen, A. Using Low-Power Ultrasonic for Enhancing Saccharomyces Cerevisiae M30 Productivity for Ethanol Producing from Molasses. Int. Proc. Chem. Biol. Environ. Eng. 2011, 9, 234–239. [Google Scholar]
- Sanaei Nasab, S.; Tahmouzi, S.; Feizollahi, E.; Mollakhalili-Meybodi, N. Impacts of Novel Non-Thermal Processing (NTP) on Anti-Nutritional Compounds of Food Grains and Seeds. Food Control 2024, 162, 110469. [Google Scholar] [CrossRef]
- Nnaemeka, I.C.; Egbuna Samuel, O.; Onoh Maxwell, I.; Christain, A.O.; Chinelo S, O. Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production. J. Bioresour. Bioprod. 2021, 6, 45–64. [Google Scholar] [CrossRef]
- Flores-Mendoza, L.; Osorio-Lorenzo, P.V.; Pérez-San Juan, A.R.; Sánchez-Rosas, D.L.; Rodríguez-Puertos, T. Elaboración de Una Bebida Fermentada Tipo Cerveza Artesanal a Base de Malta Adicionada Con Tallo de Maíz (Zea mays) y Mexale. Rev. Cient. Pakamuros 2019, 3, 59–67. [Google Scholar]
- Montañez, L.J.B. Cuantificación de Azúcares Reductores Del Sustrato En Residuos de Piña Con El Método Del Ácido 3,5-Dinitrosalicílico. Fund. Univ. Am. 2020, 13, 57–66. [Google Scholar]
- Santos, R.T.S.; Biasoto, A.C.T.; Rybka, A.C.P.; Castro, C.D.P.C.; Aidar, S.T.; Borges, G.S.C.; Silva, F.L.H. Physicochemical Characterization, Bioactive Compounds, in Vitro Antioxidant Activity, Sensory Profile and Consumer Acceptability of Fermented Alcoholic Beverage Obtained from Caatinga Passion Fruit (Passiflora cincinnata Mast.). Lwt 2021, 148, 111714. [Google Scholar] [CrossRef]
- Onofre, C. Efecto Del Proceso de Fermentación Alcohólica de La Chicha de Quinua (Chenopodium quinoa Willd) Sobre Su Contenido de Antioxidante, Vitaminas y Minerales. Licentiate Thesis, Universidad Nacional de San Agustin, Arequipa, Peru, 2018. [Google Scholar]
- Englezos, V.; Cravero, F.; Torchio, F.; Rantsiou, K.; Ortiz-Julien, A.; Lambri, M.; Gerbi, V.; Rolle, L.; Cocolin, L. Oxygen Availability and Strain Combination Modulate Yeast Growth Dynamics in Mixed Culture Fermentations of Grape Must with Starmerella Bacillaris and Saccharomyces Cerevisiae. Food Microbiol. 2018, 69, 179–188. [Google Scholar] [CrossRef]
- Campos, D.; Aguilar-Galvez, A.; García-Ríos, D.; Chirinos, R.; Limaymanta, E.; Pedreschi, R. Postharvest Storage and Cooking Techniques Affect the Stability of Glucosinolates and Myrosinase Activity of Andean Mashua Tubers (Tropaeolum tuberosum). Int. J. Food Sci. Technol. 2019, 54, 2387–2395. [Google Scholar] [CrossRef]
- Paula, P.; Bel, A.; Jurado, R.; Encarna, G. Combining High-Power Ultrasound and Enological Enzymes during Winemaking to Improve the Chromatic Characteristics of Red Wine. LWT 2022, 156, 113032. [Google Scholar]
- Klomklieng, W.; Prateepasen, A. Molasses Fermentation to Ethanol by Saccharomycescerevisiae M30 Using Low Ultrasonic Frequency Stimulation. KKU Res. J. 2012, 17, 950–957. [Google Scholar]
- Cao, S.; Hu, Z.; Pang, B. Optimization of Postharvest Ultrasonic Treatment of Strawberry Fruit. Postharvest Biol. Technol. 2010, 55, 150–153. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of Ultrasound on Microbial Growth and Enzyme Activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ren, W.; Xiang, J.; Dabbour, M.; Kumah Mintah, B.; Li, Y.; Ma, H. Fermentation of Saccharomyces Cerevisiae in a 7.5 L Ultrasound-Enhanced Fermenter: Effect of Sonication Conditions on Ethanol Production, Intracellular Ca2+ Concentration and Key Regulating Enzyme Activity in Glycolysis. Ultrason. Sonochem. 2021, 76, 105624. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Zhou, L.; Li, B.; Xu, Z. Effect of Ultrasound Treatment Conditions on Saccharomyces Cerevisiae by Response Surface Methodology. Microb. Pathog. 2017, 111, 497–502. [Google Scholar] [CrossRef]
- Beltran, A.; Mera, J. Elaboracion Del Tuberculo Mashua (Tropaeolum tuberosum) Troceada En Miel y Determinacion de La Capacidad Antioxidante. Wild 2014, 2007–2010. [Google Scholar]
- Apaza, R.M.; Atencio, Y.J. Tecnología Para La Elaboración de Una Cerveza Artesanal Tipo Ale, Con Sustitutción Parcial de Malta (Horden vulgare) Por Guiñapo de Maiz Morado (Zea mays); Universidad Nacional de San Agustin: Arequipa, Peru, 2017. [Google Scholar]
- Llacsa, J.D.; Cucho, A. Cinética de Fermentación de La Chicha de Quinua Evaluado En Tres Variedades de Quinua (Chenopodium quinoa Willd.). Licentiate Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2019. [Google Scholar]
- Pari, E. Cinética de Conversión de Los Carbohidratos Presentes En La Cáscara de Plátano (Musa cavendishi) Para La Obtención de Etanol. Licentiate Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2013. [Google Scholar]
- Yang, Y.; Ren, W.; Xu, H.; Cheng, L.; Dapaah, M.F.; He, R.; Ma, H. Incorporating Transcriptomic-Metabolomic Analysis Reveal the Effect of Ultrasound on Ethanol Production in Saccharomyces Cerevisiae. Ultrason. Sonochem. 2021, 79, 105791. [Google Scholar] [CrossRef]
Amount of Ethanol | Concentration (g/L) |
---|---|
0 mL/50 mL | 0 |
0.5 mL/50 mL | 0.5518 |
1.0 mL/50 mL | 1.1034 |
1.5 mL/50 mL | 1.6552 |
2.0 mL/50 mL | 2.2069 |
2.5 mL/50 mL | 2.7587 |
3.0 mL/50 mL | 3.3104 |
Experiment N° | Isaño Genotype | Power (W) |
---|---|---|
1 | Yellow | 0 |
2 | Yellow | 100 |
3 | Yellow | 200 |
4 | Yellow | 300 |
5 | Yellow-purple | 0 |
6 | Yellow-purple | 100 |
7 | Yellow-purple | 200 |
8 | Yellow-purple | 300 |
9 | Purple | 0 |
10 | Purple | 100 |
11 | Purple | 200 |
12 | Purple | 300 |
Power of Ultrasound | μmax (h−1) | Ks (g/L) | Yx/s | Yp/s |
---|---|---|---|---|
Yellow genotype | ||||
0 W (Control) | 0.007 ± 0.004 b | 13.829 ± 11.115 a | 8.91 × 105 ± 3.85 × 104 a | 0.741 ± 0.012 a |
100 W | 0.029 ± 0.013 a | 43.130 ± 43.698 a | 7.37 × 105 ± 8.04 × 103 bc | 0.797 ± 0.041 a |
200 W | 0.007 ± 0.004 b | 10.928 ± 13.538 a | 6.92 × 105 ± 2.72 × 104 c | 0.751 ± 0.057 a |
300 W | 0.006 ± 0.003 b | 10.036 ± 14.116 a | 7.71 × 105 ± 1.10 × 104 b | 0.762 ± 0.051 a |
Yellow genotype with purple eyes | ||||
0 W (Control) | 0.017 ± 0.001 a | 30.773 ± 13.535 a | 8.94 × 105 ± 2.45 × 104 a | 0.736 ± 0.056 a |
100 W | 0.211 ± 0.257 a | 279.88 ± 365.26 a | 7.16 × 105 ± 7.93 × 103 d | 0.807 ± 0.044 a |
200 W | 0.110 ± 0.128 a | 157.38 ± 150.15 a | 7.68 × 105 ± 1.61 × 104 c | 0.754 ± 0.008 a |
300 W | 0.167 ± 0.190 a | 240.41 ± 288.28 a | 8.43 × 105 ± 1.60 × 104 b | 0.805 ± 0.019 a |
Purple genotype | ||||
0 W (Control) | 0.028 ± 0.007 a | 27.801 ± 9.927 a | 9.84 × 105 ± 6.81 × 103 a | 0.749 ± 0.005 b |
100 W | 0.015 ± 0.001 a | 16.088 ± 20.360 a | 7.87 × 105 ± 3.53 × 103 b | 0.899 ± 0.016 a |
200 W | 0.038 ± 0.008 a | 44.400 ± 29.197 a | 8.17 × 105 ± 1.18 × 103 b | 0.793 ± 0.031 b |
300 W | 0.064 ± 0.059 a | 74.833 ± 79.340 a | 7.60 × 105 ± 8.79 × 104 b | 0.766 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coloma, A.; Mamani-Mamani, M.; Valencia-Sullca, C.; Mamani Paredes, J.; Callo, H.; Rafael, N.C.; Calsina Ponce, W.C.; Alvarado, U. Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation 2025, 11, 268. https://doi.org/10.3390/fermentation11050268
Coloma A, Mamani-Mamani M, Valencia-Sullca C, Mamani Paredes J, Callo H, Rafael NC, Calsina Ponce WC, Alvarado U. Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation. 2025; 11(5):268. https://doi.org/10.3390/fermentation11050268
Chicago/Turabian StyleColoma, Alejandro, Maria Mamani-Mamani, Cristina Valencia-Sullca, Javier Mamani Paredes, Herbert Callo, Nancy Curasi Rafael, Wilber Cesar Calsina Ponce, and Ulises Alvarado. 2025. "Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum)" Fermentation 11, no. 5: 268. https://doi.org/10.3390/fermentation11050268
APA StyleColoma, A., Mamani-Mamani, M., Valencia-Sullca, C., Mamani Paredes, J., Callo, H., Rafael, N. C., Calsina Ponce, W. C., & Alvarado, U. (2025). Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation, 11(5), 268. https://doi.org/10.3390/fermentation11050268