Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel Process
2.2. Structural and Morphological Characterization of SC Xerogel
2.3. Microstructure Characterization
2.4. Nitrogen Sorption Analysis
2.5. Mechanical Properties of Silicon-Calcium Xerogels
2.6. The Thermal Properties of Silicon-Calcium Xerogel
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Silicon-Calcium Xerogel
4.3. Characterization of Samples
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Fiqi, A. Sol-Gel Synthesis, Physicochemical Characteristics and in Vitro pH-Responsive Metformin Drug Release of Uniformly Polydopamine Coated Mesoporous Silica Nanospheres. J. Non-Cryst. Solids 2024, 631, 122938. [Google Scholar] [CrossRef]
- Kovářík, T.; Bělský, P.; Křenek, T.; Deshmukh, K.; Forejtová, J.; Medlín, R.; Beneš, J.; Svoboda, M.; Kadlec, J.; Pola, M.; et al. Sol-Gel Derived Silicate-Phosphate Glass SiO2–P2O5–CaO–TiO2: The Effect of Titanium Isopropoxide on Porosity and Thermomechanical Stability. Microporous Mesoporous Mater. 2024, 374, 113138. [Google Scholar] [CrossRef]
- Ding, W.; Wang, X.; Chen, D.; Li, T.; Shen, J. Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System. Molecules 2018, 23, 1178. [Google Scholar] [CrossRef] [PubMed]
- Akti, F.; Balci, S. Silica Xerogel and Iron Doped Silica Xerogel Synthesis in Presence of Drying Control Chemical Additives. Mater. Chem. Phys. 2023, 297, 127347. [Google Scholar] [CrossRef]
- Wiroonpochit, P.; Boonmee, P.; Kerdlap, W.; Chisti, Y.; Hansupalak, N. Synthesis of Low Crystalline Thermally Insulating Calcium Silicate Hydrate via a Simple Template-Assisted Sol–Gel Method. Constr. Build. Mater. 2022, 353, 129081. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Zhang, G.; Lin, L.; Ostrikov, K.K. Synthesis of High-Performance Polymethylsilsesquioxane Xerogels by Improving Acid Catalytic Conditions in Aluminum Chloride Aqueous Solution. Powder Technol. 2024, 443, 119877. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y. Iron/Silicon Oxy-Hydroxide Co-Precipitate Trace-Incorporated [-Fe-O]m-[Si-O-]n Colloids: A Facile Strategy for Silica Xerogel Strengthening and Toughening. Constr. Build. Mater. 2025, 461, 139895. [Google Scholar] [CrossRef]
- A’yuni, Q.; Rahmayanti, A.; Hartati, H.; Purkan, P.; Subagyo, R.; Fuadah, S.; Sholeha, N.A.; Bahruji, H.; Hikmat, H. Transforming Volcanic Mud into Mesoporous Silica Xerogel and Its Performance for Efficient Humidity Adsorption. J. Saudi Chem. Soc. 2023, 27, 101771. [Google Scholar] [CrossRef]
- Rosales-Reina, B.; Cruz-Quesada, G.; Pujol, P.; Reinoso, S.; Elosúa, C.; Arzamendi, G.; López-Ramón, M.V.; Garrido, J.J. Determination of Hazardous Vapors from the Thermal Decomposition of Organochlorinated Silica Xerogels with Adsorptive Properties. Environ. Res. 2024, 256, 119247. [Google Scholar] [CrossRef]
- Guzel Kaya, G.; Aznar, E.; Deveci, H.; Martínez-Máñez, R. Low-Cost Silica Xerogels as Potential Adsorbents for Ciprofloxacin Removal. Sustain. Chem. Pharm. 2021, 22, 100483. [Google Scholar] [CrossRef]
- Lewińska, I.; Bącal, P.; Tymecki, Ł. Hydrogen Peroxide Stabilization with Silica Xerogel for Paper-Based Analytical Devices and Its Application to Phenolic Compounds Determination. Anal. Chim. Acta 2024, 1320, 343028. [Google Scholar] [CrossRef] [PubMed]
- Patil, G.; Torris, A.; Suresha, P.R.; Jadhav, S.; Badiger, M.V.; Ghormade, V. Design and Synthesis of a New Topical Agent for Halting Blood Loss Rapidly: A Multimodal Chitosan-Gelatin Xerogel Composite Loaded with Silica Nanoparticles and Calcium. Colloids Surf. B Biointerfaces 2021, 198, 111454. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Hu, D.; Liu, Z.; Zhang, X.; Yu, K.; Ma, W. A Simple and Efficient in Situ Polymerization of Silica Xerogel-Acrylic Thermal Insulation Coatings. Prog. Org. Coat. 2024, 187, 108142. [Google Scholar] [CrossRef]
- Khan, N.R.; Sharmin, T.; Bin Rashid, A. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon 2024, 10, e23102. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z.; Brunner, S.; et al. Additive Manufacturing of Silica Aerogels. Nature 2020, 584, 387–392. [Google Scholar] [CrossRef]
- Priya, A.K.; Alghamdi, H.M.; Kavinkumar, V.; Elwakeel, K.Z.; Elgarahy, A.M. Bioaerogels from Biomass Waste: An Alternative Sustainable Approach for Wastewater Treatment. Int. J. Biol. Macromol. 2024, 282, 136994. [Google Scholar] [CrossRef]
- Yang, B.; Lin, Y.; Chen, C. Greener Production of High-Performance Silica Xerogel: Upcycling Waste Glass Using Deep Eutectic Solvent-Assisted Extraction of Residual Na+. J. Clean. Prod. 2024, 448, 141401. [Google Scholar] [CrossRef]
- Wu, X.; Fan, M.; Mclaughlin, J.F.; Shen, X.; Tan, G. A Novel Low-Cost Method of Silica Aerogel Fabrication Using Fly Ash and Trona Ore with Ambient Pressure Drying Technique. Powder Technol. 2018, 323, 310–322. [Google Scholar] [CrossRef]
- Mazraeh-shahi, Z.T.; Shoushtari, A.M.; Abdouss, M.; Bahramian, A.R. Relationship Analysis of Processing Parameters with Micro and Macro Structure of Silica Aerogel Dried at Ambient Pressure. J. Non-Cryst. Solids 2013, 376, 30–37. [Google Scholar] [CrossRef]
- Si, Q.L.; Tang, G.H.; Yang, M.Y.; Yang, R.; Hu, Y.; Du, M.; Zhang, H. Ambient-Dried Hydrophobic Silica Aerogels for Both Enhanced Transparency and Thermal Insulation. Ceram. Int. 2024, 50, 48680–48691. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Q.; Wang, L.; Cao, J.; Song, J.; Song, L.; Zhang, Y. Recent Advances in the Synthesis and Application of Graphene Aerogel and Silica Aerogel for Environment and Energy Storage: A Review. J. Environ. Manag. 2025, 377, 124668. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, C.; He, J.; Liu, L.; Yao, J.; Yang, Y.; Xu, K.; Feng, W.; Du, G.; Zhang, L. Cellulose/Covalent Organic Framework Aerogel for Efficient Removal of Cr(VI): Performance and Mechanism Study. Int. J. Biol. Macromol. 2025, 300, 140243. [Google Scholar] [CrossRef] [PubMed]
- Firoozi, A.A.; Firoozi, A.A.; El-Abbasy, A.A.; Aati, K. Enhanced Perspectives on Silica Aerogels: Novel Synthesis Methods and Emerging Engineering Applications. Results Eng. 2025, 25, 103615. [Google Scholar] [CrossRef]
- Wang, H.; Cao, M.; Zhao, H.-B.; Liu, J.-X.; Geng, C.-Z.; Wang, Y.-Z. Double-Cross-Linked Aerogels towards Ultrahigh Mechanical Properties and Thermal Insulation at Extreme Environment. Chem. Eng. J. 2020, 399, 125698. [Google Scholar] [CrossRef]
- Wassgren, J.; Clarke, B.R.; Messikh, M.B.; Ho, C.-H.; Crosby, A.J.; Tew, G.N.; Carter, K.R. Enhancement of Mechanical Properties of Nanocellulose Xerogels Using TEMPO-Oxidized Fibers. Carbohydr. Polym. 2025, 348, 122839. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Z.; Hu, J.; Wang, W.; Li, W. Facile Preparation of Lignocellulosic Xerogels by Alkali Freezing and Ambient Drying. Green Chem. 2024, 26, 6501–6510. [Google Scholar] [CrossRef]
- Birdsong, B.K.; Capezza, A.J.; Mensah, R.A.; Elf, P.; Hedenqvist, M.S.; Nilsson, F.; Olsson, R.T. Flexible Fire-Safe Hybrid Organic–Inorganic Cellulose Aerogels from Sol–Gel Casting. RSC Sustain. 2025, 3, 1009–1018. [Google Scholar] [CrossRef]
- Ul Haq, E.; Zaidi, S.F.A.; Zubair, M.; Abdul Karim, M.R.; Padmanabhan, S.K.; Licciulli, A. Hydrophobic Silica Aerogel Glass-Fibre Composite with Higher Strength and Thermal Insulation Based on Methyltrimethoxysilane (MTMS) Precursor. Energy Build. 2017, 151, 494–500. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef]
- Seraji, M.M.; Seifi, A.; Bahramian, A.R. Morphology and Properties of Silica/Novolac Hybrid Xerogels Synthesized Using Sol–Gel Polymerization at Solvent Vapor-Saturated Atmosphere. Mater. Des. 2015, 69, 190–196. [Google Scholar] [CrossRef]
- Ostovar, S.; Moussavi, G.; Mohammadi, S.; Marin, M.L.; Bosca, F.; Diego-Lopez, A.; Giannakis, S. Rapid Degradation of Omeprazole and Highly Effective Inactivation of E. coli in the UVA-Light Photocatalytic Process with Cu-Doped in Spinel-Structured ɣAl2O3 as a Stable Catalyst. Chem. Eng. J. 2024, 479, 147536. [Google Scholar] [CrossRef]
- Deng, L.; Li, J.; Chen, J.; He, J. Thermal Reduction Triggered Red–Orange to Blue-Violet Color-Tunable Eu Doped Bulk Transparent Nanoporous Al2O3-SiO2 Glass for LEDs. Mater. Sci. Eng. B 2024, 305, 117446. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Liu, T.; Liu, L.; Yu, C.; Tian, Y.; Zhang, X.; Shen, J. Al3+ Coordinated Chitosan Hydrogel with Ultrahigh Water Absorbency and Environmental Response. Mater. Des. 2022, 214, 110390. [Google Scholar] [CrossRef]
- Seljelid, K.K.; Neto, O.T.; Akanno, A.N.; Ceccato, B.T.; Ravindranathan, R.P.; Azmi, N.; Cavalcanti, L.P.; Fjelde, I.; Knudsen, K.D.; Fossum, J.O. Growth Kinetics and Structure of a Colloidal Silica-Based Network: In Situ RheoSAXS Investigations. Eur. Phys. J. Spec. Top. 2024, 233, 2757–2773. [Google Scholar] [CrossRef]
- Pougher, N.; Vollmer, A.H.; Sharma, P. Effect of pH and Calcium Chelation on Cold Gelling Properties of Highly Concentrated-Micellar Casein Concentrate. LWT 2024, 214, 117136. [Google Scholar] [CrossRef]
- Gogajeh, N.N.; Yekta, B.E.; Javadpour, J.; Eslaminejad, M.B. Structural Characterization, in Vitro Bioactivity, and Cytotoxicity Evaluation of Sol-Gel Derived SiO2-CaO-Na2O-P2O5 Based Glass- Ceramics in the Presence of Manganese. Mater. Today Chem. 2025, 45, 102701. [Google Scholar] [CrossRef]
- Rashid, I.; Omari, M.H.A.; Leharne, S.A.; Chowdhry, B.Z.; Badwan, A. Starch Gelatinization Using Sodium Silicate: FTIR, DSC, XRPD, and NMR Studies. Starch-Stärke 2012, 64, 713–728. [Google Scholar] [CrossRef]
- Nayak, P.P.; Datta, A.K. Synthesis of SiO2-Nanoparticles from Rice Husk Ash and Its Comparison with Commercial Amorphous Silica through Material Characterization. Silicon 2021, 13, 1209–1214. [Google Scholar] [CrossRef]
- Niu, Z.; He, X.; Huang, T.; Tang, B.; Cheng, X.; Zhang, Y.; Shao, Z. A Facile Preparation of Transparent Methyltriethoxysilane Based Silica Xerogel Monoliths at Ambient Pressure Drying. Microporous Mesoporous Mater. 2019, 286, 98–104. [Google Scholar] [CrossRef]
- Kazancioglu, M.; Tsilomelekis, G.; Lehman, R.; Hara, M. FTIR Studies on Plasticization of Silicate Glass with Ionic Liquids (Conversion to Silicate Polymers). J. Non-Cryst. Solids 2021, 561, 120757. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3 Precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Huang, H.; Yao, M.; Li, S.; Li, J.; Zhang, W.; Yin, J. Rapid and Well-Controlled Degradation of Polylactic Acid Materials with Bio-Based GEL(Pectin/α-Cellulose/SiO2/CaCl2). Int. J. Biol. Macromol. 2025, 291, 139099. [Google Scholar] [CrossRef] [PubMed]
- Guzel Kaya, G.; Yilmaz, E.; Deveci, H. Synthesis of Sustainable Silica Xerogels/Aerogels Using Inexpensive Steel Slag and Bean Pod Ash: A Comparison Study. Adv. Powder Technol. 2020, 31, 926–936. [Google Scholar] [CrossRef]
- Zhou, W.; Fu, W.; Lv, G.; Liu, J.; Peng, H.; Fang, T.; Tan, X.; Chen, Z. Preparation and Properties of CaCl2·6H2O/Silica Aerogel Composite Phase Change Material for Building Energy Conservation. J. Mol. Liq. 2023, 382, 121986. [Google Scholar] [CrossRef]
- Gediz Ilis, G. Influence of New Adsorbents with Isotherm Type V on Performance of an Adsorption Heat Pump. Energy 2017, 119, 86–93. [Google Scholar] [CrossRef]
- Chang, C.; Tao, S.; Xu, C.; Zhang, Y.; Jiang, W.; Cao, Y.; Ma, C. Highly Transparent Polymethylsilsesquioxane Xerogel Monoliths with Nanopores Around 10 Nm via Ambient Pressure Drying: A Potential Host for Nano-Functional Materials. J. Lumin. 2025, 286, 121353. [Google Scholar] [CrossRef]
- Klomkliang, N.; Do, D.D.; Nicholson, D. Effects of Temperature, Pore Dimensions and Adsorbate on the Transition from Pore Blocking to Cavitation in an Ink-Bottle Pore. Chem. Eng. J. 2014, 239, 274–283. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, W.; Chen, Z.; Su, D. Double-Network MK Resin-Modified Silica Aerogels for High-Temperature Thermal Insulation. ACS Appl. Mater. Interfaces 2023, 15, 44238–44247. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, X.; Yu, H.; Tong, Z. Preparation of High-Strength Silica Aerogels by Two-Step Surface Modification via Ambient Pressure Drying. J. Porous Mater. 2024, 28, 651–659. [Google Scholar] [CrossRef]
Sample ID | Surface Area m2/g | Pore Volume cm3/g |
---|---|---|
SC-2 | 177.26 | 74.95 |
SC-4 | 162.22 | 74.66 |
SC-6 | 139.54 | 74.97 |
SC-8 | 130.80 | 75.15 |
Sample | Silicon Sol (g) | Glycerin (g) | Calcium Chloride Solution (g) | Calcium Ion Content (wt.%) |
---|---|---|---|---|
SC-2 | 20 | 0.3 | 0.6 | 2% |
SC-4 | 20 | 0.3 | 1.2 | 4% |
SC-6 | 20 | 0.3 | 1.8 | 6% |
SC-8 | 20 | 0.3 | 2.4 | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Zhu, Z.; Meng, Y.; Wang, L.; Zhao, F.; Chen, L.; Jiang, L.; Yan, M.; Zhou, X. Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking. Gels 2025, 11, 462. https://doi.org/10.3390/gels11060462
Xie X, Zhu Z, Meng Y, Wang L, Zhao F, Chen L, Jiang L, Yan M, Zhou X. Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking. Gels. 2025; 11(6):462. https://doi.org/10.3390/gels11060462
Chicago/Turabian StyleXie, Xiaoyu, Zilin Zhu, Yu Meng, Lijia Wang, Fuquan Zhao, Lingqing Chen, Lijie Jiang, Ming Yan, and Xiaofan Zhou. 2025. "Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking" Gels 11, no. 6: 462. https://doi.org/10.3390/gels11060462
APA StyleXie, X., Zhu, Z., Meng, Y., Wang, L., Zhao, F., Chen, L., Jiang, L., Yan, M., & Zhou, X. (2025). Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking. Gels, 11(6), 462. https://doi.org/10.3390/gels11060462