# Review of Suspended Sediment Transport Mathematical Modelling Studies

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Reynolds Number Approach

#### 2.2. Velocity Lag Approach

#### 2.3. Lift Force

#### 2.4. Turbulent Bursting

#### 2.5. Continuity Equations and Modelling Studies

## 3. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kundu, S.; Ghoshal, K. Effects of Secondary Current and Stratification on Suspension Concentration in an Open Channel Flow. Environ. Fluid Mech.
**2014**, 14, 1357–1380. [Google Scholar] [CrossRef] - Pu, J.H. Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ. Fluid Mech.
**2018**, 19, 785–800. [Google Scholar] [CrossRef] [Green Version] - Pu, J.H.; Pandey, M.; Hanmaiahgari, P.R. Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows. J. Hydro-Environ. Res.
**2020**, 32, 17–25. [Google Scholar] [CrossRef] - Pu, J.H. Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluids
**2021**, 6, 86. [Google Scholar] [CrossRef] - Pu, J.H.; Wei, J.; Huang, Y. Velocity distribution and 3D turbulence characteristic analysis for flow over water-worked rough bed. Water
**2017**, 9, 668. [Google Scholar] [CrossRef] [Green Version] - Hanmaiahgari, P.R.; Gompa, N.R.; Pal, D.; Pu, J.H. Numerical modeling of the sakuma dam reservoir sedimentation. Nat. Hazards
**2018**, 91, 1075–1096. [Google Scholar] [CrossRef] [Green Version] - Pu, J.H.; Huang, Y.; Shao, S.; Hussain, K. Three-gorges dam fine sediment pollutant transport: Turbulence SPH model simulation of multi-fluid flows. J. Appl. Fluid Mech.
**2016**, 9, 1–10. [Google Scholar] [CrossRef] - Zhong, D.; Wang, G.; Sun, Q. Transport Equation for Suspended Sediment Based on Two Fluid Model of Solid/Liquid Two-Phase Flows. J. Hydraul. Eng.
**2011**, 137, 530–542. [Google Scholar] [CrossRef] - Huang, S.H.; Sun, Z.L.; Xu, D.; Xia, S.S. Vertical Distribution of Sediment Concentration. J. Zhejiang Univ. Sci.
**2003**, 9, 1560–1566. [Google Scholar] [CrossRef] - Hsu, T.J.; Jenkins, J.T.; Liu, P.L.F. On Two-Phase Sediment Transport: Dilute Flow. J. Geophys. Res.
**2003**, 108, 2–14. [Google Scholar] [CrossRef] - Rouse, H. Modern Conceptions of the Mechanics of Fluid Turbulence; American Society of Civil Engineers: Reston, VI, USA, 1936; Volume 62, pp. 21–64. [Google Scholar]
- Fick, A. On Liquid Diffusion. J. Membr. Sci.
**1995**, 100, 33–38. [Google Scholar] [CrossRef] - Kundu, S.; Ghoshal, K. A mathematical model for type II profile of concentration distribution in turbulent flows. Environ. Fluid Mech.
**2017**, 17, 449–472. [Google Scholar] [CrossRef] - Greimann, B.P.; Holly, F.M., Jr. Two-phase flow analysis of concentration profiles. Hydraul. Eng.
**2001**, 127, 753–762. [Google Scholar] [CrossRef] - Jha, S.K.; Bombardelli, F.A. Two-Phase Modelling of Turbulence in Dilute Sediment Laden Open-Channel Flow. Environ. Fluid Mech.
**2009**, 9, 237. [Google Scholar] [CrossRef] [Green Version] - Kundu, S.; Ghoshal, K. Explicit formulation for suspended concentration distribution with near-bed particle deficiency. Powder Technol.
**2013**, 253, 429–437. [Google Scholar] [CrossRef] - Jha, S.K.; Bombardelli, F.A. Toward two-phase flow modelling of nondilute sediment transport in open channels. J. Geophys. Res.
**2010**, 115, F3. [Google Scholar] - Pu, J.H.; Wallwork, J.T.; Khan, M.A.; Pandey, M.; Pourhahbaz, H.; Satyanaga, A.; Hanmaiahgari, P.R.; Gough, T. Flood suspended sediment transport: Combined modelling from dilute to hyper-concentrated flow. Water
**2021**, 13, 379. [Google Scholar] - Goree, J.C.; Keetels, G.H.; Munts, E.A.; Bugdayci, H.H.; Rhee, C.V. Concentration and velocit profiles of sediment-water mixtures using the drift flux model. Can. J. Chem. Eng.
**2016**, 94, 1048–1058. [Google Scholar] - Toorman, E.A. Vertical Mixing in the Fully Developed Layer of Sediment-Laden Open-Channel Flow. J. Hydraul. Eng.
**2008**, 134, 1225–1235. [Google Scholar] [CrossRef] - Moodie, A.J.; Nittrouer, J.A.; Ma, H.; Carlson, B.N.; Wang, Y.; Lamb, M.P.; Parker, G. Suspended-sediment induced stratification inferred from concentration and velocity profile measurements in the Yellow River, China. Water Resour. Res.
**2019**, e2020WR027192. [Google Scholar] [CrossRef] - Salim, S.; Pattiaratchi, C.; Tinoco, R.O.; Jayaratne, R. Sediment resuspension due to near-bed turbulent effects: A deep sea case study on the northwest continental slope of Western Australia. J. Geophys. Res. Ocean.
**2018**, 123, 7102–7119. [Google Scholar] [CrossRef] - Einstein, H.A. The Bed-Load Function for Sediment Transport in Open Channel Flows; Departmetn of Agriculture: Washington, DC, USA, 1950. [Google Scholar]
- Drew, D.A. Mathematical modelling of two-phase flow. Fluid Mech.
**1983**, 15, 261–291. [Google Scholar] [CrossRef] - Ni, J.R.; Wang, G.Q.; Borthwick, A.G.L. Kinetic Theory for Particles in Dilute and Dense Solid-Liquid Flows. J. Hydraul. Eng.
**2000**, 126, 893–903. [Google Scholar] [CrossRef] - Sun, Z.; Zheng, H.; Xu, D.; Hu, C.; Zhang, C. Verticle Concentration Profile of Nonuniform Sediment. Int. J. Sediment Res.
**2021**, 36, 120–126. [Google Scholar] [CrossRef] - Soo, S.L. Fluid Dynamics of Multiphase Systems; Blaisdell Publishing Company: Waltham, MA, USA, 1967. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles Drops and Particles; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Van Nierop, E.A.; Luther, S.; Bluemink, J.J.; Magnaudet, J.; Prosperetti, A.; Lohse, D. Drag and Lift Force on Bubbles in a Rotating Flow. J. Fluid Mech.
**2007**, 571, 439–454. [Google Scholar] [CrossRef] - Cheng, N.S. Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Technol.
**2009**, 189, 395–398. [Google Scholar] [CrossRef] - Pal, D.; Ghoshal, K. Hydrodynamic Interaction in Suspended Sediment Distribution of Open Chanel Turbulent Flow. Appl. Math. Model.
**2017**, 49, 630–646. [Google Scholar] [CrossRef] - Liu, D.Y. Fluid Dynamics of Two-Phase Systems; Chinese Higher Education Press: Beijing, China, 1993. [Google Scholar]
- Hamil, L. Understanding Hydraulics; Palgrave MacMillan: London, UK, 2001. [Google Scholar]
- Jain, R.K.; Kothyari, U.C. Cohesion influences on erosion and bed load transport. Water Resour. Res.
**2009**, 45, 6. [Google Scholar] [CrossRef] - Chanson, H. The Hydraulics of Open Channel Flow; Hodder Headline Group: London, UK, 1999. [Google Scholar]
- Kurose, R.; Komori, S. Drag and Lift Force on a Rotating Sphere in Linear Shear Flow. J. Fluid Mech.
**1999**, 384, 183–206. [Google Scholar] [CrossRef] - Zhong, D.; Zhang, L.; Wu, B.; Wang, Y. Velocity Profile of Turbulent Sediment-Laden Flows in Open-Channels. Int. J. Sediment Res.
**2015**, 30, 285–296. [Google Scholar] [CrossRef] - Wright, S.; Parker, G. Density Stratification Effects in Sand-Bed Rivers. J. Hydraul. Eng.
**2004**, 130, 783–795. [Google Scholar] [CrossRef] - Liu, X.; Nayamatullah, M. Semianalytical solutions for one-dimensional unsteady nonequilibrium suspended transport in channels with arbitrary eddy viscosity distribution and realistic boundary conditions. J. Hydraul. Enigneering
**2014**, 5, 1–10. [Google Scholar] [CrossRef] - Cheng, N.S. Analysis of velocity lag in sediment-laden open channel flows. J. Hydraul. Eng.
**2004**, 130, 657–666. [Google Scholar] [CrossRef] - Chen, X.; Li, Y.; Niu, X.; Li, M.; Chen, D.; Yu, X. A general two-phase turbulent flow model applied to the study of sediment transport in open channels. Int. J. Multiph. Flow
**2011**, 37, 1099–1108. [Google Scholar] [CrossRef] [Green Version] - Bradshaw, P.; Huang, G.P. The law of the wall in turbulent flow. Math. Phys. Sci.
**1995**, 451, 165–188. [Google Scholar] - Tsai, C.W.; Huang, S.H. Modeling suspended sediment transport under influence of turbulence ejection and sweep events. Water Resour. Res.
**2019**, 55, 5379–5393. [Google Scholar] [CrossRef] - Leckie, S.H.F.; Mohr, H.; Draper, S.; McLean, D.L.; White, D.J.; Cheng, L. Sedimentation-induced Burial os Subsea Pipelines: Observation from Field Data and Laboratory Experiments. Coast. Eng.
**2016**, 114, 137–158. [Google Scholar] [CrossRef] - Isadinia, E.; Heidarpour, M.; Schleiss, A.J. Investigation of turbulence flow and sediment entrainment around bridge peir. Stoch. Environ. Res. Risk Assess.
**2013**, 27, 1303–1314. [Google Scholar] [CrossRef] [Green Version] - Sinha, N. Towards RANS Parameterized of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves; University of South Florida Scholar Commons: Sarasota, FL, USA, 2013. [Google Scholar]
- Kolmogorov, A.N. The Local Structure of Turbulence in Incomressible Viscious Fluids at Very Large Reynolds Numbers. Math. Phys. Sci.
**1991**, 434, 9–13. [Google Scholar] - Baumert, H.Z.; Simpson, J.; Sundermann, J. Marine Turbulence: Theories, Observations and Models; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wang, Y.Y.; He, Q.; Liu, H. Variations of Near-Bed Suspended Sediment Concentration in South Passage of the Changjiang Estuary. J. Sediment Res.
**2009**, 6, 6–13. [Google Scholar] - Stachurska, B.; Staroszczyk, R. Loboratory study of suspended sediment dynamics Over a mildly sloping sandy bed. Oceanologia
**2019**, 61, 350–367. [Google Scholar] [CrossRef] - Li, G.; Gao, Z.; Li, Z.; Wang, J.; Derksen, J.J. Particle-Resolved PIV Experiments of Solid-Liquid Mixing in a Turbulent Stirred Tank. Am. Inst. Chem. Eng. J.
**2017**, 64, 389–402. [Google Scholar] [CrossRef] [Green Version] - Batchelor, G. An Introduction to Fluid Mechanics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Gavrilov, A.A.; Finnikov, K.A.; Ignatenko, Y.S.; Bocharov, O.B.; May, R. Drag and lift forces acting on a sphere in shear flow of power-law fluid. J. Eng. Thermophys.
**2018**, 27, 474–488. [Google Scholar] [CrossRef] - Ali, S.Z.; Dey, S. Mechanics of Advection of Suspended Particles in Turbulent Flow; The Royal Society Publishing: Kharagpur, India, 2016. [Google Scholar]
- Cui, H.; Singh, V.P. Suspended sediment concentration in open channel using tsallis entropy. J. Hydraul. Eng.
**2014**, 19, 966–977. [Google Scholar] [CrossRef] - Bose, S.K.; Dey, S. Curvilinear Flow Profiles Based on Reynolds Averaging. J. Hydraul. Eng.
**2007**, 133, 1074–1079. [Google Scholar] [CrossRef] - Kundu, S. Suspension concentration distribution in turbulent flows: An analytical study using fractional advection-diffusion equation. Phys. A Stat. Mech. Its Appl.
**2017**, 506, 135–155. [Google Scholar] [CrossRef] - Marcou, O.; Chopard, B.; Yacoubi, S.E.; Hamroun, B.; Lefevre, L.; Mendes, E. A Lattice Boltzmann Model to Study Sedimentation Phenomena in Irrigation Chanals. Commun. Comput. Phys.
**2013**, 13, 880–899. [Google Scholar] [CrossRef] - Dolanský, J.; Chára, Z.; Vlasák, P.; Kysela, B. Lattice Boltzmann Method used to Simulate Particle Motion in a Conduit. J. Hydrol. Hydromech.
**2017**, 65, 105–113. [Google Scholar] [CrossRef] [Green Version] - Shi, H.; Si, P.; Dong, P.; Yu, X. A Two-Phase SPH Model for Massive Sediment Motion in Free Surface Flows. Adv. Water Resour.
**2019**, 129, 80–98. [Google Scholar] [CrossRef] - Fourtakas, G.; Rogers, B.D. Modelling Multi-Phase Liquid-Sediment Scour and Resuspension Induced by Rapid Flows Using Smoothed Particle Hydrodynamics (SPH). Accel. Graph. Process. Unit (GPU) Adv. Water Resour.
**2016**, 92, 186–199. [Google Scholar] [CrossRef]

**Figure 1.**Sediment Concentration Profile. Reprinted with permission from [1]. 2021 Hanmaiahgari, P.R.

**Figure 2.**Coefficient of Drag and Reynolds Number Correlation (Adapted from Cheng [30]).

**Figure 3.**Uplift due to shear stresses on a particles surface. Reprinted with permission from [36]. 2021 Hanmaiahgari, P.R.

**Figure 4.**Eddy viscosity, velocity, and concentration distribution profile (Adapted from Liu and Nayamatullah [39]).

**Figure 5.**Turbulence eddy scaling. Reprinted with permission from [41]. 2021 Hanmaiahgari, P.R.

**Figure 6.**Time series showing: (

**a**) 1 min averaged velocity streamwise velocity, (

**b**) turbulent kinetic energy (TKE) shear stress, and (

**c**) backscatter. The horizontal line shown in (

**a**) represents the critical velocity value for suspension. Reprinted with permission from [22]. 2021 Hanmaiahgari, P.R.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wallwork, J.T.; Pu, J.H.; Kundu, S.; Hanmaiahgari, P.R.; Pandey, M.; Satyanaga, A.; Khan, M.A.; Wood, A.
Review of Suspended Sediment Transport Mathematical Modelling Studies. *Fluids* **2022**, *7*, 23.
https://doi.org/10.3390/fluids7010023

**AMA Style**

Wallwork JT, Pu JH, Kundu S, Hanmaiahgari PR, Pandey M, Satyanaga A, Khan MA, Wood A.
Review of Suspended Sediment Transport Mathematical Modelling Studies. *Fluids*. 2022; 7(1):23.
https://doi.org/10.3390/fluids7010023

**Chicago/Turabian Style**

Wallwork, Joseph T., Jaan H. Pu, Snehasis Kundu, Prashanth R. Hanmaiahgari, Manish Pandey, Alfrendo Satyanaga, Md. Amir Khan, and Alastair Wood.
2022. "Review of Suspended Sediment Transport Mathematical Modelling Studies" *Fluids* 7, no. 1: 23.
https://doi.org/10.3390/fluids7010023