Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures
Abstract
:1. Introduction
2. Equations of Conservation for the Stochastic Process
3. Stochastic Equations for Critical Taylor Number
4. Critical Point in the Case of Motion between Rotating Coaxial Cylinders
5. Results of Estimates of the Critical Taylor Number
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Landau, L.D. Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 1944, 44, 339–342. [Google Scholar]
- Landau, L.D.; Lifshits, E.F. Fluid Mechanics; Perg. Press Oxford: London, UK, 1959. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Feigenbaum, M. The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 1980, 77, 65–86. [Google Scholar] [CrossRef]
- Ruelle, D.; Takens, F. On the nature of turbulence. Commun. Math. Phys. 1971, 20, 167–192. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 1941, 32, 16–18. [Google Scholar]
- Kolmogorov, A.N. A new metric invariant of transitive dynamic sets and automorphisms of the Lebesgue spaces. Dokl. Akad. Nauk SSSR 1958, 119, 861–864. [Google Scholar]
- Kolmogorov, A.N. About the entropy per time unit as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 1958, 124, 754–755. [Google Scholar]
- Kolmogorov, A.N. Mathematical models of turbulent motion of an incompressible viscous fluid. Usp. Mat. Nauk 2004, 59, 5–10. [Google Scholar] [CrossRef]
- Struminskii, V.V. Origination of turbulence. Dokl. Akad. Nauk SSSR 1989, 307, 564–567. [Google Scholar]
- Klimontovich, Y.L. Problems of the statistical theory of open sets: Criteria of the relative degree ofthe ordering of states in the self-organization processes. Usp. Fiz. Nauk 1989, 158, 59–91. [Google Scholar] [CrossRef] [Green Version]
- Samarskii, A.A.; Mazhukin, V.I.; Matus, P.P.; Mikhailik, I.A. Z/2 conservative schemes for the Korteweg–de Vries equations. Dokl. Akad. Nauk 1997, 357, 458–461. [Google Scholar]
- Haller, G. Chaos near Resonance; Springer: Berlin, Germany, 1999. [Google Scholar] [CrossRef]
- Orzag, S.A.; Kells, L.C. Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 1980, 96, 159–205. [Google Scholar] [CrossRef] [Green Version]
- Ladyzhenskaya, O.A. On a dynamical system generated by Navier–Stokes equations. J. Sov. Math. 1975, 3, 458–479. [Google Scholar] [CrossRef]
- Vishik, M.I.; Komech, A.I. Kolmogorov equations corresponding to a two-dimensional stochastic Navier–Stokes system. Tr. Mosk. Mat. Obs. 1983, 46, 3–43. [Google Scholar]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–715. [Google Scholar] [CrossRef]
- Malraison, B.; Berge, P.; Dubois, M. Dimension of strange attractors: An experimental determination for the chaotic regime of two convective systems. J. Phys. Lett. 1983, 44, L897–L902. [Google Scholar] [CrossRef]
- Procaccia, I.; Grassberger, P. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 1983, 28, 2591–2593. [Google Scholar]
- Constantin, P.; Foais, C.; Temam, R. On dimensions of the attractors in two-dimensional turbulence. Phys. D 1988, 30, 284–296. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Phys. D Nonlinear Phenom. 1984, 13, 34–54. [Google Scholar] [CrossRef]
- Rabinovich, M.I.; Reiman, A.M.; Sushchik, M.M.; Kozlov, V.V.; Ramazanov, M.P. Correlation dimension of the flow and spatial development of dynamic chaos in the boundary layer. JETP Lett. 1987, 13, 987. [Google Scholar]
- Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, D.J.; Jen, E.; Crutchfield, P.J. Low-dimensional chaos in hydrodynamic system. Phys. Rev. Lett. 1983, 51, 1442–1446. [Google Scholar] [CrossRef]
- Sreenivasan, K.R. Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 1991, 23, 539–600. [Google Scholar] [CrossRef]
- Priymak, V.G. Splitting dynamics of coherent structures in a transitional round-pipe flow. Dokl. Phys. 2013, 58, 457–465. [Google Scholar] [CrossRef]
- Newton, P.K. The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 2016, 786, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mayer, C.S.J.; von Terzi, D.A.; Fasel, H.F. Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 2011, 674, 5–42. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 2007, 52, 384–387. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Calculation of the boundary layer of a two-phase medium. High Temp. 2002, 40, 706–715. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Heat and mass transfer and friction in injection to a supersonic region of the Laval nozzle. Heat Transf. Res. 2000, 31, 338–399. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Film cooling in nozzles with large geometric expansion using method of integral relation and second moment closure model for turbulence. In Proceedings of the 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. AIAA Paper 97-2911. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Heat and mass transfer in combustion chamber using a second-moment turbulence closure including an influence coefficient of the density fluctuation in film cooling conditions. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13–15 July 1998. AIAA Paper 98-3444. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Nonselfsimilarity of a boundary-layer flow of a high-temperature gas in a Laval nozzle. Aviats. Tekh. 1993, 1, 39–42. [Google Scholar]
- Dmitrenko, A.V. Computational investigations of a turbulent thermal boundary layer in the presence of external flow pulsations. In Proceedings of the 11th Conference on Young Scientists; Deposited at VINITI 08.08.86, No. 5698-B8; Moscow Physico-technical Institute: Moscow, Russia, 1986; Part 2; pp. 48–52. [Google Scholar]
- Davidson, P.A. Turbulence; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Hinze, J.O. Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Schlichting, H. Boundary-Layer Theory, 6th ed.; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Fundamentals of heat and mass transfer and hydrodynamics of single-phase and two-phase media. In Criterialintegral Statistical Methods and Direct Numerical Simulation; Galleya Print: Moscow, Russia, 2008; Available online: http://search.rsl.ru/ru/catalog/record/6633402 (accessed on 10 May 2020).
- Dmitrenko, A.V. Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 2013, 58, 228–235. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions-Equivalence of Measures. 2013. Scientific Discovery Diploma No. 458, registration No. 583 of December 2. Available online: https://search.rsl.ru/ru/record/01006633402 (accessed on 15 May 2020).
- Dmitrenko, A.V. Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 2014, 8, 1101–1111. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. Determination of critical Reynolds numbers for nonisothermalflows using stochastic theory of turbulence and equivalent measures. Heat Transf. Res. 2016, 47, 41–48. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 2016, 43, 182–187. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2015, 88, 1569–1576. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. J. Fluid Mech. Res. 2016, 43, 82–91. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical determination of the heat transfer coefficient for gas, liquid and liquidmetal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 2017, 29, 1197–1205. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2017, 90, 1288–1294. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1009, 012017. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, A.V. The stochastic theory of the turbulence. IOP Conf. Ser. Mater. Sci. Eng. 2018, 468, 012021. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2019, 1705, 12015. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere. J. Phys. Conf. Ser. 2019, 1301, 012006. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The correlation dimension of an attractor determined on the base of the theory of equivalence of measures and stochastic equations for continuum. Contin. Mechan. Thermod. 2020, 32, 63–74. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The possibility of using low-potential heat based on the organic Rankine cycle and determination of hydraulic characteristics of industrial units based on the theory of stochastic equations. JP J. Heat Mass Transf. 2020, 21, 125–132. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theoretical solution for the Reynolds analogy based on the stochastic theory of turbulence. JP J. Heat Mass Transf. 2019, 18, 463–476. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Reynolds Analogy Based on the Theory of Stochastic Equations and Equivalence of Measures. J. Eng. Phys. 2021, 94, 186–193. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Some aspects of the formation of the spectrum of atmospheric turbulence. JP J. Heat Mass Transf. 2020, 19, 201–208. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Uncertainty relation in turbulent shear flow based on stochastic equations of the continuum and the equivalence of measures. Contin. Mech. Thermod. 2020, 32, 161–171. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Formation of the turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2020, 93, 122–127. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The Spectrum of the turbulence based on theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012021. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures. Contin. Mech. Thermod. 2021, 33, 603–610. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012015. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures. Fluids 2021, 6, 5. [Google Scholar] [CrossRef]
- Taylor, G.I. Stability of a viscous liquid contained between two rotating cylinders. Proc. Roy. Soc. 1935, A151, 494–512. [Google Scholar]
- Taylor, G.I. Internal waves and turbulence in affluid of variable density. Rapp. Proc. Verb. Cons. Internat. 1931, 132, 35–42. [Google Scholar]
- Taylor, G.I. Effects of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. 1931, A132, 499–523. [Google Scholar]
- Tetervin, N. Charts and tables for estimating the stability of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient. NASA MEMO 1959, 5, 1–48. [Google Scholar]
- Wendt, F. Turbulente Stromung zwischenlzwei rotierenden koaxialen Zylindern. Ingenieur-Archiv 1933, 4, 577–595. [Google Scholar] [CrossRef]
- Synge, J.L. On the stability of a viscous liquid between rotating coaxial cylinders. Proc. Roy. Soc. 1938, A167, 250–256. [Google Scholar]
- Veite, W. Stabilität und Verzweigung stationärer lösungen der Navier-Stokesschen gleichungen beim Taylor problem. Arch. Rat. Mech. Anal. 1966, 22, 1–14. [Google Scholar]
- Koschmieder, E.L. Bénard Cells and Taylor Vortices; Cambridge University Press: Cambridge, UK, 1993; ISBN 0-521-40204-2. [Google Scholar]
- Andereck, C.D.; Liu, S.S.; Swinney, H.L. Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 1986, 164, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Kao, K.-H.; Chow, C.-Y. Linear stability of compressible Taylor–Couette flow. Phys. Fluids A Fluid Dyn. 1992, 4, 984–996. [Google Scholar] [CrossRef]
- Koschmieder, E.L. Transition from laminar to turbulent Taylor vortex flow. In Laminar-Turbulent Transition Symp; Springer: Berlin, Germany, 1980; pp. 396–404. [Google Scholar]
- Kroner, K.H.; Nissinen, V. Dynamic filtration of microbial suspensions using an axially rotating filter. J. Membr. Sei. 1988, 36, 85100. [Google Scholar] [CrossRef]
- Chandrasekhak, S. Hydrodynamic and Hydromagnetic Stability; Clarendon Press: Oxford, UK, 1961; 852p. [Google Scholar]
- Krueger, E.R.; Gross, A.; Di Prima, R.C. On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 1966, 24, 521–538. [Google Scholar] [CrossRef]
- Donnelly, R.J. Experiments on the stability of viscous flow between rotating cylinders. Proc. R. Soc. Ser. A 1958, 246, 312–325. [Google Scholar]
- Donnelly, R.J.; Simon, N.J. An empirical torque relation for supercritical flow between rotating cylinders. J. Fluid Mech. 1960, 7, 401–418. [Google Scholar] [CrossRef]
- Di Prima, R.C. Stability of nonrotating symmetric disturbances for viscous flow between rotating cylinders. Phys. Fluids 1961, 4, 751–755. [Google Scholar] [CrossRef]
- Davey, A. The growth of Taylor vortices in flow between rotating cylinders. J. Fluid Mech. 1962, 14, 336–368. [Google Scholar] [CrossRef]
- Davey, A.; Di Prima, R.C.; Stuart, J.T. On the instability of Taylor vortices. J. Fluid Mech. 1968, 31, 17–52. [Google Scholar] [CrossRef]
- Lueptow, R.M.; Hajiloo, A. Flow in a rotating membrane plasma separator. Trans. Am. Soc. Artif. Intern. Organs 1995, 41, 182–188. [Google Scholar] [CrossRef]
- Feigenbaum, M.I. Universal behaviour in nonlinear systems. Los Alamos Sei. 1980, 1, 4–27. [Google Scholar]
- Burkhalter, J.E.; Koschmieder, E.L. Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 1974, 17, 1929–1935. [Google Scholar] [CrossRef]
- Lueptow, R.M.; Min, K. Circular Couette flow with pressufe-driven axial flow and a porous inner cylinder. Exp. Fluids 1994, 17, 190–197. [Google Scholar]
- Lueptow, R.M.; Min, K. Hydrodynamic stability of viscous flow between rotating porous cylinders with radial flow. Phys. Fluids 1994, 6, 144–151. [Google Scholar]
- Mallock, A. Determination of the viscosity of water. Proc. Roy. Soc. 1888, A45, 126–132. [Google Scholar]
- Meyer-Spasche, R.; Keller, H.B. Computation of the axisymmetric flow between rotating cylinders. J. Comput. Phys. 1980, 35, 100109. [Google Scholar] [CrossRef]
- Ohashi, K.; Tashiro, K.; Kushiya, F.; Matsumoto, T.; Yoshida, S.; Endo, M.; Horio, T.; Ozawa, K.; Sakai, K. Rotation-induced Taylor vortex enhances filtrate flux in plasma separation. ASAIO Trans. 1988, 34, 300–307. [Google Scholar] [PubMed]
- Wimmer, M. An experimental investigation of Taylor vortex flow between conical cylinders. J. Fluid Mech. 1995, 292, 205–227. [Google Scholar] [CrossRef]
- Wimmer, M. Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 1976, 78, 317–335. [Google Scholar] [CrossRef]
- Ovchinnikova, S.N.; Yudovich, V.I. Resonances in the intersections of bifurcation in the Couette-Taylor problem. In Patterns and Waves; Abramian, A., Vakulenko, S., Volpert, V., Eds.; 2003; p. 5577. Available online: https://www.dissercat.com/content/dvizheniya-zhidkosti-mezhdu-vrashchayushchimisya-pronitsaemymi-tsilindrami (accessed on 15 May 2020).
- Rayleigh, L. On Convention Currents in a Horizontal Layer of Fluid When the Higher Temperature Is on the under Side; Sei. Papers; Cambridge University Press: Cambridge, UK, 1916; Volume 6, pp. 529–546. [Google Scholar]
- Shapakidze, L. On the bifurcation of flows of a heat-conducting fluid between two rotating permeable cylinders. Georgian Math. J. 1997, 4, 567–578. [Google Scholar] [CrossRef]
- Shapakidze, L. On the stability of flows between two rotating permeable cylinders. Proc. Int. Conf. Appl. Mech. 1989, 1, 450454. [Google Scholar]
- Swinney, H.L.; Gollub, J.P. Transition to turbulence. Phys. Today 1978, 31, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Wronski, S.; Molga, E.; Rudniak, L. Dynamic filtration in biotechnology. Bioprocess Eng. 1989, 4, 99–104. [Google Scholar] [CrossRef]
- Yahata, H. Dynamics of the Taylor vortices above higher instability points. Progr. Theor. Phys. 1978, 59, 1755–1756. [Google Scholar] [CrossRef] [Green Version]
- Yahata, H. Temporal development of the Taylor vortices in a rotating fluid. Ill. Progr. Theor. Phys. 1980, 64, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Yahata, H. Temporal development of the Taylor vortices in a rotating fluid. 1. Progr. Theor. Phys. 1981, 66, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Yahata, H. Temporal development of the Taylor vortices in a rotating fluid. 274. Progr. Theor. Phys. 1983, 69, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Schwüle, J.A.; Mitra, D.; Lueptow, R.M. Design parameters for rotating filtration. J. Membrane Sei. 2002, 204, 53–65. [Google Scholar] [CrossRef]
- Schwüle, J.A.; Mitra, D.; Lueptow, R.M. Anti-fouling mechanism in rotating filtration. In Proceedings of the 12th International Couette-Taylor Workshop, Evanston, IL, USA, 6–8 September 2001. Session 2D. [Google Scholar]
- Serre, E.; Sprague, M.A.; Lueptow, R.M. Stability of Taylor-Couette flow in a finite-length cavity with radial throughflow. Phys. Fluids. 2008, 20, 034106-1–034106-10. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.N.; Yoon, Y.; Pederson, C.L.; Lueptow, R.M. Rotating reverse osmosis and spiral wound reverse osmosis filtration: A comparison. J. Membrane Sei. 2006, 285, 353–361. [Google Scholar] [CrossRef]
- Kolesov, V.; Shapakidze, L. On oscillatory modes in viscous incompressible liquid flows between two counter-rotating permeable cylinders. Trends App. Math. Mech. Boca Raton Chapman Hall CRC. 2000, 106, 221–227. [Google Scholar]
- Kolesov, V.; Shapakidze, L. On transitions near the intersection point of bifurcations in the flow between two rotating permeable cylinders. Proc. A. Razmadze Math. Inst. 2000, 122, 79–91. [Google Scholar]
- Jain, N.C.; Bansal, J.L. On the flow of a viscous incompressible fluid between two coaxial rotating porous cylinders. Proc. Indian. Acad. Sei. Math. Sei. 1973, 78, 187–201. [Google Scholar] [CrossRef]
- Johnson, C.; Lueptow, R.M. Hydrodynamic stability of flow between rotating porous cylinders with radial and axial flow. Phys. Fluids 1997, 9, 3687–3696. [Google Scholar] [CrossRef]
- Fenstermacher, P.R.; Swinney, H.L.; Benson, S.V.; Gollub, J.P. Bifurcations to periodic, quasiperiodic, and chaotic regimes in rotating and convecting fluids. Ann. N. Y. Acad. Sei. 1979, 316, 652–666. [Google Scholar] [CrossRef]
- Fenstermacher, P.R.; Swinney, H.L.; Gollub, J.P. Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 1979, 94, 103–128. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.; Meyer-Spasche, R. Computation of transitions in Taylor vortex flows. Z. Angev. Math. Und. Phys. 1981, 32, 710–720. [Google Scholar] [CrossRef]
- Goharzadeh, A.; Mutabazi, I. Experimental characterization of intermittency regimes in the Couette-Taylor System. Eur. Phys. J.B. 2001, 19, 157–162. [Google Scholar] [CrossRef]
- Lee, S.; Lueptow, R.M. Rotating membrane filtration and rotating reverse osmosis. J. Chem. Eng. Japan 2004, 37, 471–482. [Google Scholar] [CrossRef]
- Chang, M.-H. Hydrodynamic stability of Taylor-Dean flow between rotating porous cylinders with radial flow. Phys. Fluids 2003, 15, 1178–1188. [Google Scholar] [CrossRef]
- Serre, E.; Sprague, M.; Bontoux, P.; Lueptow, R.M. The effect of radial through-flow on the stability of Taylor-Couette flow. In Proceedings of the 15th Intern. Couette-Taylor Workshop, Le Havre, France, 9–12 July 2007. [Google Scholar]
- Richard, D. Sandberg Governing Equations for a New Navier-Stokes Solver in General Cylindrical Coordinates; Report No. AFM-07/07; University of Southampton: Southampton, UK, 2007; Available online: http://eprints.soton.ac.uk/49523 (accessed on 15 May 2020).
- Dou, H.S. Mechanism of flow instability and transition to turbulent. Int. J. Non-Linear Mech. 2006, 41, 512–517. [Google Scholar] [CrossRef]
- Dou, H.S.; Khoo, B.C. Investigation of turbulent transition in plane Couette flows using energy gradient method. Adv. Appl. Math. Mech. J. 2011, 3, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, C.; Nguyen, F.; Kerswell, R.R. Connections between centrifugal, stratorotational and radiative instabilities in viscous Taylor-Couette flow. Phys. Rev. E 2016, 94, 43–103. [Google Scholar] [CrossRef] [Green Version]
- Ilin, K.; Morgulis, A. Instability of an inviscid flow between porous cylinders with radial flow. J. Fluid Mech. 2013, 730, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Ilin, K.; Morgulis, A. On the stability of the Couette–Taylor flow between rotating porous cylinders with radial flow. Eur. J. Mech. B/Fluids 2020, 80, 174–186. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, A.V. Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures. Fluids 2021, 6, 306. https://doi.org/10.3390/fluids6090306
Dmitrenko AV. Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures. Fluids. 2021; 6(9):306. https://doi.org/10.3390/fluids6090306
Chicago/Turabian StyleDmitrenko, Artur V. 2021. "Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures" Fluids 6, no. 9: 306. https://doi.org/10.3390/fluids6090306
APA StyleDmitrenko, A. V. (2021). Analytical Estimates of Critical Taylor Number for Motion between Rotating Coaxial Cylinders Based on Theory of Stochastic Equations and Equivalence of Measures. Fluids, 6(9), 306. https://doi.org/10.3390/fluids6090306