Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimal Condition for Preparing Ag+-MNC Aerogel
2.2. Structure Characterizations
2.3. Thermal Stability
2.4. Absorption Properties
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Ag+-MNC Aerogel
4.3. Characterizations
4.4. Absorption Tests for Oil and Organic Solvents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, J.; Shi, Y.; Ma, N.L.; Ye, H.; Verma, M.; Ng, H.S.; Ge, S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. Environ. Pollut. 2024, 340, 122830. [Google Scholar] [CrossRef] [PubMed]
- Barasarathi, J.; Abdullah, P.S.; Uche, E.C. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. Chemosphere 2022, 305, 135384. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Hou, D.; Jiang, D.; Chen, W. Bioremediation of marine oil spills by immobilized oil-degrading bacteria and nutrition emulsion. Biodegradation 2021, 32, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Soares, E.C.; Bispo, M.D.; Vasconcelos, V.C.; Soletti, J.I.; Carvalho, S.H.V.; de Oliveira, M.J.; dos Santos, M.C.; Freire, E.D.S.; Nogueira, A.S.P.; Cunha, F.A.d.S.; et al. Oil impact on the environment and aquatic organisms on the coasts of the states of Alagoas and Sergipe, Brazil—A preliminary evaluation. Mar. Pollut. Bull. 2021, 171, 112723. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Simsek, H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. Chemosphere 2022, 306, 135576. [Google Scholar] [CrossRef]
- Sonu, S.S.; Rai, N.; Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. J. Sol Gel Sci. Technol. 2023, 105, 324–336. [Google Scholar]
- Liu, C.; Li, Z.; Li, B.; Zhang, H.; Han, J. Montmorillonite-based aerogels assisted environmental remediation. Appl. Clay Sci. 2023, 236, 106887. [Google Scholar] [CrossRef]
- Riley, B.J.; Chong, S. Environmental Remediation with Functional Aerogels and Xerogels. Glob. Chall. 2020, 4, 2000013. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, J.; Dang, Y.; Liu, D.; Li, T.; Li, S.; Yu, Y.; Zhu, L. Biochar aerogel enhanced remediation performances for heavy oil-contaminated soil through biostimulation strategy. J. Hazard. Mater. 2023, 443, 130209. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S. Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Sep. Purif. Technol. 2019, 221, 303–310. [Google Scholar] [CrossRef]
- Zhang, Z.; Abidi, N.; Lucia, L.; Chabi, S.; Denny, C.T.; Parajuli, P.; Rumi, S.S. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydr. Polym. 2023, 299, 120140. [Google Scholar] [CrossRef]
- Henschen, J.; Illergård, J.; Larsson, P.A.; Ek, M.; Wågberg, L. Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids Surf. B Biointerfaces 2016, 146, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Ellebracht, N.C.; Jones, C.W. Functionalized cellulose nanofibril aerogels as cooperative acid–base organocatalysts for liquid flow reactions. Carbohydr. Polym. 2020, 233, 115825. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Heidari, N.; Fathi, M.; Hamdami, N.; Taheri, H.; Siqueira, G.; Nyström, G. Thermally Insulating Cellulose Nanofiber Aerogels from Brewery Residues. ACS Sustain. Chem. Eng. 2023, 11, 10698–10708. [Google Scholar] [CrossRef]
- Dróżdż, P.A.; Xenidis, N.; Campion, J.; Smirnov, S.; Przewłoka, A.; Krajewska, A.; Haras, M.; Nasibulin, A.; Oberhammer, J.; Lioubtchenko, D. Highly efficient absorption of THz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Appl. Mater. Today 2022, 29, 101684. [Google Scholar] [CrossRef]
- Zou, X.; Yao, L.; Zhou, S.; Chen, G.; Wang, S.; Liu, X.; Jiang, Y. Sulfated lignocellulose nanofibril based composite aerogel towards adsorption–photocatalytic removal of tetracycline. Carbohydr. Polym. 2022, 296, 119970. [Google Scholar] [CrossRef]
- Sanchez, L.M.; Hopkins, A.K.; Espinosa, E.; Larrañeta, E.; Malinova, D.; McShane, A.N.; Domínguez-Robles, J.; Rodríguez, A. Antioxidant cellulose nanofibers/lignin-based aerogels: A potential material for biomedical applications. Chem. Biol. Technol. Agric. 2023, 10, 72. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Gómez-Mascaraque, L.G.; Martínez-Sanz, M. PLA coating improves the performance of renewable adsorbent pads based on cellulosic aerogels from aquatic waste biomass. Chem. Eng. J. 2020, 390, 124607. [Google Scholar] [CrossRef]
- Li, J.; Zhai, S.; Wu, W.; Xu, Z. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Front. Chem. Sci. Eng. 2021, 15, 1158–1168. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Jiang, K.; Han, D.; Zhang, Q. Bio-based melamine formaldehyde resins for flame-retardant polyurethane foams. Int. J. Biol. Macromol. 2024, 273, 132836. [Google Scholar] [CrossRef]
- Zeng, Y.; Gordiichuk, P.; Ichihara, T.; Zhang, G.; Sandoz-Rosado, E.; Wetzel, E.D.; Tresback, J.; Yang, J.; Kozawa, D.; Yang, Z.; et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 2022, 602, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, X.; An, Q.; Xiao, Z.; Zhai, S. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions. Carbohydr. Polym. 2021, 256, 117564. [Google Scholar] [CrossRef]
- Ge, H.; Du, J. Selective adsorption of Pb(II) and Hg(II) on melamine-grafted chitosan. Int. J. Biol. Macromol. 2020, 162, 1880–1887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, L.; Chen, X.; Wang, Y.; Feng, Y.; Yao, J. Zirconium ion modified melamine sponge for oil and organic solvent cleanup. J. Colloid. Interface Sci. 2020, 566, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.A.; Mehta, V.R.; Boraste, D.R.; Shankarling, G.S. Facile preparation of Cucurbit[6]uril modified melamine sponge for efficient oil spill cleanup. J. Environ. Chem. Eng. 2021, 9, 106603. [Google Scholar] [CrossRef]
- Qin, P.; Yi, D.; Hao, J.; Zhao, M. Fast prepare exfoliated montmorillonite water suspension with assistance of melamine cyanurate and the superlattice obtained by self-assembly. Polym. Adv. Technol. 2021, 32, 2990–2999. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Ma, Y.; Lou, Y.; Jiao, Y.; Xu, J. Hierarchical boric acid/melamine aerogel based on reversible hydrogen bonds with robust fire resistance, thermal insulation and recycling properties. Compos. Part B Eng. 2023, 252, 110507. [Google Scholar] [CrossRef]
- Li, S.; Mo, W.; Liu, Y.; Wang, Q. Constructing 3D Tent-Like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation. Chem. Eng. J. 2023, 454, 140133. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, S.; Huang, X.; Liu, H.; Sun, M.; Lyu, J. Correlations between the compressive strength of the hydrochar pellets and the chemical components: Evolution and densification mechanism. J. Anal. Appl. Pyrolysis 2020, 152, 104956. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Lu, Y.; Yang, L.; Xu, T.; Wu, H.; Zhang, J.; He, L. Apparent activation energy and characteristic temperatures of thermal decomposition research of microwave prepared melamine foam. J. Polym. Res. 2023, 30, 366. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, L.; Li, Y.; Han, W.; Gao, A.; Zhao, S.; Cui, J.; Zhang, G. Robust and Multifunctional 3D Graphene-Based Aerogels Reinforced by Hydroxyapatite Nanowires for Highly Efficient Organic Solvent Adsorption and Fluoride Removal. ACS Appl. Mater. Interfaces 2022, 14, 25385–25396. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, H.; Yu, Y.; Li, H.; Li, H.; Bai, J.; Shi, F.; Liu, J. Bacterial cellulose biomass aerogels for oil-water separation and thermal insulation. J. Environ. Chem. Eng. 2023, 11, 110403. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Cai, Z.; Yan, N.; Liu, M.; Yu, Y. Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption. ACS Sustain. Chem. Eng. 2018, 7, 332–340. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J. The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. J. Colloid. Interface Sci. 2020, 569, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Pethsangave, D.A.; Wadekar, P.H.; Khose, R.V.; Some, S. Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures. Polym. Test. 2020, 90, 106743. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Mu, C.; Lin, W. A novel hydrophobic all-biomass aerogel reinforced by dialdehyde carboxymethyl cellulose for oil/organic solvent-water separation. Polymer 2022, 238, 124402. [Google Scholar] [CrossRef]
- Xu, C.; He, H.; Wang, Y.; Huang, Y.; Zhang, T.C.; Yuan, S. Superhydrophobic sponge-like chitosan/CNTs/silica composite for selective oil absorption and efficient separation of water-in-oil emulsion. Carbohydr. Polym. 2025, 353, 123256. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, Z.; Lu, T.; Xiong, R.; Huang, C. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 2022, 430, 132989. [Google Scholar] [CrossRef]
- Shang, Q.; Cheng, J.; Hu, L.; Bo, C.; Yang, X.; Hu, Y.; Liu, C.; Zhou, Y. Bio-inspired castor oil modified cellulose aerogels for oil recovery and emulsion separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128043. [Google Scholar] [CrossRef]
- Qin, Y.; Li, S.; Li, Y.; Pan, F.; Han, L.; Chen, Z.; Yin, X.; Wang, L.; Wang, H. Mechanically robust polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge towards highly efficient oil/water separation, and solar-driven for cleaning up crude oil. Compos. Sci. Technol. 2020, 197, 108254. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, W.; Huang, C.; Lin, H.; Jia, C.; Ren, C. Superhydrophobic melamine sponges with high performance in oil/organic solvent sorption. J. Environ. Chem. Eng. 2023, 11, 110614. [Google Scholar] [CrossRef]
- Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding, T.; Wei, X.; Seok, I.; Wei, S.; et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid. Interface Sci. 2020, 560, 849–856. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, Q.; Liu, H.; Gu, H.; Guo, Z. Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J. Colloid. Interface Sci. 2021, 581, 299–306. [Google Scholar] [CrossRef]
Organic Solvents and Oil | Absorption Capacities/(g/g) | ||
---|---|---|---|
Ag+-MNC Aerogel | NC Aerogel | Ag+-MA Aerogel | |
Acetone | 157.58 ± 3.38 | 30.36 ± 1.95 | 90.39 ± 7.79 |
Ethyl acetate | 199.47 ± 5.65 | 29.17 ± 4.49 | 83.87 ± 3.71 |
Cyclohexane | 120.96 ± 7.04 | 34.78 ± 1.06 | 55.79 ± 3.27 |
Dichloromethane | 239.40 ± 7.41 | 87.03 ± 0.46 | 94.93 ± 7.32 |
Ethanol | 142.83 ± 5.30 | 23.60 ± 3.20 | 92.30 ± 4.80 |
Kerosene | 103.30 ± 4.73 | 36.85 ± 2.46 | 64.99 ± 9.46 |
Pump oil | 124.03 ± 4.05 | 31.52 ± 7.89 | 77.27 ± 2.83 |
Waste pump oil | 118.95 ± 6.53 | 32.31 ± 3.05 | 60.76 ± 3.71 |
Materials | Absorption Capacities/(g/g) |
---|---|
Three-dimensional graphene-based aerogel [31] | Pump oil: 191; Dichloromethane: 179 Acetone: 114; Cyclohexane: 110; Kerosene: 100 |
Bacterial cellulose biomass aerogel [32] | Pump oil: 100; Acetone: 66 |
PVA/CNF/MTMS aerogel [33] | Acetone: 56; Ethanol: 52; Pump oil: 71; Kerosene: 55 |
PVA-based PNP/CNTs aerogel [34] | Ethanol: 35 |
Carrageenan cross-linked graphene sponge [35] | Acetone: 26; Dichloromethane: 28 |
DCMC cross-linked collagen aerogel [36] | Kerosene: 22; Ethyl acetate: 28 |
Sponge-like chitosan/CNTs/silica composite [37] | Cyclohexane: 9; Kerosene: 10 |
PANF/CNT aerogel [38] | Kerosene: 40; Dichloromethane: 53 |
Bio-inspired castor oil modified cellulose aerogel [39] | Dichloromethane: 114 |
Polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge [40] | Ethanol: 72; Acetone: 95; Ethyl acetate: 100 |
Superhydrophobic melamine sponge [41] | Dichloromethane: 135; Ethyl acetate: 107 |
NCA/OA/Fe3O4 aerogel [42] | Cyclohexane: 68; Ethyl acetate: 56; Pump oil: 33 |
NC/Al2O3 aerogel [43] | Dichloromethane: 118; Acetone: 85; Cyclohexane: 71; Ethyl acetate: 94; Ethanol: 90 |
Ag+-MNC aerogel (this work) | Acetone: 158; Ethyl acetate: 199; Cyclohexane: 121; Dichloromethane: 239; Ethanol: 143; Kerosene: 103; Pump oil: 124; Waste pump oil: 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Tan, X.; Yu, T.; Huang, Y.; Zhang, J.; Zhang, Q.; Zhao, X. Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents. Gels 2025, 11, 683. https://doi.org/10.3390/gels11090683
Gu H, Tan X, Yu T, Huang Y, Zhang J, Zhang Q, Zhao X. Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents. Gels. 2025; 11(9):683. https://doi.org/10.3390/gels11090683
Chicago/Turabian StyleGu, Hongbo, Xiwei Tan, Tao Yu, Yingqian Huang, Juan Zhang, Qixiang Zhang, and Xiqiu Zhao. 2025. "Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents" Gels 11, no. 9: 683. https://doi.org/10.3390/gels11090683
APA StyleGu, H., Tan, X., Yu, T., Huang, Y., Zhang, J., Zhang, Q., & Zhao, X. (2025). Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents. Gels, 11(9), 683. https://doi.org/10.3390/gels11090683