In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Preparation of HA/TiO2
4.2. Substrate Preparation and Flame Spray Coating
4.3. Hydrogel Formation on HA/TiO2-Coated Stainless Steel via Self-Initiated Photopolymerization
4.4. Characterization of Powders and Coatings
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Al-Asaadi, S.; Austin, N.; Watson, P.J.; Wood, D.J.; Altaie, A.; Rodrigues, F.P. Titanium-Zirconia abutment-implant assemblies: Are they alternatives for single material implants? Dent. Mater. 2025, 41, 914–925. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chen, H.; Zhang, A.; Zhang, Y.; Zhang, J.; Chen, B.; Han, Q.; Wang, J. From clinic to lab: Advances in porous titanium-based orthopedic implant research. J. Mater. Res. Technol. 2024, 30, 3780–3806. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Yazdi, S.; Bozorg, M.; Ghasempour-Mouziraji, M.; Hosseinzadeh, M.; Zarrabian, M.; Cavaliere, P. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. [Google Scholar] [CrossRef]
- Fantin, L.d.B.; Moreira, M.F.; de Souza, J.M.P. Failure analysis of a fractured stainless steel femoral bone plate. Eng. Fail. Anal. 2025, 173, 109466. [Google Scholar] [CrossRef]
- Chai, C.S.; Nissan, B.B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 1999, 10, 465–469. [Google Scholar] [CrossRef]
- Jagadeeshanayaka, N.; Negi, M.S.; Jambagi, S.C. Tribological and microstructural evaluation of HVOF-sprayed hydroxyapatite coatings with machine learning-based wear rate prediction. Tribol. Int. 2026, 213, 111038. [Google Scholar] [CrossRef]
- Ashraf, P.M.; Vrindha, K.R.; Binsi, P.K.; Thomas, N.G. Nano carbon dot-collagen peptide—Hydroxyapatite composite coating for bone tissue regeneration. Next Mater. 2025, 8, 100914. [Google Scholar] [CrossRef]
- Logesh, M.; Ahn, S.-G.; Choe, H.-C. Hydroxyapatite ceramic coatings with Ag, Mg, and Si additives via plasma electrolytic oxidation: Advancing antibacterial and multi-functional properties for biomedical implants. Ceram. Int. 2025, 51, 36182–36207. [Google Scholar] [CrossRef]
- Shanaghi, A.; Mehrjou, B.; Hamedani, A.M.; Souri, A.R.; Qasim, A.M.; Chu, P.K. Advanced hydroxyapatite- DLC bilayer coatings for improved performance of NiTi biomedical alloys. Ceram. Int. 2025, 51, 28935–28953. [Google Scholar] [CrossRef]
- Henao, J.; Sotelo-Mazon, O.; Giraldo-Betancur, A.L.; Hincapie-Bedoya, J.; Espinosa-Arbelaez, D.G.; Poblano-Salas, C.; Cuevas-Arteaga, C.; Corona-Castuera, J.; Martinez-Gomez, L. Study of HVOF-Sprayed Hydroxyapatite/Titania Graded Coatings under in-Vitro Conditions. J. Mater. Res. Technol. 2020, 9, 14002–14016. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, K.; Li, X.; Liao, J.; Li, G. Dual surface modification of medical-grade PEEK: Nanosecond laser pre-treatment and hydrothermal hydroxyapatite coating. Opt. Laser Technol. 2025, 191, 113307. [Google Scholar] [CrossRef]
- Lu, X.; Ren, J.; Liu, W.; Chen, Y. In vitro tribological behavior of plasma-sprayed hydroxyapatite composite coatings reinforced with graphene nanosheets. Ceram. Int. 2025, 51, 42565–42575. [Google Scholar] [CrossRef]
- Lin, W.H.; Tsao, S.Y.; Cheng, T.C.; Shieh, J.; Yang, J.Y. Effect of morphologies of hydroxyapatite powders on thermal sprayed hydroxyapatite coatings. Surf. Interfaces 2025, 60, 105948. [Google Scholar] [CrossRef]
- Han, A.; Rujijanagul, G.; Randorn, C. Preparation of hydroxyapatite hydrogel for bone-like materials via novel self-initiated photocatalytic polymerization. Mater. Lett. 2017, 193, 142–145. [Google Scholar] [CrossRef]
- Li, M.; Fan, Y.; Ran, M.; Chen, H.; Han, J.; Zhai, J.; Wang, Z.; Ning, C.; Shi, Z.; Yu, P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv. Healthc. Mater. 2024, 13, 2401296. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.-A.; Juhasz, J.A.; Brooks, R.A.; Best, S.M. Bioactive conformable hydrogel-carbonated hydroxyapatite nanocomposite coatings on Ti-6Al-4V substrates. Mater. Technol. 2020, 35, 727–733. [Google Scholar] [CrossRef]
- Moreau, D.; Villain, A.; Ku, D.N.; Corte, L. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite. Biomatter 2014, 4, e28764. [Google Scholar] [CrossRef]
- Cao, H.; Wang, C.; Li, Y.; Wang, Y.; Wang, C.; Han, S.; Zhao, X. A novel hydroxyapatite modified MXene-based hydrogel coating on Ti6Al4V alloy with improved biotribological properties and corrosion resistance. Friction 2024, 13, 9440956. [Google Scholar] [CrossRef]
- Jahanmard, F.; Khodaei, A.; Flapper, J.; Dogan, O.; Roohi, K.; Taheri, P.; Weinans, H.; Storm, G.; Croes, M.; Mastrobattista, E.; et al. Osteoimmunomodulatory GelMA/liposome coatings to promote bone regeneration of orthopedic implants. J. Control. Release 2023, 358, 667–680. [Google Scholar] [CrossRef]
- Jia, R.; He, Y.; Liang, J.; Duan, L.; Ma, C.; Lu, T.; Liu, W.; Li, S.; Wu, H.; Cao, H.; et al. Preparation of biocompatibility coating on magnesium alloy surface by sodium alginate and carboxymethyl chitosan hydrogel. Iscience 2024, 27, 109197. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, H.; Wang, M.; Hu, Y.; Zeng, H.; Liu, H.; Wang, H.; Yang, C.; Liu, J.; Yu, A.; et al. Enhancing Bone-Titanium integration through hydrogel coating mediated sequential M1/M2 polarization of interfacial macrophages. Chem. Eng. J. 2024, 500, 157088. [Google Scholar] [CrossRef]
- Chan, D.; Maikawa, C.L.; d’Aquino, A.I.; Raghavan, S.S.; Troxell, M.L.; Appel, E.A. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. J. Biomed. Mater. Res. A 2023, 111, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Yutimit, N.; Wattanavichan, K.; Limpichaipanit, A.; Randorn, C.; Rujijanagul, G.; Thongkorn, K.; Chokethawai, K. Highly bioactive hydroxyapatite coating made by flame spray technique. Mater. Lett. 2024, 368, 136659. [Google Scholar] [CrossRef]
- Myszka, B.; Schussler, M.; Hurle, K.; Demmert, B.; Detsch, R.; Boccaccini, A.R.; Wolf, S.E. Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. RSC Adv. 2019, 9, 18232–18244. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Jiang, T.; Liang, Y.D.; Zhang, Z.; Wang, Y.N. Evaluation of the osseointegration of dental implants coated with calcium carbonate: An animal study. Int. J. Oral Sci. 2017, 9, 133–138. [Google Scholar] [CrossRef]
- Nocchetti, M.; Pietrella, D.; Antognelli, C.; Di Michele, A.; Russo, C.; Giulivi, E.; Ambrogi, V. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int. J. Pharm. 2024, 661, 124393. [Google Scholar] [CrossRef]
- Medrano-David, D.; Lopera, A.M.; Londono, M.E.; Araque-Marin, P. Formulation and Characterization of a New Injectable Bone Substitute Composed PVA/Borax/CaCO3 and Demineralized Bone Matrix. J. Funct. Biomater. 2021, 12, 46. [Google Scholar] [CrossRef]
- Gritsch, L.; Maqbool, M.; Mouriño, V.; Ciraldo, F.E.; Cresswell, M.; Jackson, P.R.; Lovell, C.; Boccaccini, A.R. Chitosan/Hydroxyapatite Composite Bone Tissue Engineering Scaffolds with Dual and Decoupled Therapeutic Ion Delivery: Copper and Strontium. J. Mater. Chem. B 2019, 7, 6109–6124. [Google Scholar] [CrossRef]
- Amaravathy, P.; Sathyanarayanan, S.; Sowndarya, S.; Rajendran, N. Bioactive HA/TiO2 Coating on Magnesium Alloy for Biomedical Applications. Ceram. Int. 2014, 40, 6617–6630. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, Y.; Wang, Y.; Chen, M.; Huang, Y.; Cao, J.; Ho, W.; Lee, S.C. Enhanced Photocatalytic Removal of NO over Titania/Hydroxyapatite (TiO2/HAp) Composites with Improved Adsorption and Charge Mobility Ability. RSC Adv. 2017, 7, 24683–24689. [Google Scholar] [CrossRef]
- Ahmadi, R.; Asadpourchallou, N.; Kaleji, B.K. In Vitro Study: Evaluation of Mechanical Behavior, Corrosion Resistance, Antibacterial Properties and Biocompatibility of HAp/TiO2/Ag Coating on Ti6Al4V/TiO2 Substrate. Surf. Interfaces 2021, 24, 101072. [Google Scholar] [CrossRef]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles—Synthesized via sol–gel route. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 622–629. [Google Scholar] [CrossRef]
- Sugapriya, S.; Sriram, R.; Lakshmi, S. Effect of annealing on TiO2 nanoparticles. Optik 2013, 124, 4971–4975. [Google Scholar] [CrossRef]
- Sarokolai, F.T.; Shiri, Y. Titanium Dioxide-Grafted Polyacrylamide Nanocomposites Ameliorate the Rheology and High-Pressure High-Temperature Fluid Loss of Water-Based Drilling Fluids. Results Eng. 2025, 27, 106624. [Google Scholar] [CrossRef]
- Gaabour, L.H. Spectroscopic and Thermal Analysis of Polyacrylamide/Chitosan (PAM/CS) Blend Loaded by Gold Nanoparticles. Results Phys. 2017, 7, 2153–2158. [Google Scholar] [CrossRef]
- Kangwansupamonkon, W.; Klaikaew, N.; Kiatkamjornwong, S. Green Synthesis of Titanium Dioxide/Acrylamide-Based Hydrogel Composite, Self Degradation and Environmental Applications. Eur. Polym. J. 2018, 107, 118–131. [Google Scholar] [CrossRef]
- Monchau, F.; Hivart, P.; Genestie, B.; Chai, F.; Descamps, M.; Hildebrand, H.F. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity. Mater. Sci. Eng. C 2013, 33, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Pham Minh, D.; Nzihou, A.; Sharrock, P. Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid. Mater. Res. Bull. 2014, 60, 292–299. [Google Scholar] [CrossRef]
- Aragón, J.; González, R.; Fuentes, G.; Palin, L.; Croce, G.; Viterbo, D. Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite. Mater. Res. 2011, 14, 25–30. [Google Scholar] [CrossRef]
- Randorn, C.; Kanta, A.; Yaemsunthorn, K.; Rujijanakul, G. Fabrication of dense biocompatible hydroxyapatite ceramics with high hardness using a peroxide-based route: A potential process for scaling up. Ceram. Int. 2015, 41, 5594–5599. [Google Scholar] [CrossRef]
Spraying Parameter | Value |
---|---|
Acetylene flow rate (L·min−1) | 26 |
Oxygen flow rate (L·min−1) | 21 |
Nitrogen flow rate (L·min−1) | 1.6 |
Deposition rate (g·min−1) | 3.95 |
Gun traverse speed (mm·s−1) | 3.0 |
Step distance (cm) | 1.0 |
Spray distance (mm) | 120 |
Nozzle type | P7C-M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokethawai, K.; Yutimit, N.; Boonsri, B.; Jarupoom, P.; Muangchan, K.; Tonkaew, S.; Kaewdee, P.; Tandorn, S.; Randorn, C. In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization. Gels 2025, 11, 837. https://doi.org/10.3390/gels11100837
Chokethawai K, Yutimit N, Boonsri B, Jarupoom P, Muangchan K, Tonkaew S, Kaewdee P, Tandorn S, Randorn C. In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization. Gels. 2025; 11(10):837. https://doi.org/10.3390/gels11100837
Chicago/Turabian StyleChokethawai, Komsanti, Nattawit Yutimit, Burin Boonsri, Parkpoom Jarupoom, Ketmanee Muangchan, Sahadsawat Tonkaew, Pongpen Kaewdee, Sujitra Tandorn, and Chamnan Randorn. 2025. "In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization" Gels 11, no. 10: 837. https://doi.org/10.3390/gels11100837
APA StyleChokethawai, K., Yutimit, N., Boonsri, B., Jarupoom, P., Muangchan, K., Tonkaew, S., Kaewdee, P., Tandorn, S., & Randorn, C. (2025). In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization. Gels, 11(10), 837. https://doi.org/10.3390/gels11100837