Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Coal Production
2.3. Coal Characterization
2.4. Kinetic Experiments and Mass Transfer Mechanism
2.5. Equilibrium Experiments
2.6. Adsorption Thermodynamics
2.7. BaP Determination
2.8. Data Analysis
3. Results
3.1. Coal Characterization
3.2. Kinetics Experiments and Mass Transfer Mechanism
3.3. Isotherms and Thermodynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukhopadhyay, A.; Duttagupta, S.; Mukherjee, A. Emerging Organic Contaminants in Global Community Drinking Water Sources and Supply: A Review of Occurrence, Processes and Remediation. J. Environ. Chem. Eng. 2022, 10, 107560. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging Contaminants: A One Health Perspective. Innovation 2024, 5, 100612. [Google Scholar] [PubMed]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Song, X.; Li, J.; Xu, S.; Ying, R.; Ma, J.; Liao, C.; Liu, D.; Yu, J.; Chen, L. Determination of 16 Polycyclic Aromatic Hydrocarbons in Seawater Using Molecularly Imprinted Solid-Phase Extraction Coupled with Gas Chromatography-Mass Spectrometry. Talanta 2012, 99, 75–82. [Google Scholar] [CrossRef]
- Vijayanand, M.; Ramakrishnan, A.; Subramanian, R.; Issac, P.K.; Nasr, M.; Khoo, K.S.; Rajagopal, R.; Greff, B.; Wan Azelee, N.I.; Jeon, B.H.; et al. Polyaromatic Hydrocarbons (PAHs) in the Water Environment: A Review on Toxicity, Microbial Biodegradation, Systematic Biological Advancements, and Environmental Fate. Environ. Res. 2023, 227, 115716. [Google Scholar] [CrossRef]
- Wei, L.; Lv, J.; Zuo, P.; Li, Y.; Yang, R.; Zhang, Q.; Jiang, G. The Occurrence and Sources of PAHs, Oxygenated PAHs (OPAHs), and Nitrated PAHs (NPAHs) in Soil and Vegetation from the Antarctic, Arctic, and Tibetan Plateau. Sci. Total Environ. 2024, 912, 169394. [Google Scholar] [CrossRef]
- Guo, M.; Shang, X.; Ma, Y.; Zhang, K.; Zhang, L.; Zhou, Y.; Gong, Z.; Miao, R. Biochars Assisted Phytoremediation of Polycyclic Aromatic Hydrocarbons Contaminated Agricultural Soil: Dynamic Responses of Functional Genes and Microbial Community. Environ. Pollut. 2024, 345, 123476. [Google Scholar] [CrossRef]
- Dong, M.; He, L.; Jiang, M.; Zhu, Y.; Wang, J.; Gustave, W.; Wang, S.; Deng, Y.; Zhang, X.; Wang, Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. Int. J. Environ. Res. Public Health 2023, 20, 1679. [Google Scholar] [CrossRef]
- Pathak, S.; Sakhiya, A.K.; Anand, A.; Pant, K.K.; Kaushal, P. A State-of-the-Art Review of Various Adsorption Media Employed for the Removal of Toxic Polycyclic Aromatic Hydrocarbons (PAHs): An Approach towards a Cleaner Environment. J. Water Process Eng. 2022, 47, 102674. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; de Farias, B.S.; Rios, E.C.; Jaeschke, D.P.; Ribeiro, A.C.; da Silva, M.D.; Vieira, M.L.G.; Carvalho, V.V.D.L.; Cadaval, T.R.S.; Pinto, L.A.D.A. Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants. Sustainability 2024, 16, 8321. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ivanová, L.; Mackuľak, T.; Grabic, R.; Golovko, O.; Koba, O.; Staňová, A.V.; Szabová, P.; Grenčíková, A.; Bodík, I. Pharmaceuticals and Illicit Drugs—A New Threat to the Application of Sewage Sludge in Agriculture. Sci. Total Environ. 2018, 634, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, B.; Liu, G.; Cai, Z.; Zhang, C. Potential Toxic Compounds in Biochar: Knowledge Gaps Between Biochar Research and Safety. In Biochar from Biomass and Waste: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 349–384. [Google Scholar] [CrossRef]
- Dudnikova, T.; Wong, M.H.; Minkina, T.; Sushkova, S.; Bauer, T.; Khroniuk, O.; Barbashev, A.; Shuvaev, E.; Nemtseva, A.; Kravchenko, E. Effects of Pyrolysis Conditions on Sewage Sludge-Biochar Properties and Potential Risks Based on PAH Contents. Environ. Res. 2025, 266, 120444. [Google Scholar] [CrossRef]
- Reizer, E.; Csizmadia, I.G.; Palotás, Á.B.; Viskolcz, B.; Fiser, B. Formation Mechanism of Benzo(a)Pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH). Molecules 2019, 24, 1040. [Google Scholar] [CrossRef]
- Aquilina, N.J.; Harrison, R.M. Evaluation of the Cancer Risk from PAHs by Inhalation: Are Current Methods Fit for Purpose? Environ. Int. 2023, 177, 107991. [Google Scholar] [CrossRef]
- Speciale, A.; Zena, R.; Calabrò, C.; Bertuccio, C.; Aragona, M.; Saija, A.; Trombetta, D.; Cimino, F.; Lo Cascio, P. Experimental Exposure of Blue Mussels (Mytilus galloprovincialis) to High Levels of Benzo[a]Pyrene and Possible Implications for Human Health. Ecotoxicol. Environ. Saf. 2018, 150, 96–103. [Google Scholar] [CrossRef]
- Cao, W.; Luo, Y.; Li, J.; Qian, A.; Wang, Q.; Wang, X.; Duan, L.; Wu, Y.; Han, C. Detection of Benzo[a]Pyrene with Silver Nanorod Substrate in River Water and Soil Based on Surface-Enhanced Raman Scattering. Results Chem. 2021, 3, 100126. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]Pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Suzuki, M. Adsorption Engineering, Suzuki (1990); Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990; ISBN 0-444-98802-5. [Google Scholar]
- Sonetaka, N.; Fan, H.J.; Kobayashi, S.; Chang, H.N.; Furuya, E. Simultaneous Determination of Intraparticle Diffusivity and Liquid Film Mass Transfer Coefficient from a Single-Component Adsorption Uptake Curve. J. Hazard. Mater. 2009, 164, 1447–1451. [Google Scholar] [CrossRef]
- Roberts, P.V.; Cornel, P.; Summers, R.S. External Mass-Transfer Rate in Fixed-Bed Adsorption. J. Environ. Eng. 1985, 111, 891–905. [Google Scholar] [CrossRef]
- Helfferich, F.G. Principles of Adsorption & Adsorption Processes, by D. M. Ruthven, John Wiley & Sons, 1984, Xxiv + 433 Pp. AIChE J. 1985, 31, 523–524. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Milonjić, S.K. A Consideration of the Correct Calculation of Thermodynamic Parameters of Adsorption. J. Serbian Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- De Oliveira Arias, J.L.; Rocha, C.B.; Kupski, L.; Barbosa, S.C.; Primel, E.G. Salting-Out Induced Liquid-Liquid Microextraction: An Environmentally Friendly Approach to Preservative Determination in Food Samples. Food Anal. Methods 2021, 14, 1625–1636. [Google Scholar] [CrossRef]
- Marcolin, L.C.; de Oliveira Arias, J.L.; Kupski, L.; Barbosa, S.C.; Primel, E.G. Polycyclic Aromatic Hydrocarbons (PAHs) in Honey from Stingless Bees (Meliponinae) in Southern Brazil. Food Chem. 2023, 405, 134944. [Google Scholar] [CrossRef]
- Sing, K.S.W. Characterization Of Porous Solids: An Introductory Survey. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1991; Volume 62, pp. 1–9. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Evaluation of Sewage Sludge and Slow Pyrolyzed Sewage Sludge-Derived Biochar for Adsorption of Phenanthrene and Pyrene. Bioresour. Technol. 2015, 192, 618–626. [Google Scholar] [CrossRef]
- Melo, J.M.; Lütke, S.F.; Igansi, A.V.; Franco, D.S.P.; Vicenti, J.R.M.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S.; Felipe, C.A.S. Mass Transfer and Equilibrium Modelings of Phenol Adsorption on Activated Carbon from Olive Stone. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132628. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Crispim, M.M.; Rios, E.C.; Silva, L.F.; de Farias, B.S.; Sant’Anna Cadaval Junior, T.R.; de Almeida Pinto, L.A.; Nawaz, A.; Manoharadas, S.; Dotto, G.L. New and Effective Cassava Bagasse-Modified Biochar to Adsorb Food Red 17 and Acid Blue 9 Dyes in a Binary Mixture. Environ. Sci. Pollut. Res. Int. 2024, 31, 5209–5220. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F.; Molina-Sabio, M. Textural and Chemical Characterization of Microporous Carbons. Adv. Colloid Interface Sci. 1998, 76–77, 271–294. [Google Scholar] [CrossRef]
- Shah, A.; Arjunan, A.; Thumma, A.; Zakharova, J.; Bolarinwa, T.; Devi, S.; Batool, M. Adsorptive Removal of Arsenic from Drinking Water Using KOH-Modified Sewage Sludge-Derived Biochar. Clean. Water 2024, 2, 100022. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of Methylene Blue from Aqueous Solutions by Biochar Prepared from the Pyrolysis of Mixed Municipal Discarded Material. Sci. Total Environ. 2020, 714, 136832. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Hu, S.; Xu, D.; Kong, X.; Gong, J.; Yang, Y.; Ran, Y.; Mao, J. Effect of the Structure and Micropore of Activated and Oxidized Black Carbon on the Sorption and Desorption of Nonylphenol. Sci. Total Environ. 2021, 761, 144191. [Google Scholar] [CrossRef]
- Liu, S. Cooperative Adsorption on Solid Surfaces. J. Colloid Interface Sci. 2015, 450, 224–238. [Google Scholar] [CrossRef]
- Barman, S.R.; Das, P.; Mukhopadhayay, A. Biochar from Waste Sterculia Foetida and Its Application as Adsorbent for the Treatment of PAH Compounds: Batch and Optimization. Fuel 2021, 306, 121623. [Google Scholar] [CrossRef]
Elovich | a (g µg−1) | b (µg g−1 min−1) | R2 | ARE (%) |
---|---|---|---|---|
0.16 | 1478 | 0.90 | 8.43 | |
Pseudo-First Order | q1 (µg g−1) | k1 (min−1) | R2 | ARE (%) |
47.11 | 1.85 | 0.77 | 13.20 | |
Pseudo-Second Order | q2 (µg g−1) | k2 (g µg−1 min−1) | R2 | ARE (%) |
51.40 | 0.04 | 0.83 | 12.44 |
(m s−1) | (m2 s−1) | ||
---|---|---|---|
Value | 2.15 | Value | 1.31 |
R2 | 0.93 | R2 | 0.92 |
ARE (%) | 1.73 | ARE (%) | 5.94 |
Temperature (°C) | ||||
---|---|---|---|---|
25 °C | 35 °C | 45 °C | 55 °C | |
Langmuir | ||||
qm (μg g−1) | 70.840 | 77.030 | 110.430 | 124.311 |
kL | 0.023 | 0.022 | 0.012 | 0.019 |
R2 | 0.9128 | 0.9452 | 0.9564 | 0.8755 |
ARE (%) | 23.9 | 25.82 | 21.82 | 39.8 |
Freundlich | ||||
kF | 7.786 | 7.401 | 5.295 | 10.429 |
N | 2.745 | 2.570 | 2.009 | 2.509 |
R2 | 0.8176 | 0.8716 | 0.8976 | 0.7799 |
ARE (%) | 36.79 | 34.57 | 35.23 | 53.89 |
T (°C) | KD | ΔG (kJmol−1) | ΔS (J·mol−1K−1) | ΔH (kJmol−1) |
---|---|---|---|---|
25 | 598.23 | −15.84 | 151.98 | 30.04 |
35 | 533.83 | −16.80 | ||
45 | 831.25 | −17.77 | ||
55 | 1803.60 | −20.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleemann, N.; Jaeschke, D.; Silveira, N., Jr.; Pinto, L.; Cadaval, T., Jr.; Arias, J.; Barbosa, S.; Primel, E.; Bamberg, A. Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge. Fluids 2025, 10, 98. https://doi.org/10.3390/fluids10040098
Kleemann N, Jaeschke D, Silveira N Jr., Pinto L, Cadaval T Jr., Arias J, Barbosa S, Primel E, Bamberg A. Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge. Fluids. 2025; 10(4):98. https://doi.org/10.3390/fluids10040098
Chicago/Turabian StyleKleemann, Natiele, Débora Jaeschke, Nauro Silveira, Jr., Luiz Pinto, Tito Cadaval, Jr., Jean Arias, Sergiane Barbosa, Ednei Primel, and Adilson Bamberg. 2025. "Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge" Fluids 10, no. 4: 98. https://doi.org/10.3390/fluids10040098
APA StyleKleemann, N., Jaeschke, D., Silveira, N., Jr., Pinto, L., Cadaval, T., Jr., Arias, J., Barbosa, S., Primel, E., & Bamberg, A. (2025). Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge. Fluids, 10(4), 98. https://doi.org/10.3390/fluids10040098