Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, V.C.N. Small-scale An aerobic Digesters in Vietnam—Development and Challenges. J. Viet. Environ. 2011, 1, 12–18. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2021, 5, 2911–2942. [Google Scholar] [CrossRef]
- Abubakar, A.M. Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production. J. Eng. Res. Sci. 2022, 1, 170–187. [Google Scholar] [CrossRef]
- Guimaraes, C.D.; Maia, D.R.D. Development of Anaerobic Biodigester for The Production of Biogas Used in Semi-Continuous System Bioprocesses: An Efficient Alternative for Co-Digestion of Low Biodegradability Biomass. Biomass 2023, 3, 18–30. [Google Scholar] [CrossRef]
- Jegede, A.O.; Zeeman, G.; Bruning, H. A review of mixing, design and loading conditions in household anaerobic digesters. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2117–2153. [Google Scholar] [CrossRef]
- Banerjee, S.; Prasad, N.; Selvaraju, S. Reactor Design for Biogas Production-A Short Review. J. Energy Power Technol. 2022, 4, 1–14. [Google Scholar] [CrossRef]
- Pham, C.H.; Vu, C.C.; Sommer, S.G.; Bruun, S. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam, Asian Australas. J. Anim. Sci. 2014, 27, 1050–1056. [Google Scholar]
- Zaki, M.B.M.; Shamsudin, R.; Yusoff, M.Z.M. Portable Bio-digester System for Household Use—A Review. Adv. Agric. Food Res. J. 2021, 2, a000014. [Google Scholar]
- Randjawali, E.; Waris, A. Design and testing of mini-size biogas plant. J. Phys. Conf. Ser. 2016, 739, 012038. [Google Scholar] [CrossRef]
- Budiman, I. The Role of Fixed-Dome and Floating Drum Biogas Digester for Energy Security in Indonesia. Indones. J. Energy 2020, 3, 83–93. [Google Scholar] [CrossRef]
- Postawa, K.; Szczygieł, J.; Kułażyński, M. Innovations in anaerobic digestion: A model-based study. Biotechnol. Biofuels 2021, 14, 19. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; Wiley-Vch Verlag GmbH & Co., Ltd.: Weinheim, Germany, 2011. [Google Scholar]
- Akunna, J.C. Anaerobic Waste-Wastewater Treatment and Biogas Plants; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Achinas, S.; Achinas, V.; Euverink, G.J. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Marchioro, V.; Steinmetz, R.L.; Amaral, A.C.; Gaspareto, T.C.; Treichel, H.; Kunz, A. Poultry Litter Solid State Anaerobic Digestion: Effect of Digestate Recirculation Intervals and Substrate/Inoculum Ratios on Process Efficiency. Front. Sustain. Food Syst. 2018, 2, 46. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Ali, M.M.; Aziz, N.I.A.; Ashraf, M.A.; Halim, A.A.; Lee, K.E.; Dris, M. Biogas Production from Goat and Chicken Manure in Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 529–535. [Google Scholar] [CrossRef]
- Rangseesuriyachai, T.; Boonnorat, J.; Glanpracha, N.; Khetkorn, W.; Thiamngoen, P.; Pinpatthanapong, K. Anaerobic Co-digestion of Elephant Dung and Biological Pretreated Napiergrass: Synergistic Effect and Kinetics of Methane Production. Biomass Bioenergy 2023, 175, 106849. [Google Scholar] [CrossRef]
- Gaworski, M.; Jabłoński, S.; Pawlaczyk-Graja, I.; Ziewiecki, R.; Rutkowski, P.; Wieczyńska, A.; Gancarz, R.; Tukaszewicz, M. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnol. Biofuels 2017, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Adamu, H.; Bello, U.; Yuguda, A.U.; Tafida, U.I.; Jalam, A.M.; Sabo, A.; Qamar, M. Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renew. Sustain. Energy Rev. 2023, 186, 113686. [Google Scholar] [CrossRef]
- Lahbab, A.; Djaafri, M.; Kalloum, S.; Benatiallah, A.; Atelge, M.R.; Atabani, A.E. Co-digestion of vegetable peel with cow dung without external inoculum for biogas production: Experimental and a new modelling test in a batch mode. Fuel 2021, 306, 121627. [Google Scholar] [CrossRef]
- Nindhia, T.G.; McDonald, M.; Styles, D. Greenhouse Gas Mitigation and Rural Electricity Generation by a Novel Two-Stroke Biogas Engine. J. Clean. Prod. 2021, 280, 124473. [Google Scholar] [CrossRef]
- Taghinazhad, J.; Abdib, R.; Adlc, M. Kinetic and Enhancement of Biogas Production for The Purpose of Renewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System. Int. J. Renew. Energy Dev. 2017, 6, 37–44. [Google Scholar] [CrossRef]
- Fahriansyah; Andrianto, M.; Sriharti. Design of conventional mixer for biogas digester. IOP Conf. Ser. Earth Environ. Sci. 2019, 277, 012017. [Google Scholar] [CrossRef]
- Elsawy, K.; E-Kadi, S.; Elhenawy, Y.; Abdelmotalip, A.; Ibrahim, I.A. Biogas Production by Anaerobic Digestion of Cow Dung using Floating Type Fermenter. J. Environ. Treat. Tech. 2021, 9, 446–451. [Google Scholar]
- Nindhia, T.G.; Sucipta, I.M.; Surata, I.W.; Adiatmika, I.K.; Negara, D.N.; Negara, K.M.T. Processing of Steel Chips Waste for Regenerative type of Biogas Desulfurizer. Int. J. Renew. Energy Res. 2013, 3, 84–87. [Google Scholar]
- Pathak, S.S.; Mendon, S.K.; Blanton, M.D.; Rawlins, J.W. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers) for Aluminum Alloys. Metals 2012, 2, 353–376. [Google Scholar] [CrossRef]
- Nindhia, T.G.; Surata, I.W.; Swastika, I.D.P.; Widiana, P. Processing Zinc from Waste of Used Zinc-Carbon Battery with Natrium Chloride (NaCl) for Biogas Desulfurizer. Key Eng. Mater. 2016, 705, 368–373. [Google Scholar] [CrossRef]
- Bridgeman, J. Computational fluid dynamics modeling of sewage sludge mixing in an anaerobic digester. Adv. Eng. Softw. 2012, 44, 54–62. [Google Scholar] [CrossRef]
- Conklin, A.S.; Chapman, T.; Zahller, J.D.; Stensel, H.D.; Ferguson, J.F. Monitoring the role of aceticlasts in anaerobic digestion: Activity and capacity. Water Res. 2008, 42, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Halalsheh, M.; Kassab, G.; Yazajeen, H.; Qumsieh, S.; Field, J. Effect of increasing the surface area of primary sludge on anaerobic digestion at low temperature. Bioresour. Technol. 2011, 102, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Karapaju, P.L.; Rintala, J.A. Effects of solid-liquid separation on recovering residual methane and nitrogen of a digested dairy cow manure. Bioresour. Technol. 2008, 99, 120–127. [Google Scholar] [CrossRef]
- Maamri, S.; Amrani, M. Biogas Production from Waste Activated Sludge Using Cattle Dung Inoculums: Effect of total solid contents and kinetics study. Energy Procedia 2014, 50, 352–359. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manag. 2022, 308, 114581. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hadi, M.A.; El-Azeem, S.A.A. Effect of heating, mixing and digester type on biogas production from buffalo dung. Misr J. Agric. Eng. 2008, 25, 1454–1477. [Google Scholar] [CrossRef]
- Rianawati, E.; Damanhuri, E.; Handajani, M.; Padmi, T. Comparison of Household and Communal Biogas Digester Performance to Treat Kitchen Waste, Case Study: Bandung City, Indonesia. E3S Web Conf. 2018, 73, 01019. [Google Scholar] [CrossRef]
- Streitwieser, D.A. Comparison of The Anaerobic Digestion at The Mesophilic and Thermophilic Temperature Regime of Organic Wastes from The Agribusiness. Bioresour. Technol. 2017, 241, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.B.; Pereira, A.P.; Pastore, B.M.; Moreira, R.F.; Ferreira, M.S.; Fai, A.E. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. LWT Food Sci. Technol. 2020, 124, 109028. [Google Scholar] [CrossRef]
- Dana, I.W.A.R.; Lie, D.; Adnyana, I.W.B.; Nindhia, T.G.; Khanal, S.K.; Nindhia, T.S. Comparison of Fuel Consumption and Emission of Small Two-stroke Engine of Electric Generator Fuelled by Methanol, Biogas, and Mixed Methanol-biogas. J. Appl. Eng. Sci. 2022, 20, 1034–1039. [Google Scholar] [CrossRef]
- Haryanto, A.; Nindhia, T.G.; Hasanudin, W.R.U.; Saputrat, W.; Santosa, A.B.; Tamrin; Triyono, S. Effect of load on the performance of a family scale biogas-fuelled electricity generator. IOP Conf. Ser. Earth Environ. Sci. 2019, 355, 012078. [Google Scholar] [CrossRef]
- Sodha, M.S.; Ram, S.; Bansal, N.K.; Bansal, P.K. Effect of PVC greenhouse in increasing the biogas production in temperate cold climatic conditions. Energy Convers. Manag. 1987, 27, 83–90. [Google Scholar] [CrossRef]
- Mozhiarasi, V. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere 2022, 288, 132604. [Google Scholar] [CrossRef] [PubMed]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; Taherzadeh, M.J. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, R.; Vasmara, C.; Orsi, A. Inoculum Production from Pig Slurry for Potential Use in Agricultural Biogas Plants. Sustain. Energy Technol. Assess. 2022, 52, 102310. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.; Müller, B.; Schnürer, A. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour. Technol. 2017, 245, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Owamah, H.I.; Ikpeseni, S.C.; Alfa, M.I.; Oyebisi, S.O.; Gopikumar, S.; Samuel, O.D.; Ilabor, S.C. Influence of Inoculum/Substrate Ratio on Biogas Yield and Kinetics from The Anaerobic Co-digestion of Food Waste and Maize Husk. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100558. [Google Scholar] [CrossRef]
- Suksong, W.; Mamimin, C.; Prasertsan, P.; Kongjan, P.; O-Thong, S. Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. Ind. Crops Prod. 2019, 133, 193–202. [Google Scholar] [CrossRef]
- Sohail, M.; Khan, A.; Badshah, M.; Degen, A.; Yang, G.; Liu, H.; Zhou, J.; Long, R. Yak Rumen Fluid Inoculum Increases Biogas Production from Sheep Manure Substrate. Bioresour. Technol. 2022, 362, 127801. [Google Scholar] [CrossRef] [PubMed]
- Papilo, P.; Marimin, M.; Hambali, E.; Machfud, M.; Yani, M.; Asrol, M.; Evanila, E.; Prasetya, H.; Mahmud, J. Palm Oil-based Bioenergy Sustainability and Policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon 2022, 8, e10919. [Google Scholar] [CrossRef] [PubMed]
- Mahlia, T.M.; Abdulmuin, M.; Alamsyah, T.M.; Mukhlishien, D. An Alternative Energy Source from Palm Wastes Industry for Malaysia and Indonesia. Energy Convers. Manag. 2001, 42, 2109–2118. [Google Scholar] [CrossRef]
- Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.; Husnawan, M.; Liaquat, A.M. Prospects of Dedicated Biodiesel Engine Vehicles in Malaysia and Indonesia. Renew. Sustain. Energy Rev. 2011, 15, 220–235. [Google Scholar] [CrossRef]
- Saidu, M.; Yuzir, A.; Salim, M.R.; Salmiati; Azman, S.; Abdullah, N. Influence of Palm Oil Mill Effluent as Inoculum on Anaerobic Digestion of Cattle Manure for Biogas Production. Bioresour. Technol. 2013, 141, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, L.; Liu, Y.; Zhang, Q.; Ruan, R.; Luo, X. Effect of Acclimatized Paddy Soil Microorganisms Using Swine Wastewater on Degradation of Rice Straw. Bioresour. Technol. 2021, 332, 125039. [Google Scholar] [CrossRef] [PubMed]
- Xinga, B.S.; Hana, Y.; Wanga, X.C.; Caoa, S.; Wena, J.; Zhanga, K. Acclimatization of Anaerobic Sludge with Cow Manure and Realization of High-rate Food Waste Digestion for Biogas Production. Bioresour. Technol. 2020, 315, 123830. [Google Scholar] [CrossRef] [PubMed]
- Budiman, I. The complexity of barriers to biogas digester dissemination in Indonesia: Challenges for agriculture waste management. J. Mater. Cycles Waste Manag. 2021, 23, 1918–1929. [Google Scholar] [CrossRef]
Substrate | Regression Modeling | Formula | Coefficient of Determination (R2) |
---|---|---|---|
Cattle dung | Linear | y = 15.714x − 16.462 | 0.9879 |
Cattle dung + cabbage interspersed | Polynomial order 3 | y = −0.0225x3 + 0.8629x2 + 4.8457x + 61.285 | 0.996 |
Substrate | CH4 Range Compositions (%) | CO2 Range Composition (%) | Temperature Range Inside Digester (°C) | Ambient Temperature Range (°C) | pH Range |
---|---|---|---|---|---|
Cattle dung | 41–78 | 22–48 | 30–37 | 25–34 | 6–8 |
Cattle dung + cabbage interspersed | 20–60 | 33–68 | 30–37 | 30–35 | 6.6–7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nindhia, T.S.; Bidura, I.G.N.G.; Sampurna, I.P.; Nindhia, T.G.T. Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation 2025, 11, 50. https://doi.org/10.3390/fermentation11020050
Nindhia TS, Bidura IGNG, Sampurna IP, Nindhia TGT. Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation. 2025; 11(2):50. https://doi.org/10.3390/fermentation11020050
Chicago/Turabian StyleNindhia, Tjokorda Sari, I Gusti Nyoman Gde Bidura, I Putu Sampurna, and Tjokorda Gde Tirta Nindhia. 2025. "Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste" Fermentation 11, no. 2: 50. https://doi.org/10.3390/fermentation11020050
APA StyleNindhia, T. S., Bidura, I. G. N. G., Sampurna, I. P., & Nindhia, T. G. T. (2025). Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation, 11(2), 50. https://doi.org/10.3390/fermentation11020050