Updated Review on the Available Methods for Measurement and Prediction of the Mass Transfer Coefficients in Bubble Columns
Abstract
1. Introduction
Important Findings About the MT Process in BCs
2. Measurement Techniques and Methods for kLa Estimation
3. Empirical MT Correlations
3.1. Correlation of Akita and Yoshida [33]
3.2. Correlation of Hikita et al. [34]
3.3. Correlation of Jordan and Schumpe [29]
3.4. Correlation of Öztȕrk et al. [35]
3.5. Empirical MT Correlation for Two-Phase and Three-Phase BCs [36]
4. Semi-Theoretical Approaches for kLa Prediction Based on the Penetration Theory [21]
4.1. Correction Factor Proposed by Miller [22]
4.2. Correction Factor Proposed by Nedeltchev et al. [23]
4.3. Contact Time Defined by Means of the Local Isotropic Turbulence Theory [39]
5. Computational Methods for Estimation of the Liquid-Phase MT Coefficients
6. Methods for Estimation of the Gas–Liquid Interfacial Area
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | ||
ADM | axial dispersion model | |
BC | bubble column | |
CFD | computational fluid dynamics | |
DO | dissolved oxygen | |
ID | inner diameter | |
LIF | laser-induced fluorescence | |
MT | mass transfer | |
Nomenclature | ||
a | gas–liquid interfacial area | m−1 |
dB | bubble diameter | m |
dS | Sauter-mean bubble diameter | m |
DC | column diameter | m |
DL | molecular diffusivity | m2/s |
f | factor for ionic strength | - |
fc | correction factor | - |
G | characteristic of the gas sparger | - |
g | acceleration due to gravity | m/s2 |
kL | liquid-phase MT coefficient | m/s |
kLa | volumetric liquid-phase MT coefficient | s−1 |
T | temperature | K |
Ug | superficial gas velocity | m/s |
Dimensionless numbers | ||
Bo | Bond number | - |
Eo | Eötvös number | - |
Fr | Froude number | - |
Ga | Galilei number | - |
Sc | Schmidt number | - |
Sh | Sherwood number | - |
Greek letters | ||
εg | gas holdup | - |
μG | gas viscosity | Pa s |
μL | liquid viscosity | Pa s |
ν | kinematic viscosity | m2/s |
ρG | gas density | kg/m3 |
ρL | liquid density | kg/m3 |
σL | surface tension | N/m |
η | length scale of micro eddies | m |
υ | velocity scale of micro eddies | m |
∈ | energy dissipation rate | m2/s3 |
References
- Deckwer, W.-D.; Adler, I.; Zaidi, A. A comprehensive study on CO2-interphase mass transfer in vertical concurrent and countercurrent gas-liquid flow. Can. J. Chem. Eng. 1978, 56, 43–55. [Google Scholar] [CrossRef]
- Deckwer, W.-D.; Schumpe, A. Improved tools for bubble column reactor design and scale-up. Chem. Eng. Sci. 1993, 48, 889–911. [Google Scholar] [CrossRef]
- Zahradnik, J.; Kastanek, F.; Kratochvil, J. Hydrodynamics and mass transfer in uniformly aerated bubble column reactors. Collect. Czechoslov. Chem. Commun. 1982, 47, 262–279. [Google Scholar] [CrossRef]
- George, D.L.; Shollenberger, K.L.; Torczynski, J.R. Sparger effects on gas volume fraction distributions in vertical bubble-column flows as measured by gamma-densitometry tomography. FED Am. Soc. Mech. Eng. 2000, 251, 1487–1494. [Google Scholar]
- Xue, J.; Al-Dahhan, M.; Dudukovic, M.P.; Mudde, R.F. Bubble dynamics measurements using four-point optical probe. Can. J. Chem. Eng. 2003, 81, 375–381. [Google Scholar] [CrossRef]
- Deckwer, W.-D.; Hallensleben, J.; Popovic, M. Exclusion of gas sparger influence on mass transfer in bubble columns. Can. J. Chem. Eng. 1980, 58, 190–197. [Google Scholar] [CrossRef]
- Deckwer, W.-D. Non-isobaric bubble columns with variable gas velocity. Chem. Eng. Sci. 1976, 31, 309–317. [Google Scholar] [CrossRef]
- Nedeltchev, S.; Ookawara, S.; Ogawa, K. Quality of mixedness profiles based on spatial distribution of local mass transfer coefficients in a bubble column. Can. J. Chem. Eng. 2003, 81, 597–603. [Google Scholar] [CrossRef]
- Martin, M.; Galan, M.; Cerro, R.L.; Montes, F.J. Shape oscillating bubbles-hydrodynamics and mass transfer-a review. Bubble Sci. Eng. Technol. 2011, 3, 48–63. [Google Scholar] [CrossRef]
- Xu, X.; Kordorwu, V.; Li, Z.; Liu, F. Experimental study on the dynamics and mass transfer of CO2 bubbles rising in viscoelastic fluids. Int. J. Multiph. Flow 2021, 135, 103539. [Google Scholar] [CrossRef]
- Miguet, J.; Scheid, B.; Dorbolo, S. Antibubble column: A mean to measure and enhance liquid-gas mass transfer through surfactant-laden interfaces. Chem. Eng. J. 2024, 498, 153276. [Google Scholar] [CrossRef]
- Hu, G.; Cui, K.; Jin, S.; Liu, K. Effect of surfactant on dynamics and gas-liquid mass transfer for single carbon dioxide bubbles. J. Clean. Prod. 2024, 453, 142148. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Z.; Liu, F.; Li, Z.; Wei, W.; Wang, X.; Xu, X. Effect of liquid phase rheology and gas-liquid interface property on mass transfer characteristics in bubble columns. Chem. Eng. Res. Des. 2019, 142, 25–33. [Google Scholar] [CrossRef]
- Hebrard, G.; Zeng, J.; Loubiere, K. Effect of surfactants on liquid side mass transfer coefficients: A new insight. Chem. Eng. J. 2009, 148, 132–138. [Google Scholar] [CrossRef]
- Terasaka, K.; Hullmann, D.; Schumpe, A. Mass transfer in bubble columns studied with an oxygen optode. Chem. Eng. Sci. 1998, 53, 3181–3184. [Google Scholar] [CrossRef]
- Han, L.; Al-Dahhan, M.H. Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs. Chem. Eng. Sci. 2007, 62, 131–139. [Google Scholar] [CrossRef]
- Huang, J.; Saito, T. Influence of bubble-surface contamination on instantaneous mass transfer. Chem. Eng. Technol. 2015, 38, 1947–1954. [Google Scholar] [CrossRef]
- Valiorgue, P.; Souzy, N.; El Hajem, M.; Ben Hadid, H.; Simoëns, S. Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations. Exp. Fluids 2013, 54, 1501. [Google Scholar] [CrossRef]
- Lin, T.-J.; Tsuchiya, K.; Fan, L.-S. Bubble flow characteristics in bubble columns at elevated pressure and temperature. AIChE J. 1998, 44, 545–560. [Google Scholar] [CrossRef]
- Luo, X.; Lee, D.J.; Lau, R.; Yang, G.; Fan, L.-S. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J. 1999, 45, 655–680. [Google Scholar] [CrossRef]
- Higbie, R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Eng. 1935, 31, 365–389. [Google Scholar]
- Miller, D.N. Scale-up of agitated vessels gas-liquid mass transfer. AIChE J. 1974, 20, 445–453. [Google Scholar] [CrossRef]
- Nedeltchev, S.; Jordan, U.; Schumpe, A. Correction of the penetration theory based on mass-transfer data from bubble columns operated in the homogeneous regime under high pressure. Chem. Eng. Sci. 2007, 62, 6263–6273. [Google Scholar] [CrossRef]
- Nock, W.J.; Heaven, S.; Banks, C.J. Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water. Chem. Eng. Sci. 2016, 140, 171–178. [Google Scholar] [CrossRef]
- Olsen, J.E.; Dunnebier, D.; Davies, E.; Skjetne, P.; Marud, J. Mass transfer between bubbles and seawater. Chem. Eng. Sci. 2017, 161, 308–315. [Google Scholar] [CrossRef]
- Leonard, C.; Ferrasse, J.-H.; Boutin, O.; Lefevre, S.; Viand, A. Bubble column reactors for high pressures and high temperatures operation. Chem. Eng. Res. Des. 2015, 100, 391–421. [Google Scholar] [CrossRef]
- Letzel, H.M.; Schouten, J.C.; Krishna, R.; Van den Bleek, C.M. Gas holdup and mass transfer in bubble column reactors operated at elevated pressure. Chem. Eng. Sci. 1999, 54, 2237–2246. [Google Scholar] [CrossRef]
- Maalej, S.; Benadda, B.; Otterbein, M. Influence of pressure on the hydrodynamics and mass transfer parameters of an agitated bubble column reactor. Chem. Eng. Technol. 2001, 24, 77–84. [Google Scholar] [CrossRef]
- Jordan, U.; Schumpe, A. The gas density effect on mass transfer in bubble columns with organic liquids. Chem. Eng. Sci. 2001, 56, 6267–6272. [Google Scholar] [CrossRef]
- Jordan, U.; Terasaka, K.; Kundu, G.; Schumpe, A. Mass transfer in high-pressure bubble columns with organic liquids. Chem. Eng. Technol. 2002, 25, 262–265. [Google Scholar] [CrossRef]
- Lau, R.; Peng, W.; Velazquez-Vargas, L.G.; Yang, G.Q.; Fan, L.-S. Gas-liquid mass transfer in high-pressure bubble columns. Ind. Eng. Chem. Res. 2004, 43, 1302–1311. [Google Scholar] [CrossRef]
- Gopal, J.S.; Sharma, M.M. Mass transfer characteristics of low H/D bubble columns. Can. J. Chem. Eng. 1983, 61, 517–526. [Google Scholar] [CrossRef]
- Akita, K.; Yoshida, F. Gas hold-up and volumetric mass transfer coefficients in bubble columns. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 76–80. [Google Scholar] [CrossRef]
- Hikita, H.; Asai, S.; Tanigawa, K.; Segawa, K.; Kitao, K. The volumetric mass transfer coefficient in bubble columns. Chem. Eng. J. 1981, 22, 61–67. [Google Scholar] [CrossRef]
- Öztürk, S.S.; Schumpe, A.; Deckwer, W.-D. Organic liquids in a bubble column: Hold-ups and mass transfer coefficients. AIChE J. 1987, 33, 1473–1480. [Google Scholar] [CrossRef]
- Lemoine, R.; Behkish, A.; Sehabiague, L.; Heintz, Y.J.; Oukaci, R.; Morsi, B.I. An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors. Fuel Process. Technol. 2008, 89, 322–343. [Google Scholar] [CrossRef]
- Wellek, R.M.; Agrawal, A.K.; Skelland, A.H.P. Shape of liquid drops moving in liquid media. AIChE J. 1966, 12, 854–862. [Google Scholar] [CrossRef]
- Calderbank, P.H. Gas absorption from bubbles. Chem. Eng. 1967, 45, CE209–CE233. [Google Scholar]
- Deckwer, W.-D. On the mechanism of heat transfer in bubble column reactors. Chem. Eng. Sci. 1980, 35, 1341–1346. [Google Scholar] [CrossRef]
- Li, C.; Cui, Y.; Shi, X.; Gao, J.; Lan, X. CFD simulation of mass transfer in bubble columns: Detailed study of mass transfer models. Chem. Eng. Sci. 2022, 264, 118173. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.S. Experiments and CFD simulation of mass transfer and hydrodynamics in a cylindrical bubble column. Chem. Eng. Sci. 2021, 234, 116435. [Google Scholar] [CrossRef]
- Hissanaga, A.M.; Padoin, N.; Paladino, E.E. Mass transfer modeling and simulation of a transient homogeneous bubbly flow in a bubble column. Chem. Eng. Sci. 2020, 218, 115531. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, P.; Liu, L.; Chen, S.; Song, Y.; Yan, H. CFD modeling of reactive absorption of CO2 in aqueous NaOH in a rectangular bubble column: Comparison of mass transfer and enhancement factor model. Chem. Eng. Sci. 2021, 230, 116218. [Google Scholar] [CrossRef]
- Rzehak, R.; Krepper, E. Euler-Euler simulation of mass-transfer in bubbly flows. Chem. Eng. Sci. 2016, 155, 459–468. [Google Scholar] [CrossRef]
- Jain, D.; Kuipers, J.A.M.; Deen, N.G. Numerical modeling of carbon dioxide chemisorption in sodium hydroxide solution in a micro-structured bubble column. Chem. Eng. Sci. 2015, 137, 685–696. [Google Scholar] [CrossRef]
- Krauß, M.; Rzehak, R. Reactive absorption of CO2 in NaOH: An Euler-Euler simulation study. Chem. Eng. Sci. 2018, 181, 199–214. [Google Scholar] [CrossRef]
- Jia, H.W.; Zhang, P. Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change. Int. J. Heat Mass Transf. 2017, 110, 43–57. [Google Scholar] [CrossRef]
- Cockx, A.; Do-Quang, Z.; Audic, J.M.; Liné, A.; Roustan, M. Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics. Chem. Eng. Process. Process Intensif. 2001, 40, 187–194. [Google Scholar] [CrossRef]
- Schumpe, A.; Deckwer, W.-D. Analysis of chemical methods for determination of interfacial areas in gas-in-liquid dispersions with non-uniform bubble sizes. Chem. Eng. Sci. 1980, 35, 2221–2234. [Google Scholar] [CrossRef]
- Schumpe, A.; Deckwer, W.-D. Vergleich der fotographischen und der sulfit-oxidation-methode zur phasengrenzflächen-bestimmung in blasensäulen. Chem. Ing. Tech. 1980, 52, 468–469. [Google Scholar] [CrossRef]
- Shah, Y.T.; Kelkar, B.G.; Godbole, S.P.; Deckwer, W.-D. Design parameters estimations for bubble column reactors. AIChE J. 1982, 28, 353–379. [Google Scholar] [CrossRef]
- Akita, K.; Yoshida, F. Bubble size, interfacial area and liquid-phase mass transfer coefficients in bubble columns. Ind. Eng. Chem. Proc. Des. Dev. 1974, 13, 84–91. [Google Scholar] [CrossRef]
Measurement Technique | Reference | Model |
---|---|---|
Oxygen optode | Terasaka et al. [15] | Complete mixing |
Oxygen-enriched air dynamic method, optical O2 probe | Han and Al-Dahhan [16] | ADM for both phases |
Laser-induced fluorescence (LIF) technique by means of a pH-sensitive dye | Huang and Saito [17] Valiorgue et al. [18] | Complete mixing |
Correction Factor | Reference | Contact Time |
---|---|---|
Single function of bubble size | Miller [22] | Bubble diameter/rise velocity |
Function of Eo number | Nedeltchev et al. [23] | Bubble surface/rate of surface formation |
No correction | Deckwer [39] | Length scale/velocity scale of microeddies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeltchev, S. Updated Review on the Available Methods for Measurement and Prediction of the Mass Transfer Coefficients in Bubble Columns. Fluids 2025, 10, 29. https://doi.org/10.3390/fluids10020029
Nedeltchev S. Updated Review on the Available Methods for Measurement and Prediction of the Mass Transfer Coefficients in Bubble Columns. Fluids. 2025; 10(2):29. https://doi.org/10.3390/fluids10020029
Chicago/Turabian StyleNedeltchev, Stoyan. 2025. "Updated Review on the Available Methods for Measurement and Prediction of the Mass Transfer Coefficients in Bubble Columns" Fluids 10, no. 2: 29. https://doi.org/10.3390/fluids10020029
APA StyleNedeltchev, S. (2025). Updated Review on the Available Methods for Measurement and Prediction of the Mass Transfer Coefficients in Bubble Columns. Fluids, 10(2), 29. https://doi.org/10.3390/fluids10020029