Effect of Nitrite and Temperature on Autotrophic Denitrification in Anammox Granular Biomass from a Partial Nitritation–Anammox Reactor
Abstract
1. Introduction
2. Materials and Methods
2.1. Specific Anammox Activity (SAA)
2.2. Kinetic Model Fitting
2.3. Extended Nitrite Exposure Experiments
2.4. Analytical Methods
3. Results and Discussion
3.1. Short-Term Nitrite Effect
3.2. Long-Term Nitrite Effect
3.3. Short-Term Effect of Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Ward Mary, H.; Jones Rena, R.; Brender Jean, D.; De Kok Theo, M.; Weyer Peter, J.; Nolan Bernard, T.; Villanueva Cristina, M.; Van Breda Simone, G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; Van Loosdrecht, M.C. Full-scale partial nitritation/anammox experiences–an application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Driessen, W.; Hendrickx, T. Two decades of experience with the granular sludge-based anammox® process treating municipal and industrial effluents. Processes 2021, 9, 1207. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Wang, H.; Zhang, L.G.; Du, X.N.; Huang, B.C.; Jin, R.C. A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. Bioresour. Technol. 2022, 363, 127896. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.; Biswas, R.; Nandy, T. Autotrophic ammonia removal processes: Ecology to technology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1353–1418. [Google Scholar] [CrossRef]
- Talan, A.; Tyagi, R.D.; Drogui, P. Critical review on insight into the impacts of different inhibitors and performance inhibition of anammox process with control strategies. Environ. Technol. Innov. 2021, 23, 101553. [Google Scholar] [CrossRef]
- Gutwiński, P.; Cema, G.; Ziembińska-Buczyńska, A.; Wyszyńska, K.; Surmacz-Gorska, J. Long-term effect of heavy metals Cr(III), Zn(II), Cd(II), Cu(II), Ni(II), Pb(II) on the anammox process performance. J. Water Process Eng. 2021, 39, 101668. [Google Scholar] [CrossRef]
- Fernández, I.; Dosta, J.; Fajardo, C.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Short-and long-term effects of ammonium and nitrite on the Anammox process. J. Environ. Manag. 2012, 95, S170–S174. [Google Scholar] [CrossRef]
- Strous, M.; Kuenen, J.G.; Jetten, M.S. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Arroyo, J.M.; Sun, W.; Sierra-Alvarez, R.; Field, J.A. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 2013, 91, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.; Akgul, D.; Mertoglu, B. Long-term response of anammox process to hydrazine under different exposure strategies. J. Environ. Chem. Eng. 2024, 12, 113600. [Google Scholar] [CrossRef]
- Li, G.; Vilcherrez, D.; Carvajal-Arroyo, J.M.; Sierra-Alvarez, R.; Field, J.A. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. Chemosphere 2016, 144, 2360–2367. [Google Scholar] [CrossRef]
- Strotmann, U.; Durand, M.J.; Thouand, G.; Eberlein, C.; Heipieper, H.J.; Gartiser, S.; Pagga, U. Microbiological toxicity tests using standardized ISO/OECD methods—Current state and outlook. Appl. Microbiol. Biotechnol. 2024, 108, 454. [Google Scholar] [CrossRef]
- ISO 9509; Water Quality—Toxicity Test for Assessing the Inhibition of Nitrification of Activated Sludge Microorganisms. International Organization for Standardization: Geneva, Switzerland, 2006.
- Buys, B.R.; Mosquera-Corral, A.; Sánchez, M.; Méndez, R. Development and application of a denitrification test based on gas production. Water Sci. Technol. 2000, 41, 113–120. [Google Scholar] [CrossRef]
- Dapena-Mora, A.; Fernandez, I.; Campos, J.L.; Mosquera-Corral, A.; Mendez, R.; Jetten MS, M. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym. Microb. Technol. 2007, 40, 859–865. [Google Scholar] [CrossRef]
- Oshiki, M.; Shimokawa, M.; Fujii, N.; Satoh, H.; Okabe, S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 2011, 157, 1706–1713. [Google Scholar] [CrossRef]
- Marina, C.; Kunz, A.; Bortoli, M.; Scussiato, L.A.; Coldebella, A.; Vanotti, M.; Soares, H.M. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature. Bioresour. Technol. 2016, 202, 33–41. [Google Scholar] [CrossRef]
- Adams, M.; Issaka, E.; Chen, C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J. Environ. Sci. 2024, 148, 151–173. [Google Scholar] [CrossRef]
- Andrews, J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968, 10, 707–723. [Google Scholar] [CrossRef]
- Boon, B.; Laudelout, H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J. 1962, 85, 440. [Google Scholar] [CrossRef] [PubMed]
- Edwards, V.H. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. [Google Scholar] [CrossRef] [PubMed]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation; Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. (Eds.) Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023. [Google Scholar]
- Raudkivi, M.; Zekker, I.; Rikmann, E.; Vabamäe, P.; Kroon, K.; Tenno, T. Nitrite inhibition and limitation–the effect of nitrite spiking on anammox biofilm, suspended and granular biomass. Water Sci. Technol. 2017, 75, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Takahashi, Y.; Fujii, N.; Yamada, Y.; Satoh, H.; Okabe, S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 2010, 78, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Zu, B.; Zhang, D.J.; Yan, Q. Effect of trace NO2 and kinetic characteristics for anaerobic ammonium oxidation of granular sludge. Huan Jing Ke Xue= Huanjing Kexue 2008, 29, 683–687. [Google Scholar] [PubMed]
- Baeten, J.E.; Batstone, D.J.; Schraa, O.J.; van Loosdrecht, M.C.; Volcke, E.I. Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors-A review. Water Res. 2019, 149, 322–341. [Google Scholar] [CrossRef]
- Ni, B.-J.; Hu, B.-L.; Fang, F.; Xie, W.-M.; Kartal, B.; Liu, X.-W.; Sheng, G.-P.; Jetten, M.; Zheng, P.; Yu, H.-Q. Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 2010, 76, 2652–2656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, S.; Niu, Q.; Qi, W.; Li, Y.Y. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor. Biochem. Eng. J. 2016, 109, 212–221. [Google Scholar] [CrossRef]
- Puyol, D.; Carvajal-Arroyo, J.M.; Sierra-Alvarez, R.; Field, J.A. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnol. Lett. 2014, 36, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.-C.; Yu, J.-J.; Ma, C.; Yang, G.-F.; Zhang, J.; Chen, H.; Zhang, Q.-Q.; Ji, Y.-X. Transient and long-term effects of bicarbonate on the ANAMMOX process. Appl. Microbiol. Biotechnol. 2014, 98, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Lotti, T.; Kleerebezem, R.; Van Loosdrecht MC, M. Effect of temperature change on anammox activity. Biotechnol. Bioeng. 2015, 112, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Dosta, J.; Fernández, I.; Vázquez-Padín, J.R.; Mosquera-Corral, A.; Campos, J.L.; Mata-Alvarez, J.; Méndez, R. Short-and long-term effects of temperature on the Anammox process. J. Hazard. Mater. 2008, 154, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, D.; Zhai, J.; Makinia, J. Generalized temperature dependence model for anammox process kinetics. Sci. Total Environ. 2021, 775, 145760. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lotti, T.; de Kreuk, M.; Kleerebezem, R.; van Loosdrecht, M.; Kruit, J.; Jetten, M.S.M.; Kartal, B. Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl. Environ. Microbiol. 2013, 79, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
IC50 [mgN-NO2−/L] | Temperature [°C] | Biomass Type | Source Reactor | Reference |
---|---|---|---|---|
250 a 423.8 b 321 c | 30 | Granular | SBR | This study |
85 | 25 | Biofilm | MBBR | [26] |
98 | 25 | Flocculent | SBR | [26] |
240 | 25 | Granular | UASB | [26] |
185 | 30 | Granular | EGSB | [11] |
151 | 30 | Suspended | Membrane reactor | [11] |
350 | 30 | - | - | [17] |
Cycle | SAA (mgN/gSSV·h) |
---|---|
1 | 5.43 |
12 | 5.32 |
25 | 2.67 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra, B.; Lesty, Y.; Pastur, M.; Castro, C.; Girard, C.; Chamy, R. Effect of Nitrite and Temperature on Autotrophic Denitrification in Anammox Granular Biomass from a Partial Nitritation–Anammox Reactor. Fermentation 2024, 10, 637. https://doi.org/10.3390/fermentation10120637
Ibarra B, Lesty Y, Pastur M, Castro C, Girard C, Chamy R. Effect of Nitrite and Temperature on Autotrophic Denitrification in Anammox Granular Biomass from a Partial Nitritation–Anammox Reactor. Fermentation. 2024; 10(12):637. https://doi.org/10.3390/fermentation10120637
Chicago/Turabian StyleIbarra, Benjamín, Yves Lesty, Mateo Pastur, Celia Castro, Chloe Girard, and Rolando Chamy. 2024. "Effect of Nitrite and Temperature on Autotrophic Denitrification in Anammox Granular Biomass from a Partial Nitritation–Anammox Reactor" Fermentation 10, no. 12: 637. https://doi.org/10.3390/fermentation10120637
APA StyleIbarra, B., Lesty, Y., Pastur, M., Castro, C., Girard, C., & Chamy, R. (2024). Effect of Nitrite and Temperature on Autotrophic Denitrification in Anammox Granular Biomass from a Partial Nitritation–Anammox Reactor. Fermentation, 10(12), 637. https://doi.org/10.3390/fermentation10120637