The Use of Trichoderma spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review
Abstract
:1. Introduction
2. Structure and Composition of Lignocellulosic Biomass
3. Bioethanol Production
3.1. Trichoderma spp.’s Application in the Biological Pre-Treatment of Lignocellulosic Biomass
3.2. Application of Trichoderma spp. in Hemicellulose Production
3.3. Application of Trichoderma spp. in Cellulose Production
3.3.1. Grain-Derived Waste
3.3.2. Fruit Waste
3.3.3. Wood/Husk Waste
3.3.4. Other Plant Waste
3.3.5. Paper Waste
4. Biocontrol Agent Production
5. Animal Nutrition
6. Engineering Strategies to Enhance Trichoderma’s Enzymatic Activity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubicek, C.P.; Steindorff, A.S.; Chenthamara, K.; Manganiello, G.; Henrissat, B.; Zhang, J.; Cai, F.; Kopchinskiy, A.G.; Kubicek, E.M.; Kuo, A.; et al. Evolution and Comparative Genomics of the Most Common Trichoderma Species. BMC Genomics 2019, 20, 485. [Google Scholar] [CrossRef]
- Gorai, P.S.; Barman, S.; Gond, S.K.; Mandal, N.C. Trichoderma. In Beneficial Microbes in Agro-Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 571–591. [Google Scholar]
- Adnan, M.; Islam, W.; Shabbir, A.; Khan, K.A.; Ghramh, H.A.; Huang, Z.; Chen, H.Y.H.; Lu, G. Plant Defense against Fungal Pathogens by Antagonistic Fungi with Trichoderma in Focus. Microb. Pathog. 2019, 129, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, I.S.; Kubicek, C.P. Genetic Engineering of Trichoderma reesei Cellulases and Their Production. Microb. Biotechnol. 2017, 10, 1485–1499. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Schmoll, M. Biology and Biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 2010, 87, 787–799. [Google Scholar] [CrossRef]
- Poveda, J. Trichoderma as Biocontrol Agent against Pests: New Uses for a Mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Preczeski, K.P.; Czapela, F.; Dalastra, C.; Kubeneck, S.; Klanovicz, N.; Fongaro, G.; Treichel, H. Trichoderma Potential in Biofuel Production and Biorefinery. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 221–239. [Google Scholar]
- Puranen, T.; Alapuranen, M.; Vehmaanperä, J. Trichoderma Enzymes for Textile Industries. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 351–362. [Google Scholar]
- Singh, S.; Singh, V.K.; Aamir, M.; Dubey, M.K.; Patel, J.S.; Upadhyay, R.S.; Gupta, V.K. Cellulase in Pulp and Paper Industry. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 152–162. [Google Scholar]
- Wei, H.; Wu, M.; Fan, A.; Su, H. Recombinant Protein Production in the Filamentous Fungus Trichoderma. Chin. J. Chem. Eng. 2021, 30, 74–81. [Google Scholar] [CrossRef]
- Zhang, F.; Bunterngsook, B.; Li, J.-X.; Zhao, X.-Q.; Champreda, V.; Liu, C.-G.; Bai, F.-W. Regulation and Production of Lignocellulolytic Enzymes from Trichoderma reesei for Biofuels Production. Adv. Bioenergys 2019, 4, 79–119. [Google Scholar]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Vasić, K.; Knez, Ž.; Leitgeb, M. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021, 26, 753. [Google Scholar] [CrossRef]
- Saha, B.C. Hemicellulose Bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef]
- Putro, J.N.; Soetaredjo, F.E.; Lin, S.-Y.; Ju, Y.-H.; Ismadji, S. Pretreatment and Conversion of Lignocellulose Biomass into Valuable Chemicals. RSC Adv. 2016, 6, 46834–46852. [Google Scholar] [CrossRef]
- Bakhshayeshan-Agdam, H.; Salehi-Lisar, S.Y.; Zarrini, G. Lignocellulosic Biofuel Production Technologies and Their Applications for Bioenergy Systems. In Biofuels Production—Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies; Springer: Cham, Switzerland, 2020; pp. 287–306. [Google Scholar]
- Patel, A.; Shah, A.R. Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol Production from Agricultural Wastes: An Overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A Review on the Pretreatment of Lignocellulose for High-Value Chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Kathiresan, K. Bioconversion of Lignocellulosic Waste to Bioethanol by Trichoderma and Yeast Fermentation. 3 Biotech 2014, 4, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and Challenges in Lignocellulosic Biofuel Production Technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V. Novel Enzymes for the Degradation of Cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The Role of Pretreatment in Improving the Enzymatic Hydrolysis of Lignocellulosic Materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. In Biofuels; Springer: Berlin/Heidelberg, Germany, 2007; pp. 41–65. [Google Scholar]
- Zhao, J.; Zeng, S.; Xia, Y.; Xia, L. Expression of a Thermotolerant Laccase from Pycnoporus sanguineus in Trichoderma reesei and Its Application in the Degradation of Bisphenol A. J. Biosci. Bioeng. 2018, 125, 371–376. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, Y.; Li, K.; Sun, Y.; Yao, C.; Ling, J.; Zhong, Y. Enhancing the Production of a Heterologous Trametes Laccase (LacA) by Replacement of the Major Cellulase CBH1 in Trichoderma reesei. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad002. [Google Scholar] [CrossRef]
- Kiiskinen, L.-L.; Kruus, K.; Bailey, M.; Ylösmäki, E.; Siika-aho, M.; Saloheimo, M. Expression of Melanocarpus albomyces Laccase in Trichoderma reesei and Characterization of the Purified Enzyme. Microbiology 2004, 150, 3065–3074. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.M.; Manavalan, T.; Ramesh, J.; Thangavelu, K.P.; Heese, K. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Microorganisms 2020, 8, 159. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, Y.; Xiao, P.; Wang, X.; Wang, T.; He, F. Improved Biomass Saccharification by Trichoderma reesei through Heterologous Expression of LacA Gene from Trametes Sp. AH28-2. J. Biosci. Bioeng. 2012, 113, 697–703. [Google Scholar] [CrossRef]
- Wang, R.; Yang, J.; Zhang, G.; Chao, Y.; Li, Z.; Ye, Q.; Qian, S. Co-Expression of Beta-Glucosidase and Laccase in Trichoderma reesei by Random Insertion with Enhanced Filter Paper Activity. Mol. Biotechnol. 2017, 59, 353–364. [Google Scholar] [CrossRef]
- Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, A.; Pan, X.; Saddler, J.N. Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In Biofuels; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–93. [Google Scholar]
- Fu, K.; Fan, L.; Luo, X. Identification of Laccase Genes in Trichoderma Asperellum Ts93. Biotechnol Lett 2023, 45, 479–487. [Google Scholar] [CrossRef]
- Ghorbani, F.; Karimi, M.; Biria, D.; Kariminia, H.R.; Jeihanipour, A. Enhancement of Fungal Delignification of Rice Straw by Trichoderma viride sp. to Improve Its Saccharification. Biochem. Eng. J. 2015, 101, 77–84. [Google Scholar] [CrossRef]
- Hölker, U.; Dohse, J.; Höfer, M. Extracellular Laccases in Ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol. 2002, 47, 423–427. [Google Scholar] [CrossRef]
- Othman, A.M.; Mahmoud, M.; Abdelraof, M.; Abdel Karim, G.S.A.; Elsayed, A.M. Enhancement of Laccase Production from a Newly Isolated Trichoderma harzianum S7113 Using Submerged Fermentation: Optimization of Production Medium via Central Composite Design and Its Application for Hydroquinone Degradation. Int. J. Biol. Macromol. 2021, 192, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Djali, M.; Kayaputri, I.L.; Kurniati, D.; Sukarminah, E.; Mudjenan, I.M.H.; Utama, G.L. Degradation of Lignocelluloses cocoa Shell (Theobroma cacao L.) by Various Types of Mould Treatments. J. Food Qual. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current Status of Xylanase for Biofuel Production: A Review on Classification and Characterization. Biomass. Convers. Biorefin. 2023, 13, 8773–8791. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A Detailed Overview of Xylanases: An Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Polizeli, M.L.T.M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from Fungi: Properties and Industrial Applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef]
- Dhaver, P.; Pletschke, B.; Sithole, B.; Govinden, R. Optimization, Purification, and Characterization of Xylanase Production by a Newly Isolated Trichoderma harzianum Strain by a Two-Step Statistical Experimental Design Strategy. Sci. Rep. 2022, 12, 17791. [Google Scholar] [CrossRef]
- Alananbeh, K.M.; Alkfoof, R.; Muhaidat, R.; Massadeh, M. Production of Xylanase by Trichoderma Species Growing on Olive Mill Pomace and Barley Bran in a Packed-Bed Bioreactor. J. Fungi 2024, 10, 49. [Google Scholar] [CrossRef]
- de Faria, F.P.; Te’O, V.S.J.; Bergquist, P.L.; Azevedo, M.O.; Nevalainen, K.M.H. Expression and Processing of a Major Xylanase (XYN2) from the Thermophilic Fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett. Appl. Microbiol. 2002, 34, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Sona Gauri, S.; Das, A.; Jana, A.; Maity, C.; Mandal, A.; Das Mohapatra, P.K.; Pati, B.R.; Mondal, K.C. Process Optimization of Xylanase Production Using Cheap Solid Substrate by Trichoderma reesei SAF3 and Study on the Alteration of Behavioral Properties of Enzyme Obtained from SSF and SmF. Bioprocess. Biosyst. Eng. 2013, 36, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Luo, L.; Wang, E.; Wang, R.; Liu, L.; Liu, J.; Yuan, H. Low-Cost Cellulase-Hemicellulase Mixture Secreted by Trichoderma harzianum EM0925 with Complete Saccharification Efficacy of Lignocellulose. Int. J. Mol. Sci. 2020, 21, 371. [Google Scholar] [CrossRef]
- Gómez-Mendoza, D.P.; Junqueira, M.; do Vale, L.H.F.; Domont, G.B.; Ferreira Filho, E.X.; de Sousa, M.V.; Ricart, C.A.O. Secretomic Survey of Trichoderma harzianum Grown on Plant Biomass Substrates. J. Proteome Res. 2014, 13, 1810–1822. [Google Scholar] [CrossRef]
- Ajijolakewu, K.A.; Leh, C.P.; Lee, C.K.; Wan Nadiah, W.A. Characterization of Novel Trichoderma Hemicellulase and Its Use to Enhance Downstream Processing of Lignocellulosic Biomass to Simple Fermentable Sugars. Biocatal. Agric. Biotechnol. 2017, 11, 166–175. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, S.; Xing, M.; Yu, S.; Liu, G. Achieving Efficient Protein Expression in Trichoderma reesei by Using Strong Constitutive Promoters. Microb. Cell Fact. 2012, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xu, Y.; Yu, X.-W. Rational Engineering of Xylanase Hyper-Producing System in Trichoderma reesei for Efficient Biomass Degradation. Biotechnol. Biofuels 2021, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Filho, J.A.; Horta, M.A.C.; Beloti, L.L.; dos Santos, C.A.; de Souza, A.P. Carbohydrate-Active Enzymes in Trichoderma harzianum: A Bioinformatic Analysis Bioprospecting for Key Enzymes for the Biofuels Industry. BMC Genomics 2017, 18, 779. [Google Scholar] [CrossRef] [PubMed]
- Marx, I.J.; van Wyk, N.; Smit, S.; Jacobson, D.; Viljoen-Bloom, M.; Volschenk, H. Comparative Secretome Analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during Solid-State Fermentation on Sugarcane Bagasse. Biotechnol. Biofuels 2013, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Saloheimo, M.; Kuja-Panula, J.; Ylösmäki, E.; Ward, M.; Penttilä, M. Enzymatic Properties and Intracellular Localization of the Novel Trichoderma reesei β-Glucosidase BGLII (Cel1A). Appl. Environ. Microbiol. 2002, 68, 4546–4553. [Google Scholar] [CrossRef]
- Gupta, V.K.; Steindorff, A.S.; de Paula, R.G.; Silva-Rocha, R.; Mach-Aigner, A.R.; Mach, R.L.; Silva, R.N. The Post-Genomic Era of Trichoderma reesei: What’s Next? Trends Biotechnol. 2016, 34, 970–982. [Google Scholar] [CrossRef]
- Mandeep; Liu, H.; Shukla, P. Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS Omega 2021, 6, 6055–6063. [Google Scholar] [CrossRef]
- Bischof, R.H.; Ramoni, J.; Seiboth, B. Cellulases and beyond: The First 70 Years of the Enzyme Producer Trichoderma reesei. Microb. Cell Fact. 2016, 15, 106. [Google Scholar] [CrossRef]
- Rani Singhania, R.; Dixit, P.; Kumar Patel, A.; Shekher Giri, B.; Kuo, C.-H.; Chen, C.-W.; Di Dong, C. Role and Significance of Lytic Polysaccharide Monooxygenases (LPMOs) in Lignocellulose Deconstruction. Bioresour. Technol. 2021, 335, 125261. [Google Scholar] [CrossRef]
- Saloheimo, M.; Paloheimo, M.; Hakola, S.; Pere, J.; Swanson, B.; Nyyssönen, E.; Bhatia, A.; Ward, M.; Penttilä, M. Swollenin, a Trichoderma reesei Protein with Sequence Similarity to the Plant Expansins, Exhibits Disruption Activity on Cellulosic Materials. Eur. J. Biochem. 2002, 269, 4202–4211. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, X.; Xue, Y.; Hu, J.; Gao, M.-T.; Tsang, Y.F. The Influence of Soluble Polysaccharides Derived from Rice Straw upon Cellulase Production by Trichoderma reesei. Process Biochem. 2017, 61, 130–136. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Oberoi, H.S.; Kaur, S.; Bansal, S.; Brar, S.K. Value-Addition of Agricultural Wastes for Augmented Cellulase and Xylanase Production through Solid-State Tray Fermentation Employing Mixed-Culture of Fungi. Ind. Crops Prod. 2011, 34, 1160–1167. [Google Scholar] [CrossRef]
- Muthuvelayudham, R.; Deiveegan, S.; Viruthagiri, T. Triggering of Cellulase Protein Production Using Cellulose with Lactose by Trichoderma reesei. Asian J. Microbiol. Biotechnol. Environ. Sci. 2006, 8, 249–251. [Google Scholar]
- Salomão, G.S.B.; Agnezi, J.C.; Paulino, L.B.; Hencker, L.B.; de Lira, T.S.; Tardioli, P.W.; Pinotti, L.M. Production of Cellulases by Solid State Fermentation Using Natural and Pretreated Sugarcane Bagasse with Different Fungi. Biocatal. Agric. Biotechnol. 2019, 17, 1–6. [Google Scholar] [CrossRef]
- Rocky-Salimi, K.; Hamidi-Esfahani, Z. Evaluation of the Effect of Particle Size, Aeration Rate and Harvest Time on the Production of Cellulase by Trichoderma reesei QM9414 Using Response Surface Methodology. Food Bioprod. Process. 2010, 88, 61–66. [Google Scholar] [CrossRef]
- Sukumaran, R.K.; Singhania, R.R.; Mathew, G.M.; Pandey, A. Cellulase Production Using Biomass Feed Stock and Its Application in Lignocellulose Saccharification for Bio-Ethanol Production. Renew. Energy 2009, 34, 421–424. [Google Scholar] [CrossRef]
- Shen, L.; Su, Y.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Zhang, S.; Chen, G. Establishment of a Highly Efficient and Low Cost Mixed Cellulase System for Bioconversion of Corn Stover by Trichoderma reesei and Aspergillus niger. Biocatal. Agric. Biotechnol. 2021, 32, 101849. [Google Scholar] [CrossRef]
- Lodha, A.; Pawar, S.; Rathod, V. Optimised Cellulase Production from Fungal Co-Culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under Solid State Fermentation. J. Environ. Chem. Eng. 2020, 8, 103958. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, C.; Song, X.-Y. Optimization of Enzymatic Hydrolysis of Steam-Exploded Corn Stover by Two Approaches: Response Surface Methodology or Using Cellulase from Mixed Cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresour. Technol. 2010, 101, 4111–4119. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, V. Impact of Process Parameters and Plant Polysaccharide Hydrolysates in Cellulase Production by Trichoderma reesei and Neurospora crassa under Wheat Bran Based Solid State Fermentation. Biotechnol. Rep. 2020, 25, e00416. [Google Scholar] [CrossRef]
- Meenakshi, G.; Giridhar, S. Induction and Optimization of Cellulases Using Various Agro-Wastes by Trichoderma virdii: Effect of Alkali Pretreatment. Afr. J. Biotechnol. 2014, 13, 3426–3432. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xiong, L.; Mehmood, M.A.; Zhao, X.; Bai, F. On-Site Cellulase Production and Efficient Saccharification of Corn Stover Employing Cbh2 Overexpressing Trichoderma reesei with Novel Induction System. Bioresour. Technol. 2017, 238, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, S.; Deswal, D.; Karp, M.; Kuhad, R.C. Bioprocessing of Enhanced Cellulase Production from a Mutant of Trichoderma asperellum RCK2011 and Its Application in Hydrolysis of Cellulose. Fuel 2014, 124, 183–189. [Google Scholar] [CrossRef]
- Wang, H.; Zhai, L.; Geng, A. Enhanced Cellulase and Reducing Sugar Production by a New Mutant Strain Trichoderma harzianum EUA20. J. Biosci. Bioeng. 2020, 129, 242–249. [Google Scholar] [CrossRef]
- Sirohi, R.; Singh, A.; Tarafdar, A.; Shahi, N.C.; Verma, A.K.; Kushwaha, A. Cellulase Production from Pre-Treated Pea Hulls Using Trichoderma reesei Under Submerged Fermentation. Waste Biomass. Valoriz. 2019, 10, 2651–2659. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.M.; Heo, Y.M.; Lee, J.; Kim, J.S.; Kang, K.Y.; Kim, J.-J. Utilization of Agricultural Residues for Enhancement of Cellulolytic Enzyme Production and Enzymatic Saccharification by Trichoderma harzianum KUC1716. Ind. Crops Prod. 2017, 109, 185–191. [Google Scholar] [CrossRef]
- Smuga-Kogut, M.; Zgórska, K.; Kogut, T.; Kukiełka, K.; Wojdalski, J.; Kupczyk, A.; Dróżdż, B.; Wielewska, I. The Use of Ionic Liquid Pretreatment of Rye Straw for Bioethanol Production. Fuel 2017, 191, 266–274. [Google Scholar] [CrossRef]
- Libardi, N.; Soccol, C.R.; Góes-Neto, A.; de Oliveira, J.; Vandenberghe, L.P.d.S. Domestic Wastewater as Substrate for Cellulase Production by Trichoderma harzianum. Process Biochem. 2017, 57, 190–199. [Google Scholar] [CrossRef]
- Idris, A.S.O.; Pandey, A.; Rao, S.S.; Sukumaran, R.K. Cellulase Production through Solid-State Tray Fermentation, and Its Use for Bioethanol from Sorghum Stover. Bioresour. Technol. 2017, 242, 265–271. [Google Scholar] [CrossRef]
- Siwarasak, P.; Pajantagate, P.; Prasertlertrat, K. Use of Trichoderma reesei RT-P1 Crude Enzyme Powder for Ethanol Fermentation of Sweet Sorghum Fresh Stalks. Bioresour. Technol. 2012, 107, 200–204. [Google Scholar] [CrossRef]
- Irshad, M.; Anwar, Z.; But, H.I.; Afroz, A.; Ikram, N.; Rashid, U. The Industrial Applicability of Purified Cellulase Complex Indigenously Produced by Trichoderma viride through Solid-State Bio-Processing of Agro-Industrial and Municipal Paper Wastes. Bioresources 2013, 8, 145–157. [Google Scholar] [CrossRef]
- Omojasola, P.F.; Jilani, O.P. Cellulase Production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae Cultured on Waste Materials from Orange. Pak. J. Biol. Sci. 2008, 11, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Kannahi, M.; Elangeswari, S. Enhanced Production of Cellulase on Different Fruit Peel Under Submerged Fermentation. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 161–165. [Google Scholar]
- Saravanan, P.; Muthuvelayudham, R.; Viruthagiri, T. Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology. J. Eng. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Saravanan, P.; Muthuvelayudham, R.; Rajesh Kannan, R.; Viruthagiri, T. Optimization of Cellulase Production Using Trichoderma reesei by RSM and Comparison with Genetic Algorithm. Front. Chem. Sci. Eng. 2012, 6, 443–452. [Google Scholar] [CrossRef]
- Madhavan, S. Effect of Cellulase Production by Fungi Cultured on Banana Waste. Int. J. Pure Appl. Biosci. 2016, 4, 256–262. [Google Scholar] [CrossRef]
- Gordillo-Fuenzalida, F.; Echeverria-Vega, A.; Cuadros-Orellana, S.; Faundez, C.; Kähne, T.; Morales-Vera, R. Cellulases Production by a Trichoderma sp. Using Food Manufacturing Wastes. Appl. Sci. 2019, 9, 4419. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, V.; Bansal, M.C. Utility of Luffa cylindrica and Litchi chinensis Peel, an Agricultural Waste Biomass in Cellulase Production by Trichoderma reesei under Solid State Cultivation. Biocatal. Agric. Biotechnol. 2018, 16, 483–492. [Google Scholar] [CrossRef]
- Xin, F.; Geng, A. Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation. Appl. Biochem. Biotechnol. 2010, 162, 295–306. [Google Scholar] [CrossRef]
- Raja Sathendra, E.; Baskar, G.; Praveenkumar, R.; Gnansounou, E. Bioethanol Production from Palm Wood Using Trichoderma reesei and Kluveromyces marxianus. Bioresour. Technol. 2019, 271, 345–352. [Google Scholar] [CrossRef]
- Kittanan, T.; Nareerat, L.; Sawwanit, K.; Teerin, C. Uses of Copra Waste and Wheat Bran for Cellulase Production by Trichoderma reesei in Solid State Fermentation. In Proceedings of the Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics—ICBBB 2018, Tokyo, Japan, 18–20 January 2018; ACM Press: New York, NY, USA, 2018; pp. 56–59. [Google Scholar]
- Dey, P.; Singh, J.; Scaria, J.; Anand, A.P. Improved Production of Cellulase by Trichoderma reesei (MTCC 164) from Coconut Mesocarp-Based Lignocellulosic Wastes under Response Surface-Optimized Condition. 3 Biotech 2018, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.; Kalra, A.; Sharma, P.K.; Sangwan, R.S. Cellulase Production by Six Trichoderma spp. Fermented on Medicinal Plant Processings. J. Ind. Microbiol. Biotechnol. 2009, 36, 605–609. [Google Scholar] [CrossRef]
- Ahuja, V.; Bhatt, A.K. Trichoderma Viride (MTCC 800): A Potential Candidate for Agri-Horti Waste Utilization by Solid State Fermentation. Int. J. Environ. Sci. Technol. 2018, 15, 2679–2684. [Google Scholar] [CrossRef]
- Reczey, K.; Szengyel, Z.; Eklund, R.; Zacchi, G. Cellulase Production by Trichoderma reesei. Bioresour. Technol. 1996, 57, 25–30. [Google Scholar] [CrossRef]
- Damisa, D.; Sule, E.I.; Moneme, S. Cellulase Production from Waste Paper Using Trichoderma Species Isolated from Rhizospheric Soil. Afr. J. Biotechnol. 2012, 11, 16342–16346. [Google Scholar]
- Ju, L.-K.; Afolabi, O.A. Wastepaper Hydrolysate as Soluble Inducing Substrate for Cellulase Production in Continuous Culture of Trichoderma reesei. Biotechnol. Prog. 1999, 15, 91–97. [Google Scholar] [CrossRef]
- Weiss, R.; Eischer, A.; Tadic, T.; Gritsch, S.M.; Ortner, M.; Prall, K.; Neunteufel, E.; Putz, R.F.; Guebitz, G.M.; Nyanhongo, G.S. Valorisation of Slaughter House and Deinking Paper Waste Streams for the Production of Enzyme by Trichoderma reesei. J. Clean. Prod. 2020, 275, 122882. [Google Scholar] [CrossRef]
- Varotkar, P. Bioconversion of Waste Paper into Bio-Ethanol by Co-Culture of Fungi Isolated from Lignocellulosic Waste. Int. J. Pure Appl. Biosci. 2016, 4, 264–274. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Global Potential Bioethanol Production from Wasted Crops and Crop Residues. Biomass. Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Prasad, R.K.; Chatterjee, S.; Mazumder, P.B.; Gupta, S.K.; Sharma, S.; Vairale, M.G.; Datta, S.; Dwivedi, S.K.; Gupta, D.K. Bioethanol Production from Waste Lignocelluloses: A Review on Microbial Degradation Potential. Chemosphere 2019, 231, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Gusakov, A.V. Alternatives to Trichoderma reesei in Biofuel Production. Trends Biotechnol. 2011, 29, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Alhomodi, A.F.; Gibbons, W.R.; Karki, B. Estimation of Cellulase Production by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei during Solid and Submerged State Fermentation of Raw and Processed Canola Meal. Bioresour. Technol. Rep. 2022, 18, 101063. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Awasthi, S.K.; Awasthi, M.K.; Awasthi, A.K.; Mishra, S.; Chen, J. The Dynamic of Cellulase Activity of Fungi Inhabiting Organic Municipal Solid Waste. Bioresour. Technol. 2018, 251, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Zhao, X.; Bai, F. Constitutive Cellulase Production from Glucose Using the Recombinant Trichoderma reesei Strain Overexpressing an Artificial Transcription Activator. Bioresour. Technol. 2017, 223, 317–322. [Google Scholar] [CrossRef]
- Chitranshi, R.; Kapoor, R. Utilization of Over-Ripened Fruit (Waste Fruit) for the Eco-Friendly Production of Ethanol. Vegetos 2021, 34, 270–276. [Google Scholar] [CrossRef]
- Oktavianis, T.; Sofiyanita, S. Making Bioethanol From Cocoa Fruit Skin Waste By Hydrolysis Process Using Trichoderma viride Mold. Indones. J. Chem. Sci. Technol. IJCST 2020, 2, 75. [Google Scholar] [CrossRef]
- Smolinska, U.; Kowalska, B.; Kowalczyk, W.; Szczech, M. The Use of Agro-Industrial Wastes as Carriers of Trichoderma Fungi in the Parsley Cultivation. Sci. Hortic. 2014, 179, 1–8. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and Paper Mill Wastes: Utilizations and Prospects for High Value-Added Biomaterials. Bioresour. Bioprocess. 2021, 8, 35. [Google Scholar] [CrossRef]
- Bader, J.; Mast-Gerlach, E.; Popović, M.K.; Bajpai, R.; Stahl, U. Relevance of Microbial Coculture Fermentations in Biotechnology. J. Appl. Microbiol. 2010, 109, 371–387. [Google Scholar] [CrossRef]
- Dong, M.; Wang, S.; Xu, F.; Xiao, G.; Bai, J. Efficient Utilization of Waste Paper as an Inductive Feedstock for Simultaneous Production of Cellulase and Xylanase by Trichoderma longiflorum. J. Clean. Prod. 2021, 308, 127287. [Google Scholar] [CrossRef]
- Sala, A.; Barrena, R.; Artola, A.; Sánchez, A. Current Developments in the Production of Fungal Biological Control Agents by Solid-State Fermentation Using Organic Solid Waste. Crit. Rev. Environ. Sci. Technol. 2019, 49, 655–694. [Google Scholar] [CrossRef]
- Zin, N.A.; Badaluddin, N.A. Biological Functions of Trichoderma spp. for Agriculture Applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Kumar, D. Trichoderma: A Beneficial Antifungal Agent and Insights into Its Mechanism of Biocontrol Potential. Egypt J. Biol. Pest Control 2020, 30, 133. [Google Scholar] [CrossRef]
- Bai, Z.; Jin, B.; Li, Y.; Chen, J.; Li, Z. Utilization of Winery Wastes for Trichoderma viride Biocontrol Agent Production by Solid State Fermentation. J. Environ. Sci. 2008, 20, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Khalili, E.; Huyop, F.; Myra Abd Manan, F.; Wahab, R.A. Optimization of Cultivation Conditions in Banana Wastes for Production of Extracellular β-Glucosidase by Trichoderma harzianum Rifai Efficient for in vitro Inhibition of Macrophomina phaseolina. Biotechnol. Biotechnol. Equip. 2017, 31, 921–934. [Google Scholar] [CrossRef]
- Zhang, C.; Ali Khan, R.A.; Wei, H.; Wang, R.; Hou, J.; Liu, T. Rapid and Mass Production of Biopesticide Trichoderma Brev T069 from Cassava Peels Using Newly Established Solid-State Fermentation Bioreactor System. J. Environ. Manag. 2022, 313, 114981. [Google Scholar] [CrossRef]
- Sala, A.; Vittone, S.; Barrena, R.; Sánchez, A.; Artola, A. Scanning Agro-Industrial Wastes as Substrates for Fungal Biopesticide Production: Use of Beauveria bassiana and Trichoderma harzianum in Solid-State Fermentation. J. Environ. Manag. 2021, 295, 113113. [Google Scholar] [CrossRef]
- De los Santos-Villalobos, S.; Hernández-Rodríguez, L.E.; Villaseñor-Ortega, F.; Peña-Cabriales, J.J. Production of Trichoderma asperellum T8a Spores by a “Home-made” Solid-State Fermentation of Mango Industrial Wastes. Bioresources 2012, 7, 4938–4951. [Google Scholar] [CrossRef]
- Naeimi, S.; Khosravi, V.; Varga, A.; Vágvölgyi, C.; Kredics, L. Screening of Organic Substrates for Solid-State Fermentation, Viability and Bioefficacy of Trichoderma harzianum AS12-2, a Biocontrol Strain Against Rice Sheath Blight Disease. Agronomy 2020, 10, 1258. [Google Scholar] [CrossRef]
- Atalla, S.M.M.; Abdel-Kader, M.M.; El-Gamal, N.G.; El-Mougy, N.S. Using Maize Wastes, Fermented by Co-Cultures of Trichoderma harzianum and Pseudomonas fluorescens, as Grain Dressing against m Maize Diseases under Field Conditions. Egypt J. Biol. Pest Control 2020, 30, 37. [Google Scholar] [CrossRef]
- Ramamurthy, V.; Cheepurupalli, L.; Rathore, S.S.; Ramakrishnan, J. Co-Culture: A Promising Method In Enzyme Production. Int. J. Chemtech Res. 2017, 10, 720–726. [Google Scholar]
- Liu, H.; Duan, W.; Liu, C.; Meng, L.; Li, H.; Li, R.; Shen, Q. Spore Production in the Solid-State Fermentation of Stevia Residue by Trichoderma guizhouense and Its Effects on Corn Growth. J. Integr. Agric. 2021, 20, 1147–1156. [Google Scholar] [CrossRef]
- Dorta-Vásquez, R.; Valbuena, O.; Pavone-Maniscalco, D. Solid-State Fermentation of Paper Sludge to Obtain Spores of the Fungus Trichoderma asperellum. EuroBiotech J. 2019, 3, 71–77. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Pobiega, K. The Aspects of Microbial Biomass Use in the Utilization of Selected Waste from the Agro-Food Industry. Open Life Sci. 2020, 15, 787–796. [Google Scholar] [CrossRef]
- Jones, S.W.; Karpol, A.; Friedman, S.; Maru, B.T.; Tracy, B.P. Recent Advances in Single Cell Protein Use as a Feed Ingredient in Aquaculture. Curr. Opin. Biotechnol. 2020, 61, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, N.A.; Salem, A.Z.M.; El-Adawy, M.M.; Camacho, L.M.; Kholif, A.E.; Elghandour, M.M.Y.; Borhami, B.E. Biological Treatments as a Mean to Improve Feed Utilization in Agriculture Animals—An Overview. J. Integr. Agric. 2015, 14, 534–543. [Google Scholar] [CrossRef]
- Asmare, B. Biological Treatment of Crop Residues as an Option for Feed Improvement in the Tropics: A Review. Anim. Husb. Dairy Vet. Sci. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Siada, O.; Negm, M.; Basiouny, M.; Fouad, M.; Elagroudy, S. Protein Enrichment of Agro–Industrial Waste by Trichoderma harzianum EMCC 540 through Solid State Fermentation for Use as Animal Feed. J. Geogr. Environ. Earth Sci. Int. 2018, 13, 1–12. [Google Scholar] [CrossRef]
- Fadel, M.; El-Ghonemy, D.H. Biological Fungal Treatment of Olive Cake for Better Utilization in Ruminants Nutrition in Egypt. Int. J. Recycl. Org. Waste Agric. 2015, 4, 261–271. [Google Scholar] [CrossRef]
- Islamiyati, R.; Rasjid, S.; Natsir, A. Crude Protein and Fiber Fraction of Corn Stover Inoculated by Fungi Trichoderma sp. and Phanerochaete chrysosporium. Int. J. Sci. Technol. Res. 2013, 2, 149–152. [Google Scholar]
- Helal, G.A. Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi. Mycobiology 2005, 33, 90. [Google Scholar] [CrossRef] [PubMed]
- Setiyatwan, H.; Harlia, E.; Rusmana, D.; Benito, T.; Adriani, L. Effect of Fermentation Using Trichoderma harzianum and Saccharomyces cerevisiae on Crude Protein, Crude Fibre and Zinc Content of Duckweed. Int. J. Poult. Sci. 2018, 17, 605–609. [Google Scholar] [CrossRef]
- Ahmed, S.; Mustafa, G.; Arshad, M.; Rajoka, M.I. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing. Biomed. Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Zaki, M.; Said, S.D. Trichoderma reesei Single Cell Protein Production from Rice Straw Pulp in Solid State Fermentation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 345, 012043. [Google Scholar] [CrossRef]
- Bayitse, R.; Hou, X.; Laryea, G.; Bjerre, A.-B. Protein Enrichment of Cassava Residue Using Trichoderma pseudokoningii (ATCC 26801). AMB Express 2015, 5, 80. [Google Scholar] [CrossRef]
- Okab, A.B.; Ayoub, M.A.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A.; Koriem, A.A.; Hassan, A.A. Improvement of Growth and Nitrogen Utilization in Sheep Using Sugar Beet Pulp Treated with Trichoderma reesei or Urea. Trop. Anim. Health Prod. 2012, 44, 1623–1629. [Google Scholar] [CrossRef]
- Pan, Y.-G.; Lin, W.-C.; Lo, C.-T.; Chang, S.-C.; Yu, B.; Lee, T.-T. Effects of Substitution of Bermuda Grass Hay with Trichoderma Fermented Rice Straw on Growth, Blood, and Rumen Fluid Parameters in Barbados Sheep. J. Appl. Anim. Res. 2018, 46, 1162–1168. [Google Scholar] [CrossRef]
- Abdel-Azim, S.; Ahmed, M.; Abo-Donia, F.; Soliman, H. Evaluation of Fungal Treatment of Some Agricultural Residues. Egypt. J. Sheep Goats Sci. 2011, 6, 1–16. [Google Scholar]
- Abo-Donia, F.M.; Abdel-Azim, S.N.; Elghandour, M.M.Y.; Salem, A.Z.M.; Buendía, G.; Soliman, N.A.M. Feed Intake, Nutrient Digestibility and Ruminal Fermentation Activities in Sheep-Fed Peanut Hulls Treated with Trichoderma viride or Urea. Trop. Anim. Health Prod. 2014, 46, 221–228. [Google Scholar] [CrossRef]
- Szijártó, N.; Faigl, Z.; Réczey, K.; Mézes, M.; Bersényi, A. Cellulase Fermentation on a Novel Substrate (Waste Cardboard) and Subsequent Utilization of Home-Produced Cellulase and Commercial Amylase in a Rabbit Feeding Trial. Ind. Crops Prod. 2004, 20, 49–57. [Google Scholar] [CrossRef]
- Omer, H.A.A.; Ali, F.A.F.; Gad, S.M. Replacement of Clover Hay by Biologically Treated Corn Stalks in Growing Sheep Rations. J. Agric. Sci. 2012, 4, 257–268. [Google Scholar] [CrossRef]
- Haddadin, M.S.Y.; Abu-Reesh, I.M.; Haddadin, F.A.S.; Robinson, R.K. Utilisation of Tomato Pomace as a Substrate for the Production of Vitamin B12—A Preliminary Appraisal. Bioresour. Technol. 2001, 78, 225–230. [Google Scholar] [CrossRef]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material Utilization of Green Waste: A Review on Potential Valorization Methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef]
- Kolawole, O.; Siri-Anusornsak, W.; Petchkongkaew, A.; Elliott, C. A Systematic Review of Global Occurrence of Emerging Mycotoxins in Crops and Animal Feeds, and Their Toxicity in Livestock. Emerg. Contam. 2024, 10, 100305. [Google Scholar] [CrossRef]
- Fang, H.; Li, C.; Zhao, J.; Zhao, C. Biotechnological Advances and Trends in Engineering Trichoderma reesei towards Cellulase Hyperproducer. Biotechnol. Bioprocess Eng. 2021, 26, 517–528. [Google Scholar] [CrossRef]
- Paloheimo, M.; Haarmann, T.; Mäkinen, S.; Vehmaanperä, J. Production of Industrial Enzymes in Trichoderma reesei. In Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology; Springer: Cham, Switzerland, 2016; pp. 23–57. [Google Scholar]
- Sun, X.; Zhang, X.; Huang, H.; Wang, Y.; Tu, T.; Bai, Y.; Wang, Y.; Zhang, J.; Luo, H.; Yao, B.; et al. Engineering the Cbh1 Promoter of Trichoderma reesei for Enhanced Protein Production by Replacing the Binding Sites of a Transcription Repressor ACE1 to Those of the Activators. J. Agric. Food Chem. 2020, 68, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Saloheimo, A.; Aro, N.; Ilmén, M.; Penttilä, M. Isolation of the Ace1 Gene Encoding a Cys2-His2 Transcription Factor Involved in Regulation of Activity of the Cellulase Promoter Cbh1of Trichoderma reesei. J. Biol. Chem. 2000, 275, 5817–5825. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Shida, Y.; Kitagami, N.; Mori, K.; Kato, M.; Kobayashi, T.; Okada, H.; Ogasawara, W.; Morikawa, Y. Identification of Specific Binding Sites for XYR1, a Transcriptional Activator of Cellulolytic and Xylanolytic Genes in Trichoderma reesei. Fungal Genet. Biol. 2009, 46, 564–574. [Google Scholar] [CrossRef]
- Aro, N.; Saloheimo, A.; Ilmén, M.; Penttilä, M. ACEII, a Novel Transcriptional Activator Involved in Regulation of Cellulase and Xylanase Genes of Trichoderma reesei. J. Biol. Chem. 2001, 276, 24309–24314. [Google Scholar] [CrossRef]
- Zeilinger, S.; Ebner, A.; Marosits, T.; Mach, R.; Kubicek, C. The Hypocrea Jecorina HAP 2/3/5 Protein Complex Binds to the Inverted CCAAT-Box (ATTGG) within the Cbh2 (Cellobiohydrolase II-Gene) Activating Element. Mol. Genet. Genomics 2001, 266, 56–63. [Google Scholar] [CrossRef]
- Zou, G.; Shi, S.; Jiang, Y.; van den Brink, J.; de Vries, R.P.; Chen, L.; Zhang, J.; Ma, L.; Wang, C.; Zhou, Z. Construction of a Cellulase Hyper-Expression System in Trichoderma reesei by Promoter and Enzyme Engineering. Microb. Cell Fact. 2012, 11, 21. [Google Scholar] [CrossRef]
- Kiesenhofer, D.P.; Mach, R.L.; Mach-Aigner, A.R. Influence of Cis Element Arrangement on Promoter Strength in Trichoderma reesei. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed]
- Rassinger, A.; Gacek-Matthews, A.; Strauss, J.; Mach, R.L.; Mach-Aigner, A.R. Truncation of the Transcriptional Repressor Protein Cre1 in Trichoderma reesei Rut-C30 Turns It into an Activator. Fungal Biol. Biotechnol. 2018, 5, 15. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, X.; Bai, F. Improvement of Cellulase Production in Trichoderma reesei Rut-C30 by Overexpression of a Novel Regulatory Gene Trvib-1. Bioresour. Technol. 2018, 247, 676–683. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Wang, W.; Wang, W.; Wei, D. Enhanced Cellulase Production in Trichoderma reesei RUT C30 via Constitution of Minimal Transcriptional Activators. Microb. Cell Fact. 2018, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Bai, F.; Zhao, X. Enhanced Cellulase Production from Trichoderma reesei Rut-C30 by Engineering with an Artificial Zinc Finger Protein Library. Biotechnol. J. 2016, 11, 1282–1290. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, F.; Liu, C.; Zhao, X.; Bai, F. Identification of a Novel Repressor Encoded by the Putative Gene Ctf1 for Cellulase Biosynthesis in Trichoderma reesei through Artificial Zinc Finger Engineering. Biotechnol. Bioeng. 2020, 117, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, J.-X.; Champreda, V.; Liu, C.-G.; Bai, F.-W.; Zhao, X.-Q. Global Reprogramming of Gene Transcription in Trichoderma reesei by Overexpressing an Artificial Transcription Factor for Improved Cellulase Production and Identification of Ypr1 as an Associated Regulator. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, I.; Ma, J.; Triezenberg, S.; Ptashne, M. GAL4-VP16 Is an Unusually Potent Transcriptional Activator. Nature 1988, 335, 563–564. [Google Scholar] [CrossRef]
- Lv, D.; Zhang, W.; Meng, X.; Liu, W. Single Mutation in Transcriptional Activator Xyr1 Enhances Cellulase and Xylanase Production in Trichoderma Reesei on Glucose. J. Agric. Food Chem. 2023, 71, 11993–12003. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Parreiras, L.S.; Murakami, M.T. Rational Engineering of the Trichoderma reesei RUT-C30 Strain into an Industrially Relevant Platform for Cellulase Production. Biotechnol. Biofuels 2020, 13, 93. [Google Scholar] [CrossRef]
- Reese, E.T. History of the Cellulase Program at the U.S. Army Natick Development Center. Biotechnol. Bioeng. Symp. 1976, 6, 9–20. [Google Scholar]
- Mandels, M.; Reese, E.T. Induction of Cellulase in Trichoderma viride as Influenced by Carbon Sources and Metals. J. Bacteriol. 1957, 73, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Eveleigh, D.E.; Montenecourt, B.S. Increasing Yields of Extracellular Enzymes. Adv. Appl. Microbiol. 1979, 25, 57–74. [Google Scholar] [PubMed]
- Li, C.; Lin, F.; Zhou, L.; Qin, L.; Li, B.; Zhou, Z.; Jin, M.; Chen, Z. Cellulase Hyper-Production by Trichoderma reesei Mutant SEU-7 on Lactose. Biotechnol. Biofuels 2017, 10, 228. [Google Scholar] [CrossRef]
- Qian, Y.; Zhong, L.; Gao, J.; Sun, N.; Wang, Y.; Sun, G.; Qu, Y.; Zhong, Y. Production of Highly Efficient Cellulase Mixtures by Genetically Exploiting the Potentials of Trichoderma reesei Endogenous Cellulases for Hydrolysis of Corncob Residues. Microb. Cell Fact. 2017, 16, 207. [Google Scholar] [CrossRef]
- Seiboth, B.; Karimi, R.A.; Phatale, P.A.; Linke, R.; Hartl, L.; Sauer, D.G.; Smith, K.M.; Baker, S.E.; Freitag, M.; Kubicek, C.P. The Putative Protein Methyltransferase LAE1 Controls Cellulase Gene Expression in Trichoderma reesei. Mol. Microbiol. 2012, 84, 1150–1164. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Y.; Wang, Y.; Yan, X.; Zhu, Z.; Tian, E.; Yang, C.; Ma, E.; Zou, G.; Zhou, Z.; et al. Repurposing the Cellulase Workhorse Trichoderma reesei as a ROBUST Chassis for Efficient Terpene Production. Green Chem. 2023, 25, 7362–7371. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Wang, Z.; Peng, N.; Ran, X.; Chen, T.; Liu, L.; Li, Y. The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers. Fermentation 2023, 9, 746. [Google Scholar] [CrossRef]
- Santos, C.A.; Morais, M.A.B.; Terrett, O.M.; Lyczakowski, J.J.; Zanphorlin, L.M.; Ferreira-Filho, J.A.; Tonoli, C.C.C.; Murakami, M.T.; Dupree, P.; Souza, A.P. An Engineered GH1 β-Glucosidase Displays Enhanced Glucose Tolerance and Increased Sugar Release from Lignocellulosic Materials. Sci. Rep. 2019, 9, 4903. [Google Scholar] [CrossRef]
Species | Waste Biomass Source | Fermentation Method | Parameters Assessed | Ref. |
---|---|---|---|---|
Trichoderma reesei | rice straw | not stated | enzyme activity (FPA, BGA), protein and sugar content, monosaccharide composition | [58] |
Trichoderma reesei, Aspergillus niger | rice straw, cauliflower waste, kinnow pulp, pea pod waste, wheat bran | SSF | enzyme activity (FPA, CMC, BGA, Xyn) | [59] |
Trichoderma reesei | rice straw, sugarcane bagasse | SmF | enzyme activity (FPA), reducing sugars, cell growth, dry mass | [60] |
Trichoderma koningii, Penicillium sp., Rhizomucor sp. | sugarcane bagasse | SSF | enzyme activity (BGA) chemical characterization of substrate | [61] |
Trichoderma reesei | rice bran | SSF | enzyme activity (FPA, CMC, avicelase) | [62] |
Trichoderma reesei, Aspergillus niger | wheat bran (enzyme production), sugar cane bagasse, rice straw and water hyacinth biomass (saccharification) | SSF | enzyme activity (FPA, CMC, BGL), reducing and total sugars | [63] |
Trichoderma reesei, Aspergillus niger | corn stover | FBF | enzyme activity (FPA, BGA) | [64] |
Trichoderma reesei, Penicillium citrinum | wheat bran | SSF | enzyme activity (FPA), reducing sugars | [65] |
Trichoderma reesei, Aspergillus niger | corn stover | not stated | enzyme activity (FPA, BGA), fermentation parameters | [66] |
Trichoderma reesei, Neurospora crassa | bagasse, wheat straw, waste newspaper, starch hydrolysate | SSF | enzyme activity (FPA), fermentation parameters | [67] |
Trichoderma virdii | maize straw, jowar straw, bajra straw, wheat straw, oat hay, berseem hay | LSF | enzyme activity (FPA, CMC, BGA), reducing sugars, fermentation parameters | [68] |
Trichoderma reesei | corn stover | FBF | enzyme activity (FPA, cellobiose, Xyn), biomass, glucose and reducing sugars, protein concentration, fermentation parameters | [69] |
Trichoderma asperellum | wheat straw, rice straw, wheat bran, corn cob, corn stover, cotton stacks, sugarcane bagasse | SSF | enzyme activity (FPA, CMC, BGA), total sugar, reducing sugar, fermentation parameters | [70] |
Trichoderma harzianum | corn cob powder, palm oil empty fruit bunch | SFF | enzyme activity (FPA, CMC, BGA, Xyn, β-xyl), reducing sugars, protein content | [71] |
Trichoderma reesei | pea hull | SmF | enzyme activity (FPA), reducing sugars, protein content, fermentation parameters | [72] |
Trichoderma harzianum | barley straw, empty fruit bunches, miscanthus, rice straw | not stated | enzyme activity (FPA, CBH, CMC, BGL, Endo-Xyn), protein content | [73] |
Trichoderma reesei, Aspergillus niger | rye straw | not stated | reducing sugars, fermentation parameters | [74] |
Colletotrichum aeschynomenes, Trichoderma harzianum, Colletotrichum gloeosporioides, Trichoderma sp. | sugarcane molasses, soybean bran, corn bran | SmF | enzyme activity (FPA, CMC), reducing sugars, protein content, medium composition | [75] |
Trichoderma reesei | sorghum stover, wheat bran | SSF | enzyme activity (FPA, CMC), reducing sugar, glucose concentration, fermentation parameters | [76] |
Trichoderma reesei | sorghum fresh stalks | FBF | enzyme activity (FPA), reducing sugar, cell mass | [77] |
Trichoderma viridae | wheat straw, sugarcane bagasse, apple pomace, orange peel, municipal paper waste | SSF | enzyme activity (BGA EG, EXG), protein content, fermentation parameters | [78] |
Trichoderma longibrachiatum, Aspergillus niger, Saccharomyces cerevisiae | orange peel, pulp, and albedo | not stated | enzyme activity (CMC), glucose production, fermentation parameters | [79] |
Trichoderma viridae, Aspergillus niger | pineapple, orange, and banana peel | SmF | enzyme activity (cellulase, EG, EXG), fermentation parameters | [80] |
Trichoderma reesei | pineapple fiber waste | SFF | enzyme activity (cellulase), fermentation parameters | [81] |
Trichoderma reesei | pineapple waste | SmF | enzyme activity (FPA), fermentation parameters | [82] |
Trichoderma harzianum, Aspergillus niger, Fusarium oxysporum | banana peel and pulp | SmF | enzyme activity (CMC), glucose production, fermentation parameters | [83] |
Trichoderma sp. | olive-mill solid waste, tomato pomace, grape pomace | SFF and LSF | fungal growth, enzyme activity (FPA, BGA) | [84] |
Trichoderma reesei | Luffa cylindrica, Litchi chinensis peel | SSF | enzyme activity (FPA), microscopy | [85] |
Trichoderma viridae | cocoa fruit skin | SmF | fermentation time, bioethanol yields | 86] |
Trichoderma reesei | wood chips, wood dust, palm oil fiber, and waste newspaper | SSF | enzyme activity (FPA, CMC, Xyn), soluble protein content, glucose yields, fermentation parameters | [86] |
Trichoderma reesei | palm wood | FBF | total reducing sugars and total sugar content, fermentation parameters, bioethanol yields | [87] |
Trichoderma reesei | copra waste wheat bran | SSF | fungal growth, enzyme activity (FPA, CMC, BGA) | [88] |
Trichoderma reesei | coconut mesocarp | FBF | enzyme activity (FPA, CMC), soluble protein content, fermentation parameters, microscopy | [89] |
Trichoderma reesei, Trichoderma citrinoviridae, Trichoderma koningii, Trichoderma fasciculatum, Trichoderma virens | citronella, marc of Artmemisia, garden waste | SmF | enzyme activity (FPA, CMC, BGA), pH | [90] |
Trichoderma viridae | floral waste, plant litter, and tea leaf waste, alongside mixed fruit pomace (pineapple, orange, and pomegranate), vegetable refuse, sugarcane bagasse, sawdust | SSF | waste biomass degradation | [91] |
Trichoderma reesei | willow | FBF | enzyme activity (FPA), reducing sugars, fermenter size | [92] |
Trichoderma sp. | waste paper | SmF | enzyme activity (FPA), pH | [93] |
Trichoderma reesei | waste paper | SmF | enzyme activity (FPA, CMC, BGA), cell concentration, total reducing sugar content, glucose concentration | [94] |
Trichoderma reesei, Bacillus licheniformis, Candida cylindracea, Aspergillus oryzae, Escherichia coli, Pichia pastoris | deinking paper sludge, meat-processing blood waste | SmF | fungal biomass, enzyme activity (FPA, protease), total reducing sugar content | [95] |
Trichoderma viride, Aspergillus oryzae, Penicillium citrinum | filter paper, newspaper and office paper | SmF | enzyme activity (cellulase), protein content, total reducing sugars | [96] |
Species | Waste Source | Fermentation Method | Target Pathogen | Disease | Parameters Assessed | Ref. |
---|---|---|---|---|---|---|
Trichoderma viridae | grape marc and wine lees | SSF | Cladosporium cucumerinum, Fusarium solani, Fulvia fulva, Botrytis cinerea, Aspergillus niger, Aspergillus terreus, Penicillium oxalicum, Mucor sp., Rhizopus sp. | not stated | spore yield, fermentation parameters (water content, temperature, pH, nitrogen source) enzyme activity (chitinase, β-glucanase, pectinase), in vitro antagonist assay | [112] |
Trichoderma harzianum | banana waste | SSF | Macrophomina phaseoline | charcoal rot | enzyme activity (β-glucosidase), fermentation parameters (temperature, carbon sources, inoculum size, and pH), in vitro inhibition assay | [113] |
Trichoderma Brev T069 | coconut shell, sugarcane bagasse, pineapple peels, banana pseudostem, cassava peels | SSF | Fusarium oxysporum f. sp. cubense | banana wilt | spore yield and viability, fermentation parameters (temperature, inoculation concentration, moisture content, material weight, pH, fan operating parameters, bioreactor type), in vitro antagonistic activity | [114] |
Trichoderma harzianum, Beauveria bassiana | rice husk, apple pomace, whisky draff, spent soy, rice fibers, wheat straw, beer draff, orange peel, potato peel | SSF | not tested | not tested | substrate properties, spore yield, total sugar, respirometry analysis, microscopy, strain identification | [115] |
Trichoderma asperellum | mango waste | SSF | Colletotrichum gloesporioides | anthracnose | spore yield and viability, enzyme activity (cellulase), fermentation parameters (moisture content, C:N ratio, harvest time), microscopy, in vitro antagonist assay, biocontrol efficacy (banana seedlings’ growth performance, disease index, biological control efficiency) | [116] |
Trichoderma harzianum | rice husk, crushed rice husk, rice straw, rice bran, wheat bran, broom sorghum grain, sawdust, cow dung, sugar beet pulp, soybean meal, peanut pod, barley grain waste, water fern | SSF | Rhizoctonia solani | rice sheath blight disease | substrate colonization, conidia yield, shelf life and viability, field experiment on rice plants (disease severity) | [117] |
Trichoderma harzianum, Pseudomonas fluorescens | maize waste | SSF | not stated | maize root and foliar diseases | enzyme activity (amylase), microorganism’s co-cultivation ratio, efficacy as grain-dressing treatment (root rot and damping, stalk rot, gray leaf spot, late wilt, ear rot), microscopy | [118] |
Species | Waste Source | Fermentation Method | Target Livestock | Parameters Assessed | Ref. |
---|---|---|---|---|---|
Trichoderma harzianum | peels of mango, orange, apple, banana, and tomato | SSF | not stated | fermentation temperature, proximate analysis (CP, CF, ash, free amino acids, total carbohydrate, nitrogen, phosphorus, and potassium) | [126] |
Trichoderma reesei, Trichoderma harzianum, Trichoderma virdie, Trichoderma koningiI, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus awamori | olive cake, sugar beet pulp | SSF | ruminant nutrition | enzyme activity, total protein yield, amino acid composition, chemical composition (DM, total protein, EE, CF, ADF, NDF, phenols, ash, lignin, gross energy) | [127] |
Trichoderma sp., Phanerochaete chrysosporium | corn stover | not stated | ruminant nutrition | chemical composition (CP, fiber fraction, NDF, ADF, AIA, cellulose, hemicellulose, lignin) | [128] |
sixty-four species of fungal isolates (including Trichoderma harzianum and Trichoderma koningii) | rice straw | not stated | ruminant nutrition | total reducing value, soluble protein, CP, reducing sugars, cellulolytic activity (exo-β1,4 (C1) and endo-β1,4 (Cx) cellulases) | [129] |
Trichoderma harzianum, Saccharomyces cerevisiae | duckweed | not stated | poultry nutrition | CP, CF, zinc content | [130] |
Trichoderma harzianum | rice polishing | not stated | poultry nutrition | biomass production under different culture conditions, amino acid profile, compositional analysis (moisture, CP, true protein, crude fat, CF, ash, NFE, cellulose), biological evaluation (weight gain, mortality, abnormality, feed consumption) | [131] |
Trichoderma reesei | rice straw pulp | SSF | not stated | CP, lignin content, digestibility, | [132] |
Trichoderma pseudokoningii | cassava residue | SSF | not stated | protein content under different culture conditions | [133] |
Trichoderma reesei | sugar beet pulp | SSF | Barki lamb | growth performance (DFI, initial and final live BW, average daily gain, FC), digestibility coefficient (DM, OM, EE, CF, CP), nutritive value (NFE, TDN), haematological analysis, N utilization (intake, fecal N, urinary N, N excreted, N balance) | [134] |
Trichoderma sp. | rice straw | not stated | Barbados sheep | enzyme activity (cellulase and xylanase), carbohydrate concentration (hexose, pentose), proximate chemical analysis (CP, DM, ash, NDF, ADF, and ADL), microscopy observation, ferulic acid and esterified ferulic acid content, haematological analysis, growth performance (initial weight, feed intake, weight gain, FRC, nutrient digestibility, NDF, ADF), rumen fluid analysis (protozoa, VFA, acetate, propionic acid, isobutyric acid, butyric acid) | [135] |
Trichoderma viride | rice straw, corn stalk | SSF | sheep nutrition (Rhamani–Ossimi cross) | total fungi count, chemical composition (DM, OM, CP, CF, EE, NFE, ash, NDF, ADF, ADL, cellulose, hemicellulose), nutrient and cell wall digestibility, rumen kinetics, feed intake, feed conversion, feed conversion, growth performance, economical evaluation | [136] |
Trichoderma viride | peanut hull | not stated | Ossimi rams | chemical composition (DM, OM, CP, EE, cell wall constituents, NDF, ADF, non-fiber carbohydrate, lignin, cellulose, hemicellulose), nitrogen fractions, in sacco rumen degradation (DM, OM, CP), in vitro gas production, feed intake, nutrient digestibility, nutritive values, N balance, rumen fermentation | [137] |
Trichoderma reesei | old corrugated cardboard | batch fermentation | rabbit nutrition | reducing sugar content, cellulase activity, chemical composition (DM, ash, crude fat, CF, CP, NFE, starch), body weight, daily weight gain, feed intake, feed conversion rate, survival, presence of digestive disorder | [138] |
Trichoderma reesei | corn stalks | not stated | Rahmani sheep | growth performance (final weight, total body weight gain, ADG, and relative gain), daily feed intake, feed conversion, nutrient digestibility coefficients (DM, OM, CP, CF, EE, NFE), cell wall constituent digestibility coefficients (NDF, ADF, hemicellulose, cellulose), nutrient values (TDN, DCP), rumen fluid analysis (ruminal fermentations, ruminal pH, ruminal ammonia–nitrogen, TVFA’s concentrations), blood plasma constituents, economical evaluation | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, P.C.; Karimian, P.; Johnston, E.; Hartley, C.J. The Use of Trichoderma spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review. Fermentation 2024, 10, 442. https://doi.org/10.3390/fermentation10090442
Lima PC, Karimian P, Johnston E, Hartley CJ. The Use of Trichoderma spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review. Fermentation. 2024; 10(9):442. https://doi.org/10.3390/fermentation10090442
Chicago/Turabian StyleLima, Paula C., Parastoo Karimian, Ema Johnston, and Carol J. Hartley. 2024. "The Use of Trichoderma spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review" Fermentation 10, no. 9: 442. https://doi.org/10.3390/fermentation10090442
APA StyleLima, P. C., Karimian, P., Johnston, E., & Hartley, C. J. (2024). The Use of Trichoderma spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review. Fermentation, 10(9), 442. https://doi.org/10.3390/fermentation10090442