CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Viscoelastic Surfactants for CO2 Foam
2.2. Effect of Surfactant Concentration on CO2 Foam Viscosity
2.3. Water Chemistry Role on CO2 Foam Viscosity
2.4. The Effect of Polymer on CO2 Foam Viscosity
2.5. The Role of Elevated Pressure and Foam Quality on CO2 Foam Viscosity
2.6. The Stability of CO2 Foam
3. Conclusions
- Surfactant 3 exhibited the highest viscosity at 150 °C and 6.89 MPa because it produced a higher number of fine-texture bubbles with uniform distribution. The results suggested that smaller bubble sizes can produce higher foam viscosity.
- 6 wt% surfactant 3 has the potential to suspend and deliver the proppant into fracture since it attained a high CO2 foam viscosity of 0.11 Pa·s at a 100 1/s shear rate and stabilized the foam viscosity almost unchanged for 180 min.
- Increasing the surfactant 3 concentration above 6 wt% or adding polymers did not increase CO2 foam viscosity.
- Water chemistry has a significant impact on foam viscosity. Once the salinity increased to 108,720 ppm, it increased to 0.183 Pa·s at 100 1/s; nevertheless, it reduced to 0.035 Pa·s at 100 1/s when the salinity increased to 213,734 ppm.
- This study shows that the foam viscosity increased almost by 30% when the pressure increased to 13.79 MPa (supercritical condition: 7.38 MPa, 31 °C). Hence, 6 wt% surfactant 3 was capable of generating CO2 foam at supercritical conditions.
- A comprehensive investigation of foam stability, microstructure, and bubble number at 100 °C provided insights into foam collapse mechanisms. HPHT foam analyzer data established a correlation between bubble size distribution and foam viscosity. Additionally, the FW system shows poor foamability and poor stability; however, the foam half-life extended to 80 min for the SW system.
4. Materials and Methods
4.1. Chemicals and Materials
4.2. HPHT Foam Rheometer
4.3. HPHT Foam Analyzer
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almubarak, M.; Almubarak, T.; Ng, J.H.; Hernandez, J.; Nasr-El-Din, H. Recent Advances in Waterless Fracturing Fluids: A Review. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 9–12 November 2020. [Google Scholar]
- Perdomo, M.E.G.; Madihi, S.W. Foam Based Fracturing Fluid Characterization for an Optimized Application in HPHT Reservoir Conditions. Fluids 2022, 7, 156. [Google Scholar] [CrossRef]
- Wanniarachchi, W.A.M.; Ranjith, P.G.; Perera, M.S.A.; Lashin, A.; Al Arifi, N.; Li, J.C. Current opinions on foam-based hydro-fracturing in deep geological reservoirs. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 121–134. [Google Scholar] [CrossRef]
- Sun, X.; Liang, X.; Wang, S.; Lu, Y. Experimental study on the rheology of CO2 viscoelastic surfactant foam fracturing fluid. J. Pet. Sci. Eng. 2014, 119, 104–111. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Sun, X.; Gao, R.; Zeng, F.; Tontiwachwuthikul, P.; Liang, Z. Rheological properties study of foam fracturing fluid using CO2 and surfactant. Chem. Eng. Sci. 2017, 170, 720–730. [Google Scholar] [CrossRef]
- Fu, C.; Liu, N. Rheology and stability of nanoparticle-stabilized CO2 foam under reservoir conditions. J. Pet. Sci. Eng. 2021, 196, 107671. [Google Scholar] [CrossRef]
- Chen, Z.; Ahmed, R.M.; Miska, S.Z.; Takach, N.E.; Yu, M.; Pickell, M.B. Rheology and Hydraulics of Polymer (HEC) Based Drilling Foams at Ambient Temperature Conditions. SPE J. 2005, 12, 100–107. [Google Scholar] [CrossRef]
- Capo, J.; Yu, M.; Miska, S.Z.; Takach, N.; Ahmed, R. Cuttings Transport with Aqueous Foam at Intermediate Inclined Wells. In Proceedings of the SPE/ICoTA Coiled Tubing Conference and Exhibition, Houston, TX, USA, 23–24 March 2004. [Google Scholar]
- Khade, S.D.; Shah, S.N. New Rheological Correlations For Guar Foam Fluids. J. Pet. Sci. Eng. 2003, 180, 330–346. [Google Scholar]
- Sinha, V.; Ahmed, R.; Akhtar, T.; Shah, S.; Amani, M. Rheology and hydraulics of polymer-based foams at elevated temperatures. J. Pet. Sci. Eng. 2019, 180, 330–346. [Google Scholar] [CrossRef]
- Akhtar, T.F.; Ahmed, R.; Elgaddafi, R.; Shah, S.; Amani, M. Rheological behavior of aqueous foams at high pressure. J. Pet. Sci. Eng. 2018, 162, 214–224. [Google Scholar] [CrossRef]
- Almubarak, T.; Li, L.; Ng, J.H.; Nasr-El-Din, H.; AlKhaldi, M. New insights into hydraulic fracturing fluids used for high-temperature wells. Petroleum 2021, 7, 70–79. [Google Scholar] [CrossRef]
- Pandey, A.; Sinha, A.S.K.; Chaturvedi, K.R.; Sharma, T. Experimental investigation on effect of reservoir conditions on stability and rheology of carbon dioxide foams of nonionic surfactant and polymer: Implications of carbon geo-storage. Energy 2021, 235, 121445. [Google Scholar] [CrossRef]
- Creatto, E.J.; Alvarenga, B.G.; de Moura, P.G.; Pérez-Gramatges, A. Viscosity-driven stabilization of CO2-in-brine foams using mixtures of cocamidopropyl hydroxysultaine and sodium dodecyl sulfate. J. Mol. Liq. 2021, 329, 115614. [Google Scholar] [CrossRef]
- Bashir, A.; Haddad, A.S.; Rafati, R. An experimental investigation of dynamic viscosity of foam at different temperatures. Chem. Eng. Sci. 2022, 248, 117262. [Google Scholar] [CrossRef]
- Song, X.; Cui, X.; Su, X.; Munir, B.; Du, D. Laboratory study on the rheology properties of nanoparticle-stabilized supercritical CO2 foam. J. Pet. Sci. Eng. 2022, 218, 111065. [Google Scholar] [CrossRef]
- Da, C.; Elhag, A.; Jian, G.; Zhang, L.; Alzobaidi, S.; Zhang, X.; Al Sumaiti, A.; Biswal, S.; Hirasaki, G.; Johnston, K. CO2/Water Foams Stabilized with Cationic or Zwitterionic Surfactants at Temperatures up to 120 °C in High Salinity Brine. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018; p. D031S031R003. [Google Scholar]
- Wang, J.; Liang, M.; Tian, Q.; Feng, Y.; Yin, H.; Lu, G. CO2-switchable foams stabilized by a long-chain viscoelastic surfactant. J. Colloid Interface Sci. 2018, 523, 65–74. [Google Scholar] [CrossRef]
- Kadafur, I.; BinGhanim, A.; Aljawad, M.S.; Kamal, M.S.; AlYousef, Z.; Mahmoud, M. Rheological study of CO2 foamed chelating stimulation fluids under harsh reservoir conditions. J. Pet. Sci. Eng. 2021, 208, 109201. [Google Scholar] [CrossRef]
- Da, C.; Jian, G.; Alzobaidi, S.; Yang, J.H.; Biswal, S.L.; Hirasaki, G.J.; Johnston, K.P. Design of CO2-in-Water Foam Stabilized with Switchable Amine Surfactants at High Temperature in High-Salinity Brine and Effect of Oil. Energy Fuels 2018, 32, 12259–12267. [Google Scholar] [CrossRef]
- Zhang, P.; Diao, Y.; Shan, Y.; Pei, S.; Ren, S.; Zhang, L.; Yang, H. Experimental investigation of amine-surfactant CO2 foam for smart mobility control during CO2 flooding. J. Pet. Sci. Eng. 2020, 184, 106511. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Hassan, A.M.; Sultan, A.S.; Mahmoud, M. Enhancing the Oil Recovery from Naturally Fractured Reservoirs Using Viscoelastic Surfactant (VES) Flooding: A Field-Scale Simulation. ACS Omega 2022, 7, 504–517. [Google Scholar] [CrossRef]
- Azad, M.S.; Sultan, A.S. Extending the Applicability of Chemical EOR in High Salinity, High Temperature & Fractured Carbonate Reservoir Through Viscoelastic Surfactants. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 21–24 April 2014. [Google Scholar]
- Niu, Q.; Dong, Z.; Lv, Q.; Zhang, F.; Shen, H.; Yang, Z.; Lin, M.; Zhang, J.; Xiao, K. Role of interfacial and bulk properties of long-chain viscoelastic surfactant in stabilization mechanism of CO2 foam for CCUS. J. CO2 Util. 2022, 66, 102297. [Google Scholar] [CrossRef]
- Alzobaidi, S.; Da, C.; Tran, V.; Prodanović, M.; Johnston, K.P. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants. J. Colloid Interface Sci. 2017, 488, 79–91. [Google Scholar] [CrossRef]
- Alarawi, A.; Busaleh, A.; Saleh, T.A.; Alharbi, B. High thermal stability of foams stabilized by graphene oxide and zwitterionic surfactant nanocomposites for fracturing applications. Fuel 2023, 332, 126156. [Google Scholar] [CrossRef]
- Al-Darweesh, J.; Aljawad, M.S.; Kamal, M.S.; Al-Yousef, Z.; Mahmoud, M. Enhancing CO2 Foam Viscosity and Stability at Harsh Reservoir Conditions Through the Synergetic Interactions of Surfactant and Polymer. In Proceedings of the ADIPEC, Abu Dhabi, United Arab Emirates, 31 October–3 November 2022; p. D041S129R001. [Google Scholar]
- Ahmed, S.; Elraies, K.A.; Tan, I.M.; Hashmet, M.R. Experimental investigation of associative polymer performance for CO2 foam enhanced oil recovery. J. Pet. Sci. Eng. 2017, 157, 971–979. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, G.; Ojha, K. Synergistic effects of polymer and bentonite clay on rheology and thermal stability of foam fluid developed for hydraulic fracturing. Asia-Pacific J. Chem. Eng. 2017, 12, 872–883. [Google Scholar] [CrossRef]
- Wang, M.; Wu, W.; Chen, S.; Li, S.; Li, T.; Ni, G.; Fu, Y.; Zhou, W. Experimental Evaluation of the Rheological Properties and Influencing Factors of Gel Fracturing Fluid Mixed with CO2 for Shale Gas Reservoir Stimulation. Gels 2022, 8, 527. [Google Scholar] [CrossRef]
- Li, S.; Fan, Y.; He, T.; Yang, J.; Li, J.; Wang, X. Research and performance optimization of carbon dioxide foam fracturing fluid suitable for shale reservoir. Front. Energy Res. 2023, 11, 1217467. [Google Scholar] [CrossRef]
- Drenckhan, W.; Saint-Jalmes, A. The science of foaming. Adv. Colloid Interface Sci. 2015, 222, 228–259. [Google Scholar] [CrossRef]
- Wen, Y.; Zhong, Y.; Zeng, P.; Li, Q. Interfacial chemical mechanisms of brine salinity affecting the CO2 foam stability and its effect on the sequestration capacity of CO2 in deep saline aquifer. J. Mol. Liq. 2024, 399, 124349. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Wang, F.; Feng, W.; Wei, H.; Dang, L. Evaluating the Foaming Behavior of High-Viscosity Non-Newtonian Fluids. Ind. Eng. Chem. Res. 2024, 63, 11776–11789. [Google Scholar] [CrossRef]
- Wang, M.; Wu, W.; Chen, S.; Li, S.; Li, T.; Ni, G.; Fu, Y.; Zhou, W. Experimental evaluation of the flow resistance of CO2 foam fracturing fluids and simulation prediction for fracture propagation. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 44. [Google Scholar] [CrossRef]
- Yu, W.; Kanj, M.Y. Review of foam stability in porous media: The effect of coarsening. J. Pet. Sci. Eng. 2022, 208, 109698. [Google Scholar] [CrossRef]
Test | Initial Bubble Count per Area (mm−2) | Initial Bubble Radius Size (μm) | Bubble Count Half-Life (min) | Bubble Coarsening Rate (min) | Foam Half-Life (min) |
---|---|---|---|---|---|
SW | 50 | 75 | 7 | 10 | 80 |
FW | 10 | 105 | 6 | 7 | 60 |
Chemical Code | Chemical Name |
---|---|
Surfactant 1 | Erucamidopropyl Hydroxypropylsultain |
Surfactant 2 | derived from Ammonium Quaternary compound and propanol |
Surfactant 3 | |
Surfactant 4 | |
Polymer 1 | Carboxymethyl Hydroxypropyl Guar Gum (CMHPG), Molecular weight of 20 million Dalton. |
Polymer 2 | Made of 50–65% Acrylamide (AM) and 35–50% N-vinylprrolidone (NVP). |
Polymer 3 | Made of 25–45% Acrylamide (AM), 20–25% 2-Acrylamido-2-methylpropane sulfonic (ATBS), and 35–50% N-vinylprrolidone (NVP). |
Oxygen scavenger | sodium thiosulfate |
Composition | Seawater (SW) (g/L) | Formation Water (FW) (g/L) | |
---|---|---|---|
1 | NaCl | 41.2 | 150.5 |
2 | MgCl2·6H2O | 17.6 | 20.4 |
3 | NaHCO3 | 0.17 | 0.49 |
4 | Na2SO4 | 6.33 | 0.52 |
5 | CaCl2·2H2O | 2.39 | 69.8 |
6 | TDS | 57.7 | 213.7 |
Investigation | Surfactant Type | Surfactant Concentration (wt%) | Water Type | Polymer (wt%) | Foam Quality (%) | Pressure (MPa) |
---|---|---|---|---|---|---|
Comparative Performance | -Surfactant 1 -Surfactant 2 -Surfactant 3 -Surfactant 4 | 6 | SW | 70 | 6.89 | |
Surfactant concentration | Surfactant 3 | −3 −6 −9 | SW | 70 | 6.89 | |
Water chemistry | Surfactant 3 | 6 | -SW -FW -SW+FW | 70 | 6.89 | |
Polymer | Surfactant 3 | 6 | SW | -polymer 1 -polymer 2 -polymer 3 | 70 | 6.89 |
Foam Quality | Surfactant 3 | 6 | SW | −40 to 7 | 6.89 | |
Pressure | Surfactant 3 | 6 | SW | 7 | −6.89 −13.79 −20.68 |
Test No. | Surfactant Type (wt%) | Water Type | Pressure (MPa) |
---|---|---|---|
1 | 6 wt% surfactant 3 | SW | 6.89 |
2 | 6 wt% surfactant 2 | SW | 6.89 |
3 | 6 wt% surfactant 3 | FW | 6.89 |
4 | 6 wt% surfactant 3 | SW | 13.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Darweesh, J.; Aljawad, M.S.; Kamal, M.S.; Mahmoud, M.; Alajmei, S.; Karadkar, P.B.; Harbi, B.G. CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells. Gels 2024, 10, 774. https://doi.org/10.3390/gels10120774
Al-Darweesh J, Aljawad MS, Kamal MS, Mahmoud M, Alajmei S, Karadkar PB, Harbi BG. CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells. Gels. 2024; 10(12):774. https://doi.org/10.3390/gels10120774
Chicago/Turabian StyleAl-Darweesh, Jawad, Murtada Saleh Aljawad, Muhammad Shahzad Kamal, Mohamed Mahmoud, Shabeeb Alajmei, Prasad B. Karadkar, and Bader G. Harbi. 2024. "CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells" Gels 10, no. 12: 774. https://doi.org/10.3390/gels10120774
APA StyleAl-Darweesh, J., Aljawad, M. S., Kamal, M. S., Mahmoud, M., Alajmei, S., Karadkar, P. B., & Harbi, B. G. (2024). CO2 Foamed Viscoelastic Gel-Based Seawater Fracturing Fluid for High-Temperature Wells. Gels, 10(12), 774. https://doi.org/10.3390/gels10120774