Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock Used in Fermentation Experiments
2.2. Inoculum
2.3. Experimental Procedures
2.4. Analytical Methods
3. Results and Discussion
3.1. Biohydrogen Production
3.2. Organic Removal
3.3. VFA and Ethanol Profiles
4. Conclusions
- Synergistic substrate interactions: Combining carbohydrate-rich CW with nutrient-balanced SS or LPM, along with moderate amounts of OMW, enhanced metabolic pathways favorable for hydrogen production while reducing the inhibitory impact of phenolic compounds present in OMW.
- Operational stability: The process of co-fermentation naturally regulated pH levels to support dark fermentation, stimulating microbial function and carbohydrate transformation without requiring chemical interventions.
- Process efficiency and feasibility: The strategy successfully combined efficient hydrogen generation and significant VFA accumulation, showcasing the feasibility of merging bioenergy production with waste utilization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark Fermentative Biohydrogen Production from Lignocellulosic Biomass: Technological Challenges and Future Prospects. Renew. Sustain. Energy Rev. 2020, 117. [Google Scholar] [CrossRef]
- Zagrodnik, R.; Sobociński, D. Continuous Dark-Fermentative H2 Production Using Carbon Components of Lignocellulose Hydrolysates: Insight into the Difference between Mixed and Single Substrates. Int. J. Hydrogen Energy 2024, 52, 378–388. [Google Scholar] [CrossRef]
- Olabi, A.G.; Bahri, A.S.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-Vscale Hydrogen Production and Storage Technologies: Current Status and Future Directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Boodhun, B.S.F.; Mudhoo, A.; Kumar, G.; Kim, S.H.; Lin, C.Y. Research Perspectives on Constraints, Prospects and Opportunities in Biohydrogen Production. Int. J. Hydrogen Energy 2017, 42, 27471–27481. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Khoo, K.S.; Show, P.L.; Femina Carolin, C.; Fetcia Jackulin, C.; Jeevanantham, S.; Karishma, S.; Show, K.Y.; Lee, D.J.; et al. Biohydrogen from Organic Wastes as a Clean and Environment-Friendly Energy Source: Production Pathways, Feedstock Types, and Future Prospects. Bioresour. Technol. 2021, 342, 126021. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Fermentative Hydrogen Production Using Various Biomass-Based Materials as Feedstock. Renew. Sustain. Energy Rev. 2018, 92, 284–306. [Google Scholar] [CrossRef]
- Weide, T.; Hernández Regalado, R.E.; Brügging, E.; Wichern, M.; Wetter, C. Biohydrogen Production via Dark Fermentation with Pig Manure and Glucose Using PH-Dependent Feeding. Chem. Eng. Technol. 2020, 43, 1578–1587. [Google Scholar] [CrossRef]
- Patel, A.K.; Vaisnav, N.; Mathur, A.; Gupta, R.; Tuli, D.K. Whey Waste as Potential Feedstock for Biohydrogen Production. Renew. Energy 2016, 98, 221–225. [Google Scholar] [CrossRef]
- Gadhe, A.; Sonawane, S.S.; Varma, M.N. Enhancement Effect of Hematite and Nickel Nanoparticles on Biohydrogen Production from Dairy Wastewater. Int. J. Hydrogen Energy 2015, 40, 4502–4511. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Ghimire, A.; Ezeokoli, O.T.; Rao, S.; Ngan, W.Y.; Habimana, O.; Yao, Y.; Yang, P.; Yiu Fung, A.H.; Yoro, K.O.; et al. Valorization of Volatile Fatty Acids from the Dark Fermentation Waste Streams-A Promising Pathway for a Biorefinery Concept. Renew. Sustain. Energy Rev. 2021, 143, 110971. [Google Scholar] [CrossRef]
- Vieira, R.F.; Sydney, E.B.; Fiametti, K.G.; Wancura, J.H.C.; Oliveira, J.V. Production of Volatile Fatty Acids by Dark Fermentation in Whey-Based Media: Effects of Supplementation and Hydrolysis. Waste Biomass Valorization 2023, 14, 3947–3955. [Google Scholar] [CrossRef]
- Taheri, E.; Amin, M.M.; Pourzamani, H.; Fatehizadeh, A.; Ghasemian, M.; Bina, B. Comparison of Acetate-Butyrate and Acetate-Ethanol Metabolic Pathway in Biohydrogen Production. J. Med. Signals Sens. 2018, 8, 101–107. [Google Scholar] [CrossRef]
- Yang, G.; Hu, Y.; Wang, J. Biohydrogen Production from Co-Fermentation of Fallen Leaves and Sewage Sludge. Bioresour. Technol. 2019, 285, 121342. [Google Scholar] [CrossRef]
- Shen, D.; Yin, J.; Yu, X.; Wang, M.; Long, Y.; Shentu, J.; Chen, T. Acidogenic Fermentation Characteristics of Different Types of Protein-Rich Substrates in Food Waste to Produce Volatile Fatty Acids. Bioresour. Technol. 2017, 227, 125–132. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yin, L.; Li, W.; Wang, Z.; Luo, L. Optimization of Hydrogen Production from Agricultural Wastes Using Mixture Design. Int. J. Agric. Biol. Eng. 2017, 10, 246–254. Available online: http://www.ijabe.net/article/doi/10.3965/j.ijabe.20171003.2688 (accessed on 21 October 2025).
- Vidal, A.; Mohiuddin, O.; Chance, E.; Serrano-Blanco, S.; Howard, T.P.; Muñoz-Muñoz, J.; Velasquez-Orta, S.; Rios-Solis, L. Biohydrogen Production through Dark Fermentation of Agricultural Waste: Novel Strain and Feedstock Characterisation. Bioresour. Technol. 2025, 434, 132839. [Google Scholar] [CrossRef]
- Pecorini, I.; Baldi, F.; Iannelli, R. Biochemical Hydrogen Potential Tests Using Different Inocula. Sustainability 2019, 11, 622. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington DC, USA, 2005. [Google Scholar]
- Nollet, L.M.L. Handbook of Food Analysis-3 Volume Set; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Josefsson, L. Invertebrate Neuropeptide Hormones. Int. J. Pept. Protein Res. 1983, 21, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. The Gompertz Model for Biohydrogen Production Kinetics: Origin, Application and Solving Methods. Int. J. Hydrogen Energy 2024, 88, 242–250. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Vavouraki, A.I.; Kornaros, M. Effect of PH on the Anaerobic Acidogenesis of Agroindustrial Wastewaters for Maximization of Bio-Hydrogen Production: A Lab-Scale Evaluation Using Batch Tests. Bioresour. Technol. 2014, 162, 218–227. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pontoni, L.; d’Antonio, G.; Lens, P.N.L.; Esposito, G.; Pirozzi, F. Dark Fermentation of Complex Waste Biomass for Biohydrogen Production by Pretreated Thermophilic Anaerobic Digestate. J. Environ. Manag. 2015, 152, 43–48. [Google Scholar] [CrossRef]
- Hernández, M.; Rodríguez, M. Hydrogen Production by Anaerobic Digestion of Pig Manure: Effect of Operating Conditions. Renew. Energy 2013, 53, 187–192. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Dhar, B.R.; Nakhla, G.; Lee, H.S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renew. Sustain. Energy Rev. 2017, 79, 656–668. [Google Scholar] [CrossRef]
- Zagklis, D.; Papadionysiou, M.; Tsigkou, K.; Tsafrakidou, P.; Zafiri, C.; Kornaros, M. Effect of PH on the Economic Potential of Dark Fermentation Products from Used Disposable Nappies and Expired Food Products. Appl. Sci. 2021, 11, 4099. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Vavouraki, A.I.; Tsigkou, K.; Zafiri, C.; Kornaros, M. Dark Fermentation of Sweet Sorghum Stalks, Cheese Whey and Cow Manure Mixture: Effect of PH, Pretreatment and Organic Load. Processes 2021, 9, 1017. [Google Scholar] [CrossRef]
- Silva, F.M.S.; Oliveira, L.B.; Mahler, C.F.; Bassin, J.P. Hydrogen Production through Anaerobic Co-Digestion of Food Waste and Crude Glycerol at Mesophilic Conditions. Int. J. Hydrogen Energy 2017, 42, 22720–22729. [Google Scholar] [CrossRef]
- Chu, C.F.; Li, Y.Y.; Xu, K.Q.; Ebie, Y.; Inamori, Y.; Kong, H.N. A PH- and Temperature-Phased Two-Stage Process for Hydrogen and Methane Production from Food Waste. Int. J. Hydrogen Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Zhou, P.; Elbeshbishy, E.; Nakhla, G. Optimization of Biological Hydrogen Production for Anaerobic Co-Digestion of Food Waste and Wastewater Biosolids. Bioresour. Technol. 2013, 130, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, J.; Wang, H.; Zhou, Y.; Xiao, B.; Zhou, L.; Yu, G.; Yang, M.; Xiong, Y.; Wu, S. Dark Co-Fermentation of Rice Straw and Pig Manure for Biohydrogen Production: Effects of Different Inoculum Pretreatments and Substrate Mixing Ratio. Environ. Technol. 2021, 42, 4539–4549. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mohammadi, P.; Karami, N.; Barzegar, A.; Mohamad Annuar, M.S. Efficient Hydrogen Gas Production from Molasses in Hybrid Anaerobic-Activated Sludge-Rotating Biological Contactor. Int. J. Hydrogen Energy 2019, 44, 2592–2602. [Google Scholar] [CrossRef]
- Mokhtarani, B.; Zanganeh, J.; Moghtaderi, B. A Review on Biohydrogen Production Through Dark Fermentation, Process Parameters and Simulation. Energies 2025, 18, 1092. [Google Scholar] [CrossRef]





| Parameters | SS | FWdil | GR | CW | OMW | LPM |
|---|---|---|---|---|---|---|
| pH | 6.3 ± 0.3 | 4.5 ± 0.1 | 3.5 ± 0.1 | 5.2 ± 0.2 | 4.4 ± 0.1 | 5.8 ± 0.1 |
| TS (g/L) | 38.2 ± 0.7 | 54.7 ± 0.6 | 12.7 ± 0.8 | 100.6 ± 3.9 | 79.1 ± 0.3 | 26.3 ± 0.9 |
| VS (g/L) | 26.1 ± 0.5 | 51.2 ± 0.7 | 8.7 ± 0.7 | 90.5 ± 4.0 | 71.5 ± 0.3 | 21.7 ± 0.4 |
| TCOD (g/L) | 45.3 ± 7.6 | 74.4 ± 10.0 | 19.8 ± 7.9 | 134 ± 2.4 | 185.3 ± 22.4 | 35.8 ± 6.2 |
| sCOD (g/L) | 1.4 ± 1.1 | 1.9 ± 0.5 | 16.1 ± 1.4 | 75.4 ± 3.2 | 11.4 ± 0.7 | 10.6 ± 3.1 |
| BOD5 (g/L) | 8.0 ± 0.0 | 27.0 ± 0.0 | 6.0 ± 0.0 | 52.00 ± 0.0 | 20.0 ± 0.0 | 11.0 ± 0.0 |
| TN (g/L) | 1.4 ± 0.0 | 1.5 ± 0 | 0.01 ± 0.0 | 2.1 ± 0.0 | 1.3 ± 0.0 | 1.3 ± 0.1 |
| Proteins (%) | 0.9 ± 0.0 | 0.9 ± 0.0 | 0.6 ± 0.0 | 1.3 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 |
| TP (mg/L) | 137.1 ± 0.1 | 25.8 ± 0.2 | 193.0 ± 0.5 | 201 ± 1.00 | 236 ± 2.05 | 74 ± 2.05 |
| Total carbohydrates (g/L) | 3.6 ± 0.1 | 6.7 ± 0.1 | 4.6 ± 0.1 | 17.7 ± 3.4 | 7.6 ± 0.95 | 2.7 ± 0.1 |
| TOC (%) | 38.7 ± 0.1 | 52.0 ± 0.1 | 45.3 ± 0.6 | 49.9 ± 0.2 | 50.6 ± 0.0 | 46.6 ± 1.1 |
| C/N | 10.6 | 18.9 | - | 23.7 | 31.7 | 9.5 |
| Parameters | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
|---|---|---|---|---|---|---|---|---|
| pH | 5.3 ± 0.0 | 5.9 ± 0.0 | 5.6 ± 0.0 | 5.5 ± 0.0 | 5.3 ± 0.0 | 5.7 ± 0.0 | 5.0 ± 0.0 | 5.4 ± 0.0 |
| TS (g/L) | 44.9 ± 0.3 | 36.6 ± 0.9 | 42.7 ± 0.6 | 41.9 ± 0.7 | 37.9 ± 0.6 | 31.0 ± 0.4 | 32.0 ± 0.6 | 36.0 ± 0.4 |
| VS (g/L) | 37.8 ± 0.6 | 30.4 ± 0.2 | 35.9 ± 0.4 | 35.0 ± 0.5 | 30.3 ± 0.6 | 24.4 ± 0.8 | 25.8 ± 0.4 | 30.3 ± 0.7 |
| sCOD (g/L) | 20.3± 4.1 | 10.8 ± 0.5 | 18.1 ± 1.2 | 18.2 ± 3.1 | 21.9 ± 0.3 | 16.1 ± 3.2 | 16.5 ± 2.1 | 12.2 ± 1.1 |
| TN (g/L) | 2.1 ± 0.0 | 2.0 ± 0 | 1.6± 0.0 | 1.3 ± 0.0 | 2.0 ± 0.0 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.3 ± 0.1 |
| Proteins (%) | 1.3 ± 0.0 | 1.3 ± 0.0 | 1.0 ± 0.0 | 0.8 ± 0.0 | 1.3 ± 0.0 | 1.1 ± 0.0 | 1.1 ± 0.0 | 0.8 ± 0.0 |
| Soluble carbohydrates (g/L) | 5.4 ± 0.5 | 6.8 ± 0.4 | 6.4 ± 0.4 | 6.7 ± 0.4 | 3.9 ± 0.2 | 6.7 ± 0.2 | 5.0 ± 0.5 | 4.8 ± 0.6 |
| Parameters | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
|---|---|---|---|---|---|---|---|---|---|
| Total Biogas production (NmL) | 219.0 | 42.0 | 248.0 | 245.0 | 103.0 | 171.0 | 66.0 | 77.0 | |
| Biogas composition (%)–H2 | 32.0 | 25.0 | 35.0 | 36.0 | 29.0 | 32.0 | 26.0 | 30.0 | |
| Biohydrogen production (NmL) | 70.1 | 10.5 | 86.8 | 88.2 | 29.9 | 54.7 | 17.2 | 23.1 | |
| Biogas yield (NmL/gVS) | 93.0 | 21.0 | 108.0 | 107.0 | 45.0 | 85.0 | 29.0 | 35.0 | |
| H2 yield (NmL/gVS) | 30.0 | 5.0 | 38.0 | 38.0 | 13.0 | 27.0 | 8.0 | 10.0 | |
| sCOD removal (%) | 6.4 | 4.5 | 9.6 | 12.3 | 11.2 | 6.8 | 3.9 | 4.6 | |
| VS removal (%) | 23.8 | 16.2 | 27.6 | 20.7 | 17.2 | 24.0 | 1.9 | 13.6 | |
| sCarbohydrate removal (%) | 22.1 | 22.7 | 45.0 | 38.9 | 1.3 | 23.2 | 36.7 | 1.0 | |
| TVFAs (g/L) | 3.9 | 3.2 | 5.1 | 6.1 | 2.3 | 2.7 | 1.2 | 4.9 | |
| pHin | 5.3 | 5.9 | 5.6 | 5.5 | 5.3 | 5.7 | 5.0 | 5.4 | |
| pHout | 5.4 | 5.4 | 5.4 | 5.5 | 4.5 | 4.9 | 4.9 | 5.2 | |
| Modified Gompertz model | Hmax (NmL H2) | 70.1 | 10.5 | 86.8 | 88.2 | 29.9 | 54.7 | 17.2 | 23.1 |
| Rmax (NmL H2/h) | 0.36 | 0.11 | 1.15 | 0.57 | 0.6 | 0.45 | 0.35 | 0.34 | |
| λ (hours) | 3.2 | 3.2 | 3.2 | 3.2 | 4.2 | 4.2 | 4.2 | 3.2 | |
| R2 | 0.968 | 0.875 | 0.995 | 0.952 | 0.921 | 0.879 | 0.947 | 0.973 | |
| Parameters | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
|---|---|---|---|---|---|---|---|---|
| Net VFAs | 8.5 | 7.3 | 10.2 | 11.7 | 2.1 | 2.9 | 3.0 | 11.1 |
| Net Ethanol | 3.7 | 2.9 | 3.7 | 4.2 | 5.2 | 7.8 | 2.0 | 0.2 |
| H2 | 0.2 | 0.1 | 0.3 | 0.3 | 0.1 | 0.2 | 0.1 | 0.1 |
| Biomass | 2.0 | 5.0 | 2.0 | 3.0 | 3.0 | 4.0 | 4.0 | 5.0 |
| Residual COD | 93.6 | 95.5 | 90.4 | 87.7 | 88.8 | 93.2 | 96.1 | 95.4 |
| Total | 108.0 | 110.8 | 106.7 | 107.0 | 99.3 | 108.1 | 105.1 | 111.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragkaki, A.; Stratigakis, N.C.; Jafarpour Checkab, T.; De Toni, L.; Choinopoulos, I.; Kaliakatsos, A.; Gounaki, I.; Venieri, D.; Manios, T.; Velonia, K. Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions. Fermentation 2025, 11, 644. https://doi.org/10.3390/fermentation11110644
Maragkaki A, Stratigakis NC, Jafarpour Checkab T, De Toni L, Choinopoulos I, Kaliakatsos A, Gounaki I, Venieri D, Manios T, Velonia K. Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions. Fermentation. 2025; 11(11):644. https://doi.org/10.3390/fermentation11110644
Chicago/Turabian StyleMaragkaki, Angeliki, Napoleon Christoforos Stratigakis, Tahereh Jafarpour Checkab, Lisa De Toni, Ioannis Choinopoulos, Andreas Kaliakatsos, Iosifina Gounaki, Danae Venieri, Thrassyvoulos Manios, and Kelly Velonia. 2025. "Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions" Fermentation 11, no. 11: 644. https://doi.org/10.3390/fermentation11110644
APA StyleMaragkaki, A., Stratigakis, N. C., Jafarpour Checkab, T., De Toni, L., Choinopoulos, I., Kaliakatsos, A., Gounaki, I., Venieri, D., Manios, T., & Velonia, K. (2025). Hydrogen Production Through Anaerobic Co-Digestion of Different Agroindustrial Waste and Food Waste at Mesophilic Conditions. Fermentation, 11(11), 644. https://doi.org/10.3390/fermentation11110644

