A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures
Abstract
1. Introduction
2. Mathematical Formulation
3. Numerical Implementation with OpenFOAM
4. Results and Discussion
4.1. Viscoplastic Flow around a Sphere
4.2. Turbulence in Single-Phase Oscillatory Boundary Layer
4.3. Two-Phase Flow in Oscillatory Boundary Layer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fredsøe, J.; Deigaard, R. Mechanics of Coastal Sediment Transport; WORLD SCIENTIFIC: Singapore, 1992; Volume 3. [Google Scholar] [CrossRef]
- Nielsen, P. Coastal and Estuarine Processes; WORLD SCIENTIFIC: Singapore, 2009; Volume 29. [Google Scholar] [CrossRef][Green Version]
- Hoefel, F.; Elgar, S. Wave-Induced Sediment Transport and Sandbar Migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hsu, T.J.; Hanes, D.M. Effects of wave shape on sheet flow sediment transport. J. Geophys. Res. C Ocean. 2004, 109, 1–15. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, Q.; Du, Z.; Wang, L.; Wang, Y.; Gao, S. The dynamics of wave and current supported gravity flows: Evaluation of drag coefficient and bulk Richardson number. Mar. Geol. 2022, 454, 106947. [Google Scholar] [CrossRef]
- Lanckriet, T.; Puleo, J.; Masselink, G.; Turner, I.; Conley, D.; Blenkinsopp, C.; Russell, P. Comprehensive Field Study of Swash-Zone Processes. II: Sheet Flow Sediment Concentrations during Quasi-Steady Backwash. J. Waterw. Port Coast. Ocean. Eng. 2014, 140, 29–42. [Google Scholar] [CrossRef][Green Version]
- Aagaard, T.; Black, K.P.; Greenwood, B. Cross-shore suspended sediment transport in the surf zone: A field-based parameterization. Mar. Geol. 2002, 185, 283–302. [Google Scholar] [CrossRef][Green Version]
- Huang, X.; Garcia, M.H. Modeling of non-hydroplaning mudflows on continental slopes. Marine Geology 1999, 154, 131–142. [Google Scholar] [CrossRef]
- Mei, C.C.; Liu, K.F. A Bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res. C Ocean. 1987, 92, 14581–14594. [Google Scholar] [CrossRef]
- Sahin, C.; Safak, I.; Sheremet, A.; Mehta, A.J. Observations on cohesive bed reworking by waves: Atchafalaya Shelf, Louisiana. J. Geophys. Res. C Ocean. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Komatina, D.; Jovanovic, M. Experimental study of steady and unsteady free surface flows with water-clay mixtures. J. Hydraul. Res. 1997, 35, 579–590. [Google Scholar] [CrossRef]
- Safak, I.; Sheremet, A.; Allison, M.A.; Hsu, T.J. Bottom turbulence on the muddy Atchafalaya Shelf, Louisiana, USA. J. Geophys. Res. C Ocean. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Delisle, M.P.C.; Kim, Y.; Mieras, R.S.; Gallien, T.W. Numerical investigation of sheet flow driven by a near-breaking transient wave using SedFoam. Eur. J. Mech.-B/Fluids 2022, 96, 51–64. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, X.; Hsu, T.J.; Balachandar, S. A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling. Comput. Geosci. 2015, 83, 176–192. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, X.; Hsu, T.J.; Ozdemir, C.E.; Balachandar, S. On the transport modes of fine sediment in the wave boundary layer due to resuspension/deposition: A turbulence-resolving numerical investigation. J. Geophys. Res. C Ocean. 2015, 120, 1918–1936. [Google Scholar] [CrossRef]
- Mathieu, A.; Cheng, Z.; Chauchat, J.; Bonamy, C.; Hsu, T.J. Numerical investigation of unsteady effects in oscillatory sheet flows. J. Fluid Mech. 2022, 943, A7. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Eng. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Parchure, T.M.; Mehta, A.J. Erosion of soft cohesive sediment deposits. J. Hydraul. Eng. 1985, 111, 1308–1326. [Google Scholar] [CrossRef]
- Ozdemir, C.; Hsu, T.J.; Balachandar, S. A numerical investigation of lutocline dynamics and saturation of fine sediment in the oscillatory boundary layer. J. Geophys. Res. C Ocean. 2011, 116, 1–21. [Google Scholar] [CrossRef]
- Ozdemir, C.E.; Hsu, T.J.; Balachandar, S. A numerical investigation of fine particle laden flow in an oscillatory channel: The role of particle-induced density stratification. J. Fluid Mech. 2010, 665, 1–45. [Google Scholar] [CrossRef]
- Hsu, T.J.; Jenkins, J.; Liu, P. On two-phase sediment transport: Dilute flow. J. Geophys. Res. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Chauchat, J.; Cheng, Z.; Nagel, T.; Bonamy, C.; Hsu, T.J. SedFoam-2.0: A 3-D two-phase flow numerical model for sediment transport. Geosci. Model Dev. 2017, 10, 4367–4392. [Google Scholar] [CrossRef][Green Version]
- Hamedi, N.; Westerberg, L.G. On the Interaction of Side-By-Side Circular Cylinders in Viscoplastic Fluids. Fluids 2019, 4, 93. [Google Scholar] [CrossRef][Green Version]
- Gavrilov, A.; Finnikov, K.; Podryabinkin, E. Modeling of steady Herschel–Bulkley fluid flow over a sphere. J. Eng. Thermophys. 2017, 26, 197–215. [Google Scholar] [CrossRef]
- Winterwerp, J. On the flocculation and settling velocity of estuarine mud. Contiental Shelf Res. 2002, 22, 1339–1360. [Google Scholar] [CrossRef]
- Lee, B.J.; Toorman, E.A.; Molz, F.J.; Wang, J. A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments. Water Res. 2011, 45, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Maerz, J.; Verney, R.; Wirtz, K.; Feudel, U. Modeling flocculation processes: Intercomparison of a size class-based model and a distribution-based model. Continental Shelf Res. 2011, 31, S84–S93. [Google Scholar] [CrossRef][Green Version]
- Richardson, J.; Zaki, W. Sedimentation and fluidisation: Part I. Chem. Eng. Res. Des. 1997, 75, S82–S100. [Google Scholar] [CrossRef]
- Jackson, R. Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Eng. Sci. 1997, 52, 2457–2469. [Google Scholar] [CrossRef]
- Greenshields, C.J. OpenFoam Programmers’s Guide; CFD Direct: Boston, MA, USA, 2015. [Google Scholar]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; Series in Computational Methods in Mechanics and Thermal Sciences; Taylor & Francis: Abingdon, UK, 1980. [Google Scholar]
- Kärrholm, F.P. Rhie-Chow Interpolation in Openfoam; Department of Applied Mechanics, Chalmers University of Technology: Goteborg, Sweden, 2006. [Google Scholar]
- Issa, R. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Mazzuoli, M.; Vittori, G. Turbulent spots in an oscillatory flow over a rough wall. Eur. J. Mech.-B/Fluids 2019, 78, 161–168. [Google Scholar] [CrossRef]
- Vittori, G.; Blondeaux, P.; Mazzuoli, M.; Simeonov, J.; Calantoni, J. Sediment transport under oscillatory flows. Int. J. Multiph. Flow 2020, 133, 103454. [Google Scholar] [CrossRef]
- Costamagna, P.; Vittori, G.; Blondeaux, P. Coherent structures in oscillatory boundary layers. J. Fluid Mech. 2003, 474, 1–33. [Google Scholar] [CrossRef]
- Jensen, B.; Sumer, B.; Fredsoe, J. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 1989, 206, 265–297. [Google Scholar] [CrossRef][Green Version]
- Hino, M.; Sawamoto, M.; Takasu, S. Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 1976, 75, 193–207. [Google Scholar] [CrossRef]
- Sarpkaya, T. Coherent structures in oscillatory boundary layers. J. Fluid Mech. 1993, 253, 105–140. [Google Scholar] [CrossRef]
- Mazzuoli, M.; Vittori, G.; Blondeaux, P. Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 2011, 685, 365–376. [Google Scholar] [CrossRef]
- Yang, G.Y.; Zhang, Q.H. Vertical Diffusion Coefficient with Stratification Effect for Silty Sediment Suspension Under Waves. China Ocean. Eng. 2023, 37, 323–332. [Google Scholar] [CrossRef]
Case | Bn | Re | V (mm/s) | D (mm) |
---|---|---|---|---|
A | 1 | 0.1 | 2 | 0.172 |
B | 100 | 1.0 | 0.643 | 5.6 |
C | 1 | 100 | 64.3 | 5.6 |
1 | 0.1 | 0.5 | 0 | 0 | 1 | 0 | 0 |
Case | Ri | Vs | T | ||
---|---|---|---|---|---|
Case 2 | 1000 | 0.56 m/s | 10 s | ||
Case 3 | 1000 | 0.56 m/s | 10 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, I.; Simeonov, J.; Bateman, S.; Keane, N. A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids 2023, 8, 171. https://doi.org/10.3390/fluids8060171
Adams I, Simeonov J, Bateman S, Keane N. A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids. 2023; 8(6):171. https://doi.org/10.3390/fluids8060171
Chicago/Turabian StyleAdams, Ian, Julian Simeonov, Samuel Bateman, and Nathan Keane. 2023. "A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures" Fluids 8, no. 6: 171. https://doi.org/10.3390/fluids8060171
APA StyleAdams, I., Simeonov, J., Bateman, S., & Keane, N. (2023). A Bingham Plastic Fluid Solver for Turbulent Flow of Dense Muddy Sediment Mixtures. Fluids, 8(6), 171. https://doi.org/10.3390/fluids8060171