Impact of Eggshell-Derived Calcium Oxide on Protein Cross-Linking and Gel Properties of Giant Snakehead (Channa micropeltes) Surimi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel-Forming Properties
2.2. Expressible Moisture Content, Whiteness, TCA-Soluble Protein, and Total Sulfhydryl Groups
2.3. Rheological Properties
2.4. Scanning Electron Microscopy (SEM)
2.5. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis (SDS-PAGE)
3. Conclusions
4. Materials and Methods
4.1. Surimi Preparation
4.2. Calcium Oxide (CaO) Preparation
4.3. Surimi Gel Preparation
4.4. Determination of Gel Strength
4.5. Determination of Gel Whiteness
4.6. Determination of Expressible Moisture Content
4.7. Determination of TCA-Soluble Protein
4.8. Determination of Total Sulfhydryl Groups
4.9. Dynamic Rheological Measurements
4.10. Microstructure Analyses
4.11. SDS-PAGE Analyses
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, X.; Yu, X.; Yang, Y.; Tang, X. Improving the Freeze-Thaw Stability of Fish Myofibrils and Myofibrillar Protein Gels: Current Methods and Future Perspectives. Food Hydrocoll. 2023, 144, 109041. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, Y.; Zhang, J.; Chen, Y.; Yang, H. Effects of Different pH Values and Monovalent/Divalent Cations in Washing on the Physicochemical Characteristics of Silver Carp Surimi Gel. LWT 2024, 196, 115865. [Google Scholar] [CrossRef]
- Zuraini, A.; Somchit, M.N.; Solihah, M.H.; Goh, Y.M.; Arifah, A.K.; Zakaria, M.S.; Somchit, N.; Rajion, M.A.; Zakaria, Z.A.; Mat Jais, A.M. Fatty Acid and Amino Acid Composition of Three Local Malaysian Channa spp. Fish. Food Chem. 2006, 97, 674–678. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Wardhani, D.H.; Kusworo, T.D.; Djaeni, M.; Azis YM, F.; Alhanif, M.; Ping, T.C. Manufacturing of protein concentrate from the flesh of snakehead fish (Channa striata) through consecutive ultrasound-assisted organic solvent extraction and vacuum drying. Cogent Food Agric. 2024, 10, 2293331. [Google Scholar] [CrossRef]
- Lertwittayanon, K.; Benjakul, S.; Maqsood, S.; Encarnacion, A.B. Effect of Different Salts on Dewatering and Properties of Yellowtail Barracuda Surimi. Int. Aquat. Res. 2013, 5, 10. [Google Scholar] [CrossRef]
- Zhao, Y.; Ying, X.-G.; Zheng, B.; Gao, P.; Zhou, R. Fortification of surimi gels by tuning the synergetic effect of multiple enzyme-related factors. Food Hydrocoll. 2023, 143, 108895. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, F.; Zheng, B.; Gao, P.; Zhou, R. Comparative study on the effect of different salts on surimi gelation and gel properties. Food Hydrocoll. 2023, 144, 108982. [Google Scholar] [CrossRef]
- Buamard, N.; Singh, A.; Benjakul, S. Improvement of Surimi Gel Quality Using Protein Cross-Linker, Hydrocolloids and Protease Inhibitor. Turk. J. Fish. Aquat. Sci. 2024, 24, TRJFAS24808. [Google Scholar] [CrossRef]
- Chuakham, S.; Putkham, A.; Putkham, A.I.; Kanokwan, S. Synthesis of Sustainable and High Purity of Quicklime Derived from Calcination of Eggshell Waste in a Laboratory-Scale Rotary Furnace. Key Eng. Mater. 2021, 904, 419–426. [Google Scholar] [CrossRef]
- Duan, B.; Yang, M.; Chao, Q.; Wang, L.; Zhang, L.; Gou, M.-X.; Li, Y.; Liu, C.; Lu, K. Preparation and Properties of Egg White Dual Cross-Linked Hydrogel with Potential Application for Bone Tissue Engineering. Polymers 2022, 14, 5116. [Google Scholar] [CrossRef]
- Nuge, T.; Fazeli, M.; Baniasadi, H. Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatment. Int. J. Biol. Acromolecules 2024, 275, 133480. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, X.; Liu, L.; Song, H.; Geng, F.; Wu, W.; Luo, P. Nano Eggshell Calcium Enhanced Gel Properties of Nemipterus Virgatus Surimi Sausage: Gel Strength, Water Retention and Microstructure. Int. J. Food Sci. Technol. 2021, 56, 5738–5752. [Google Scholar] [CrossRef]
- Yu, N.; Gong, H.; Yuan, H.; Bao, Y.; Wang, W. Effects of Calcium Chloride as a Salt Substitute on Physicochemical and 3D Printing Properties of Silver Carp Surimi Gels. CyTA-J. Food 2022, 20, 1–12. [Google Scholar] [CrossRef]
- Hai-Mei, L.; Shan-Bai, X.; Bi-Jun, X. Effects of Ca~(2+)on Heat-Induced Gelation of Silver Carp Surimi Gel. Food Sci. 2006, 27, 87. [Google Scholar]
- Alvarez, E.M.; Risso, P.H.; Gatti, C.A.; Burgos, M.; Suarez Sala, V. Calcium-induced aggregation of bovine caseins: Effect of phosphate and citrate. Colloid Polym. Sci. 2007, 285, 507–514. [Google Scholar] [CrossRef]
- Sang, S.; Chen, X.; Qin, Y.; Tong, L.; Ou, C. A Study on the Effects of Calcium Lactate on the Gelling Properties of Large Yellow Croaker (Pseudosciaena crocea) Surimi by Low-Field Nuclear Magnetic Resonance and Raman Spectroscopy. Foods 2022, 11, 3197. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, K.; Chen, J.; Wei, G.; Li, J.; Zheng, B.; Song, Y.; Gao, P.; Zhou, R. Enhancement of Myofibrillar Protein Gelation by Plant Proteins for Improved Surimi Gel Characteristics: Mechanisms and Performance. LWT 2024, 198, 116045. [Google Scholar] [CrossRef]
- Htwe, K.K.; Duan, W.; Wei, S.; Sun, Q.; Wang, Z.; Han, Z.; Liu, Y.; Liu, S. Quantitative Analysis of the Correlation between Gel Strength and Microstructure of Shrimp Surimi Gel Induced by Dense Phase Carbon Dioxide. Food Res. Int. 2023, 174, 113623. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.H.; Benjakul, S. Comparative Study on the Effect of Duck and Hen Egg Albumens on Proteolysis and Gel Property of Sardine Surimi. Int. J. Food Prop. 2017, 20, S2786–S2797. [Google Scholar] [CrossRef]
- Banlue, K.; Morioka, K.; Itoh, Y. Effect of Inorganic Oxidizing Reagents on Gel-Forming Properties of Walleye Pollack Surimi through Low Temperature Setting. J. Biol. Sci. 2009, 10, 18–24. [Google Scholar] [CrossRef]
- Walayat, N.; Xiong, Z.; Xiong, H.; Moreno, H.M.; Niaz, N.; Ahmad, M.N.; Hassan, A.; Nawaz, A.; Ahmad, I.; Wang, P.-K. Cryoprotective Effect of Egg White Proteins and Xylooligosaccharides Mixture on Oxidative and Structural Changes in Myofibrillar Proteins of Culter Alburnus during Frozen Storage. Int. J. Biol. Macromol. 2020, 158, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Liao, H.; Gao, Y.; Li, Z.; Chen, Q.; Han, X.; Fan, J.; Pan, W. Effect of glycerol on gelation and microrheological properties of giant squid surimi (Dosidicus gigas) under heat treatment. J. Food Eng. 2025, 388, 112383. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, L.; Su, Y.; Chang, C.; Gu, L.; Yang, Y.; Li, J. Effect of Soybean Protein Isolate and Egg White Mixture on Gelation of Chicken Myofibrillar Proteins under Salt/-Free Conditions. LWT 2021, 149, 111871. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Guo, L.; Ho, H.; Wang, B.; Sun, J.; Xu, X.; Huang, M. Effects of Ultrafine Comminution Treatment on Gelling Properties of Myofibrillar Proteins from Chicken Breast. Food Hydrocoll. 2019, 97, 105199. [Google Scholar] [CrossRef]
- Li, Q.; Feng, J.; Jia, R.; Wei, H.; Huang, T.; Zhang, J.; Xu, D.; Yang, W.; Li, G. Mechanism of enhanced quality of Acetes chinensis powder-Alaska Pollock surimi: Gel properties, rheological properties, micro-structure. Food Res. Int. 2025, 205, 116009. [Google Scholar] [CrossRef]
- Li, D.-Y.; Tan, Z.-F.; Liu, Z.-Q.; Wu, C.; Liu, H.-L.; Guo, C.; Zhou, D.-Y. Effect of Hydroxyl Radical Induced Oxidation on the Physicochemical and Gelling Properties of Shrimp Myofibrillar Protein and Its Mechanism. Food Chem. 2021, 351, 129344. [Google Scholar] [CrossRef] [PubMed]
- Yingchutrakul, M.; Wasinnitiwong, N.; Benjakul, S.; Singh, A.; Zheng, Y.; Mubango, E.; Luo, Y.; Tan, Y.; Hong, H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The Interaction of Starch-Gums and Their Effect on Gel Properties and Protein Conformation of Silver Carp Surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Xiong, Z.; Shi, T.; Zhang, W.; Kong, Y.; Yuan, L.; Gao, R. Improvement of Gel Properties of Low Salt Surimi Using Low-Dose l-Arginine Combined with Oxidized Caffeic Acid. LWT 2021, 145, 111303. [Google Scholar] [CrossRef]
- Xiang, Z.; Yin, T.; Huang, Z.; Rahman, Z.; Jirawat, Y.; Xu, T.; Huang, Q.; You, J.; Liu, R.; Yang, H. Proteomic Analysis Revealed the Deterioration of Surimi Gelling Capability to Fish Stress during Transportation. Food Res. Int. 2024, 196, 115099. [Google Scholar] [CrossRef]
- Putkham, I.A.; Chuakham, S.; Chaiyachet, Y.; Suwansopa, T.; Putkham, A. Production of Bio-Calcium Oxide Derived from Hatchery Eggshell Waste Using an Industrial-Scale Car Bottom Furnace. J. Renew. Mater. 2021, 10, 1137–1151. [Google Scholar] [CrossRef]
- Xue, Y.; Song, J.; Chen, S.; Fu, C.; Li, Z.; Weng, W.; Shi, L.; Ren, Z. Improving surimi gel quality by corn oligopeptide-chitosan stabilized high-internal phase Pickering emulsions. Food Hydrocoll. 2025, 166, 111268. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; An, F.; He, H.; Geng, F.; Song, H.; Huang, Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll. 2021, 114, 106555. [Google Scholar] [CrossRef]
- Weber, K.; Osborn, M. The Reliability of Molecular Weight Determinations by Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. J. Biol. Chem. 1969, 244, 4406–4412. [Google Scholar] [CrossRef]
CaO (µmol/100 g) | Expressible Moisture Content (%) | Whiteness | TCA-Soluble Protein (mg/100 g) | Total Sulfhydryl Groups (µmol/g) |
---|---|---|---|---|
0 | 16.88 ± 0.87 a | 68.14 ± 0.86 c | 1.89 ± 0.26 a | 13.12 ± 0.11 a |
2 | 12.13 ± 0.42 b | 69.04 ± 0.63 b | 1.26 ± 0.18 c | 8.64 ± 0.08 b |
4 | 9.88 ± 1.81 c | 69.27 ± 0.61 b | 1.43 ± 0.12 c | 7.74 ± 0.14 c |
6 | 7.12 ± 1.31 d | 71.49 ± 0.20 a | 1.25 ± 0.07 c | 7.95 ± 0.10 c |
8 | 10.13 ± 0.24 bc | 71.01 ± 0.24 a | 1.31 ± 0.17 c | 7.86 ± 0.05 c |
10 | 11.07 ± 1.14 bc | 70.99 ± 0.74 a | 1.62 ± 0.09 b | 7.32 ± 0.13 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanboonmee, N.; Bunlue, K.; Putkham, A.; Li, H.; Siriamornpun, S. Impact of Eggshell-Derived Calcium Oxide on Protein Cross-Linking and Gel Properties of Giant Snakehead (Channa micropeltes) Surimi. Gels 2025, 11, 182. https://doi.org/10.3390/gels11030182
Sanboonmee N, Bunlue K, Putkham A, Li H, Siriamornpun S. Impact of Eggshell-Derived Calcium Oxide on Protein Cross-Linking and Gel Properties of Giant Snakehead (Channa micropeltes) Surimi. Gels. 2025; 11(3):182. https://doi.org/10.3390/gels11030182
Chicago/Turabian StyleSanboonmee, Nattaporn, Kriangsak Bunlue, Apipong Putkham, Hua Li, and Sirithon Siriamornpun. 2025. "Impact of Eggshell-Derived Calcium Oxide on Protein Cross-Linking and Gel Properties of Giant Snakehead (Channa micropeltes) Surimi" Gels 11, no. 3: 182. https://doi.org/10.3390/gels11030182
APA StyleSanboonmee, N., Bunlue, K., Putkham, A., Li, H., & Siriamornpun, S. (2025). Impact of Eggshell-Derived Calcium Oxide on Protein Cross-Linking and Gel Properties of Giant Snakehead (Channa micropeltes) Surimi. Gels, 11(3), 182. https://doi.org/10.3390/gels11030182