Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives
Abstract
1. Introduction
2. Benzoquinone-Type Cochlioquinones
3. Phenol-Type Cochlioquinones
4. NMR Spectral Features of Cochlioquinones
5. Mass Spectral Features of Cochlioquinones
6. The Biological Activities of Cochlioquinones
6.1. Plant Toxic Activities
6.2. Antiparasitic and Insecticidal Activities
6.3. Antibacterial Activities
6.4. Cytotoxic Activities
6.5. Immunosuppressive Activities
6.6. Related to Lipid Metabolism
6.7. Related to Angiogenesis and Platelet Aggregation
7. Biosynthesis of Cochlioquinones
8. Discussion
9. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F.; Ali, I.; Wang, D.J.; Mamadalieva, N.Z.; Alshammari, E.; Ashour, M.L.; et al. Meroterpenoids: A comprehensive update insight on structural diversity and biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, N.K.; Raheja, R.K.; Shah, K.H.; Oza, M.J.; Kulkarni, Y.A.; Sunramaniyan, V.; Sekar, M.; Fuloria, S. Biological activities of meroterpenoids isolated from different sources. Front. Pharmacol. 2022, 13, 830103. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, L.; Zhang, P.; Wang, Y.; Qian, X.; Liu, Y.; Wu, G. Filamentous Fungi-Derived Oresllinic Acid-Sesquiterprnr Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. Planta Med. 2023, 89, 1110–1124. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Liu, L.; Chen, S. The chemistry and biology of fungal meroterpenoids (2009–2019). Org. Biomol. Chem. 2021, 19, 1644–1704. [Google Scholar] [CrossRef]
- Teng, L.L.; Song, T.Y.; Xu, Z.F.; Liu, X.; Dai, R.; Chen, Y.H.; Li, S.H.; Zhang, K.Q.; Niu, X.M. Selected Mutations Revealed Intermediates and Key Precursors in the Biosynthesis of Ployketide-Terpenoid Hybrid Sesquiterpenyl Epoxy-cyclohexenoids. Org. Lett. 2017, 19, 3923–3926. [Google Scholar] [CrossRef]
- Yan, D.; Matsuda, Y. Global genome mining-driven discovery of an unusual biosynthetic logic for fungal polyketide-terpenoid hybrids. Chem. Sci. 2024, 15, 3011–3017. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ting, C.P.; Xu, G.; Maimone, T.J. Programmable meroterpeno synthesis. Nat. Commun. 2020, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Dannert, C.S. Biosynthesis of terpenoid natural products in fungi. Adv. Biochem. Eng. Biotechnol. 2015, 148, 19–61. [Google Scholar]
- Zhang, F.M.; Zhang, S.Y.; Tu, Y.Q. Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals. Nat. Prod. Rep. 2018, 35, 75–104. [Google Scholar] [CrossRef]
- Moore, B.S.; Hopke, J.N. Discovery of a new bacterial polyketide biosynthetic pathway. Chembiochem 2001, 2, 35–38. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; He, X.; Deng, Z.; Jiang, M. Challenges of functional expression of complex polyketide biosynthetic gene clusters. Curr. Opin. Biotechnol. 2021, 11, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M.; Lawrence, J.W. Stemphone, a biologically active yellow pigment produced by Stemphylium sarcinaeforme (Cav.) Wiltshire. Can. J. Microbiol. 1968, 14, 1015–1016. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, J.R.; Cerrini, S.; Fedeli, W.; Casinovi, C.G.; Galeffi, C.; Vaccaro, A.M.T.; Scala, A. Structures of cochlioquinones A and B, new metabolites of Cochliobolus miyabeanus: Chemical and X-ray crystallographic determination. J. Chem. Soc. D Chem. 1971, 3, 164–166. [Google Scholar] [CrossRef]
- Ogawara, H.; Higashi, K.; Machida, T.; Takashima, J.; Chiba, N.; Mikawa, T. Inhibitors of diacylglycerol kinase from Drechslera sacchari. J. Antibiot. 1994, 47, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, K.; Anke, T.; Anders, U.; Hindermayr, H.; Hansske, F. 14-epidihydrocochlioquinone B and 14-epicochlioquinone B, antibiotics from fermentations of the ascomycete Neobulgaria pura: Structure elucidation and effects on platelet aggregation. Z. Naturforsch. C J. Biosci. 1994, 49, 312–320. [Google Scholar] [CrossRef]
- Fujioka, T.; Yao, K.; Hamano, K.; Hosoya, T.; Kagasaki, T.; Furukawa, Y.; Haruyama, H.; Sato, S.; Koga, T.; Tsujita, Y. Epi-cochlioquinone A, a novel acyl-CoA: Cholesterol acyltransferase inhibitor produced by Stachybotrys bisbyi. J. Antibiot. 1996, 49, 409–413. [Google Scholar] [CrossRef]
- Lim, C.H.; Miyagawa, H.; Tsurushima, T.; Ueno, T.; Sato, M. Cochlioquinol: A new cochlioquinone derivative produced by the plant pathogenic fungus Bipolaris cynodontis. Biosci. Biotechnol. Biochem. 1996, 60, 724–725. [Google Scholar] [CrossRef]
- Lim, C.H.; Miyagawa, H.; Akamatsu, M.; Nakagawa, Y.; Ueno, T. Structures and biological activities of phytotoxins produced by the plant pathogenic fungus Bipolaris cynodontis cynA. J. Pestic. Sci. 1998, 23, 281–288. [Google Scholar] [CrossRef]
- Jung, H.J.; Burm, L.H.; Lim, C.H.; Kim, C.J.; Kwom, H.J. Cochlioquinone A1, a new anti-angiogenic agent from Bipolaris zeicola. Bioorg. Med. Chem. 2003, 11, 4743–4747. [Google Scholar] [CrossRef]
- Yoganathan, K.; Yang, L.K.; Rossant, C.; Huang, Y.; Ng, S.; Butler, M.S.; Buss, A.D. Cochlioquinones and epi-cochlioquinones: Antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J. Antibiot. 2004, 57, 59–63. [Google Scholar] [CrossRef]
- Koyama, N.; Nagahiro, T.; Yamaguchi, Y.; Masuma, R.; Tomoda, H.; Omura, S. Stemphones, novel potentiators of imipenem activity against methicillin-resistant staphylococcus aureus, produced by Aspergillus sp. FKI-2136. J. Antibiot. 2005, 58, 695–703. [Google Scholar] [CrossRef]
- Phuwapraisirisan, P.; Sawang, K.; Siripong, P.; Tip-pyang, S. Anhydrocochlioquinone A, a New antitumor compound from Bipolaris oryzae. Tetrahedron Lett. 2007, 48, 5193–5195. [Google Scholar] [CrossRef]
- Yamazaki, H.; Koyama, N.; Omura, S.; Tomoda, H. Structure-activity relationships of stemphones, potentiators of imipenem activity against methicillin-resistant Staphylococcus aureus. J. Antibiot. 2008, 61, 426–441. [Google Scholar] [CrossRef]
- Shang, Z.; Li, X.M.; Li, C.S.; Wang, B.G. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem. Biodivers. 2012, 9, 1338–13348. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.Y.; Huang, L.; He, L.W.; Han, J.J.; Chen, Q.; Cai, L.; Liu, H.W. Cochlioquinone derivatives with apoptosis-inducing effects on HCT116 colon cancer cells from the phytopathogenic fungus Bipolaris luttrellii L439. Chem. Biodivers. 2014, 11, 1892–1899. [Google Scholar] [CrossRef]
- Arayama, M.; Nehira, T.; Maeda, H.; Tanaka, K.; Miyagawa, H.; Ueno, T.; Hosokawa, S.; Hashimoto, M. Isolation, ECD assisted structural analyses, biosynthetic discussions, and biological activities of epi-cochlioquinones D and its derivatives. Tetrahedron 2015, 71, 4788–4794. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.H.; Chen, Y.C.; Liu, H.X.; Li, H.H.; Tan, G.H.; Li, S.N.; Guo, X.L.; Zhang, W.M. Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia 2016, 110, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, T.T.; Xu, Q.L.; Xiong, Y.; Zhang, L.; Han, H.; Xu, K.; Guo, W.J.; Xu, X.; Tan, R.X.; et al. Genome mining and comparative biosynthesis of meroterpenoids from two phylogenetically distinct fungi. Angew. Chem. Int. Ed. Engl. 2018, 57, 8184–8188. [Google Scholar] [CrossRef]
- Long, Y.; Tang, T.; Wang, L.Y.; He, B.; Gao, K. Absolute configuration and biological activities of meroterpenoids from an endophytic fungus of Lycium barbarum. J. Nat. Prod. 2019, 82, 2229–2237. [Google Scholar] [CrossRef]
- Han, J.Y.; Zhang, J.Y.; Song, Z.J.; Zhu, G.L.; Liu, M.M.; Dai, H.Q.; Hsiang, T.; Liu, X.T.; Zhang, L.X.; Quinn, R.J.; et al. Genome-based mining of new antimicrobial meroterpenoids from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl. Microbiol. Biotechnol. 2020, 104, 3835–3846. [Google Scholar] [CrossRef]
- Zhu, P.C.; Bu, H.M.; Tan, S.R.; Liu, J.J.; Yuan, B.; Dong, G.K.; Wang, M.; Jiang, Y.J.; Zhu, H.; Li, H.; et al. A novel cochlioquinone derivative, CoB1, regulates autophagy in pseudomonas aeruginosa infection through the PAK1/Akt1/mTOR signaling pathway. J. Immunol. 2020, 205, 1293–1305. [Google Scholar] [CrossRef]
- Sofian, F.F.; Suzuki, T.; Supratman, U.; Harneti, D.; Maharani, R.; Salam, S.; Abdullah, F.F.; Koseki, T.; Tanaka, K.; Kimura, K.I.; et al. Cochlioquinone derivatives produced by coculture of endophytes, Clonostachys rosea and Nectria pseudotrichia. Fitoterapia 2021, 155, 105056. [Google Scholar] [CrossRef]
- Park, J.R.; Jan, R.; Park, S.G.; Handoyo, T.; Lee, G.S.; Yun, S.; Jang, Y.H.; Du, X.X.; Lee, T.; Kwon, Y.S.; et al. The quantitative trait loci mapping of rice plant and the components of its extract confirmed the anti-inflammatory and platelet aggregation effects in vitro and in vivo. Antioxidants 2021, 10, 1691. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Tian, C.; Tong, S.Y.; Liu, Q.; Xu, F.; Shi, B.B.; Ai, H.L.; Liu, J.K. The Antifunal properties of terpenoids from the endophytic fungus Bipolaris eleusines. Nat. Prod. Biopr. 2023, 13, 43. [Google Scholar] [CrossRef]
- Miyagawa, H.; Nagai, S.; Tsurushima, T.; Sato, M.; Ueno, T.; Fukami, H. Phytotoxins produced by the plant pathogenic fungus Bipolaris bicolor El-1. Biosci. Biotechnol. Biochem. 1994, 58, 1143–1145. [Google Scholar] [CrossRef]
- Bicalho, B.; Gonçalves, R.A.; Zibordi, A.P.M.; Manfio, G.P.; Marsaioli, A.J. Antimicrobial compounds of fungi vectored by Clusia spp. (Clusiaceae) pollinating bees. Z. Naturforsch. C J. Biosci. 2003, 58, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Guo, Z.K.; Wang, W.; Cui, J.T.; Tan, R.X.; Ge, H.M. Neuraminidase inhibitory terpenes from endophytic Cochliobolus sp. J. Asian Nat. Prod. Res. 2011, 13, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.T.; Zhang, X.K.; Shen, L.; Sun, W.G.; Lin, S.; Liu, J.J.; Cao, F.; Qi, C.X.; Wang, J.P.; Hu, Z.X.; et al. Bioactive polyketide-terpenoid hybrids from a soil-derived fungus Bipolaris zeicola. J. Org. Chem. 2021, 86, 10962–10974. [Google Scholar] [CrossRef]
- Liu, M.T.; Gu, L.H.; Shen, L.; Zhang, X.K.; Lin, S.; Ye, Y.; Wang, J.P.; Hu, Z.X.; Zhang, Y.H. Bipolaquinones A-J, immunosuppressive meroterpenoids from a soil-derived Bipolaris zeicola. J. Nat. Prod. 2021, 84, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, J.Z.; Yang, J.; Wang, Y.D.; Yang, S.X.; Niu, S.B.; Ding, G. Biological activities and mass fragment pathways of meroterpenoid cochlioquinones from plant pahogenic fungus Bipolaris sorokiniana. Food Chem. 2024, 437, 137853. [Google Scholar] [CrossRef]
- Lim, C.H.; Uneo, H.; Miyoshi, H.; Miyagawa, H.; Iwamura, H.; Ueno, T. Phytotoxic compounds cholioquinones are inhibitors of mitochondrial NADH-Ubiquinone reductase. J. Pestic. Sci. 1996, 21, 213–215. [Google Scholar] [CrossRef]
- Schaeffer, J.M.; Frazier, E.G.; Bergstrom, A.R.; Williamson, J.M.; Liesch, J.M.; Goetz, M.A. Cochlioquinone A, a nematocidal agent which competes for specific [3H] ivermectin binding sites. J. Antibiot. 1990, 9, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Osterhage, C.; König, G.M.; Höller, U.; Wright, A.D. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J. Nat. Prod. 2002, 65, 306–313. [Google Scholar] [CrossRef]
- Jang, Y.H.; Yun, S.; Park, J.R.; Kim, E.G.; Yun, B.J.; Kim, K.M. Biological efficacy of cochlioquinone-9, a natural plant defense compound for white-backed planthopper control in rice. Biology 2021, 10, 1273. [Google Scholar] [CrossRef]
- Lee, H.B.; Lim, C.H.; Kwon, H.J.; Kim, Y.K.; Lee, H.S.; Kim, C.J. Inhibitory activity of diacylglycerol acyltransferase by cochlioquinones A and A1. J. Antibiot. 2003, 56, 967–969. [Google Scholar] [CrossRef]
- Cai, J.; Wang, X.N.; Gan, X.; Zhou, Q.; Luo, X.W.; Yang, B.; Liu, Y.H.; Ratnasekera, D.; Zhou, X.F. New chlorinated metabolites and antiproliferative polyketone from the mangrove sediments-derived fungus Mollisia sp. SCSIO41409. Mar. Drugs 2022, 21, 32. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017, 16, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Machida, T.; Higashi, K.; Ogawara, H. Cochlioquinone A, an inhibitor of diacylglycerol kinase. J. Antibiot. 1995, 48, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Canonica, B.L.; Ranzi, B.M.; Rindone, B.; Scala, A.; Scolastico, C. Biosynthesis of cochlioquniones. J. Chem. Soc. Chem. Commun. 1973, 213–214. [Google Scholar] [CrossRef]
- Canonica, B.L.; Colombo, L.; Gennari, C.; Ranzi, B.M.; Scolastico, C. Biosynthesis of cochliquinones. J. Chem. Soc. Chem. Commun. 1978, 679–680. [Google Scholar] [CrossRef]
- Canonica, B.L.; Beretta, M.G.; Colombo, L.; Gennari, C.; Ranzi, B.M.; Scolastico, C. Biosynthesis of cochlioquinones. J. Chem. Soc. Perkin Trans. 1 1980, 2686–2690. [Google Scholar] [CrossRef]
- Newton, A.C. Protein kinase C as a tumor suppressor. Semin. Cancer Biol. 2018, 48, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, K.; Yasuda, S.; Kai, M.; Imai, S.; Yamada, K.; Yamashita, T.; Jimbow, K.; Kanoh, H.; Sakane, F. Diacylglycerol kinase alpha suppresses tumor necrosis factor-alpha-induced apoptosis of human melanoma cells through NF-kappaB activation. Biochim. Biophys. Acta 2007, 1771, 462–474. [Google Scholar] [CrossRef] [PubMed]









| No. | Name | Molecular Formula | Biological Activities | Species | Refs. | Analytical Tools |
|---|---|---|---|---|---|---|
| 1 | Stemphone A | C30H42O8 | Cytotoxic effects; antibacterial activity; DGK inhibition; plant toxic activity | S. sarcinaeforme; Mollisia sp. SCSIO41409; D. sacchari | [10,12,14,35] | NMR and X-ray |
| 2 | Cochlioquinone A | C30H44O8 | DGK inhibition; plant toxic activity; antiparasitic activity; antibacterial activity; cytotoxic activity | C. miyabeanus; D. sacchari | [13,14,18,20,26,29,30,35,36,42,45,48] | NMR and X-ray |
| 3 | Cochlioquinone B | C28H40O6 | Plant toxic activity; antiparasitic activity; antibacterial activity; cytotoxic activity | C. miyabeanus | [13,18,27,29,30,35] | NMR and X-ray |
| 4 | 14-epi-cochlioquinone B | C28H40O6 | Antibacterial activity; cytotoxic activity | N. pura | [15] | NMR and ROESY |
| 5 | Epi-cochlioquinone A | C30H44O8 | ACAT inhibition; cytotoxic activity | S. bisbyi SANK 17777 | [16,20,26] | NMR and X-ray |
| 6 | Cochlioquinol | C31H46O8 | Plant toxic activity | B. cynodont | [17,18,41] | NMR and X-ray |
| 7 | Cochlioquinones C | C28H40O7 | Plant toxic activity; antibacterial activity; cytotoxic activity | B. cynodontis cynA | [17,18,19,20,21,22,23,24,25,26,29] | NMR |
| 8 | Cochlioquinones D | C28H38O6 | Plant toxic activity; cytotoxic activity; antibacterial activity | B. cynodontis cynA | [18,21,23,26,27,29,30,32] | NMR |
| 9 | Cochlioquinones E | C28H40O7 | Plant toxic activity; cytotoxic activity | B. cynodontis cynA | [18,27] | NMR |
| 10 | Cochlioquinol Ⅱ | C31H48O8 | Plant toxic activity; inhibition of mitochondrial electron transfer | B. cynodontis cynA | [18] | NMR |
| 11 | Cochlioquinol Ⅲ | C32H50O9 | Plant toxic activity; inhibition of mitochondrial electron transfer | B. cynodontis cynA | [18] | NMR |
| 12 | Cochlioquinone A1 | C33H50O9 | Inhibition of angiogenesis; DGK inhibition | B. zeicola | [19,45] | NMR |
| 13 | 11-methoxycochlioquinone A | C31H46O9 | Not reported | B. Zeicola; S. chartarum | [20] | NMR |
| 14 | 12-O-methyl-epi-cochlioquinone A | C31H46O8 | Cytotoxic activity | B. Zeicola; S. chartarum | [20] | NMR |
| 15 | Stemphones B | C30H42O9 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [21,23] | NMR |
| 16 | Stemphones C | C30H42O7 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [21,23,46] | NMR |
| 17 | Anhydrocochlioquinone A | C30H42O7 | Antinematodal activity; cytotoxic activity | B. Oryzae; B. luttrelli | [22,25] | NMR |
| 18 | Stemphone D | C30H42O8 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [23,45] | NMR |
| 19 | Stemphone F | C33H48O9 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [23,24,45] | NMR |
| 20 | 2,3-didehydro-19-hydroxy-14-epi-cochlioquinone B | C38H38O7 | Antibacterial activity | Nigrospora sp. MA75 | [24] | NMR |
| 21 | Cochilioquinone F | C31H44O8 | Cytotoxic activity | B. luttrelli | [25] | NMR |
| 22 | Epi-cochlioquinone D | C28H38O6 | Cytotoxic activity | H. velutinum TS28 | [26] | NMR, NOE and ECD |
| 23 | 12-α-hydroxy-epi-cochlioquinone D | C28H38O7 | Cytotoxic activity | H. velutinum TS28 | [26] | NMR, NOE and ECD |
| 24 | Cochlioquinone G | C28H39NO6 | Cytotoxic activity | B. sorokiniana A606 | [27] | NMR and NOE |
| 25 | Cochlioquinone H | C28H38O6 | Cytotoxic activity | B. sorokiniana A606 | [27] | NMR and ROESY |
| 26 | Arthripenoid D | C30H44O10 | Not reported | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | NMR, X-ray and HR-MS |
| 27 | Arthripenoid E | C30H43NO9 | Not reported | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | NMR, X-ray and HR-MS |
| 28 | Arthripenoid F | C30H42O8 | Cytotoxic activity | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | NMR, X-ray and HR-MS |
| 29 | Nectripenoid B | C28H36O6 | Cytotoxic activity | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28,30,32] | NMR, X-ray and HR-MS |
| 30 | Cochlioquinone I | C28H38O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 31 | Cochlioquinone J | C29H42O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 32 | Cochlioquinone K | C29H42O8 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 33 | Cochlioquinone L | C29H40O8 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 34 | Cochlioquinone M | C30H40O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 35 | Cochlioquinones N | C30H45NO8 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | NMR and X-ray |
| 36 | 12-keto-cochlioquinone A | C30H42O8 | Not reported | B. sorokiniana 11134 | [30] | NMR and NOE |
| 37 | Cochlioquinone B derivative | C22H30O7 | Antibacterial activity | B. sorokiniana | [31] | NMR |
| 38 | Furanocochlioquinone | C28H34O6 | Cytotoxic activity | C. B5–2; N. pseudotrichia B69–1 | [32] | NMR and ECD |
| 39 | Cochlioquinone-9 | C30H44O8 | Insect resistance activity; vasodilatory activity | [31,33,44] | NMR and HR-MS | |
| 40 | Bipolariterpenes B | C28H37NO5 | Not reported | B. eleusines | [34] | HR-MS, NMR and ECD |
| 41 | Bipolariterpenes C | C28H39NO5 | Not reported | B. eleusines | [34] | HR-MS, NMR and ECD |
| 42 | Isocochlioquinone A | C30H44O8 | Plant toxic activity; antiparasitic activity; antibacterial activity; cytotoxic activity | B. bieolor EI-1 | [20,25,29,35,43] | NMR and X-ray |
| 43 | 14-epi-dihydrocochlioquinone B | C28H40O6 | Cytotoxic activity | N. pura | [15] | NMR |
| 44 | Isocochlioquinone C | C28H40O7 | Plant toxic activity; antiparasitic activity; cytotoxic activity | B. cynodontis cynA | [18,22,23,25,27,29,30,43] | NMR |
| 45 | Isocochlioquinone A bis-acetyl derivative | C32H46O9 | Antibacterial activity | D. dematioideaz | [23,36] | NMR |
| 46 | Stemphone E | C30H44O9 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [23,45] | NMR and MS |
| 47 | Stemphones G | C30H42O9 | Antibacterial activity; cytotoxic activity | Aspergillus sp. FKI-2136 | [23,27] | NMR and MS |
| 48 | Isocochlioquinone B | C30H42O8 | Not reported | Cochliobolus sp. | [23,30,37] | HR-MS and NMR |
| 49 | Isocochlioquinone D | C30H43NO7S | Cytotoxic activity | B. sorokiniana A606 | [27,28] | HR-MS and NMR |
| 50 | Isocochlioquinone E | C28H38O7 | Cytotoxic activity | B. sorokiniana A606 | [27,28] | HR-MS and NMR |
| 51 | Arthripenoid A | C31H45NO8S | Not reported | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | HR-MS, NMR and X-ray |
| 52 | Arthripenoid B | C30H46O9 | Not reported | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | HR-MS, NMR and X-ray |
| 53 | Arthripenoid C | C30H44O9 | Inhibition of cona-induced T cell proliferation | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | HR-MS, NMR and X-ray |
| 54 | Nectripenoid A | C29H39NO6S | Cytotoxic activity | Arthrinium sp. NF2194; Nectria sp. Z14-w | [28] | HR-MS, NMR and X-ray |
| 55 | Bipolahydroquinone A | C28H42O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | HR-MS, NMR and X-ray |
| 56 | Bipolahydroquinone B | C28H38O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29,39] | HR-MS, NMR and X-ray |
| 57 | Bipolahydroquinones C | C28H40O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | HR-MS, NMR and X-ray |
| 58 | Isocochlioquinones F | C30H44O8 | Cytotoxic activity | Bipolaris sp. L1-2 | [29] | HR-MS, NMR and X-ray |
| 59 | Isocochlioquinones G | C28H40O7 | Cytotoxic activity | Bipolaris sp. L1-2 | [29,38] | HR-MS, NMR and X-ray |
| 60 | 19-dehydroxyl-3-epi-arthripenoid A | C31H45NO7S | Cytotoxic activity | B. sorokiniana 11134 | [31,38] | MS and NMR |
| 61 | Δ12-19-dehydroxy-arhripenoid A | C31H43NO6S | Cytotoxic activity; cona-induced T cell proliferation | B. zeicola | [38] | NMR, X-ray and ECD |
| 62 | 12,19-didehydroxy-arthripenoid A | C31H45NO6S | Cytotoxic activity; cona-induced T cell proliferation | B. zeicola | [38] | NMR, X-ray and ECD |
| 63 | Tetrahydrofuran-3-epi-cochlioquinone A | C31H48O6 | Cytotoxic activity | B. zeicola | [38] | NMR, X-ray and ECD |
| 64 | Isotetrahydrofuran-3-epi-cochlioquinone A | C31H48O8 | Cytotoxic activity | B. zeicola | [38] | NMR, X-ray and ECD |
| 65 | 19-dehydroxy-arthripenoid A | C31H45NO7S | Cytotoxic activity; cona-induced T cell proliferation | B. zeicola | [38] | NMR, X-ray and ECD |
| 66 | Δ2-19-dehydroxy-arthripenoid A | C31H43NO7S | Cytotoxic activity; cona-induced T cell proliferation | B. zeicola | [38] | NMR, X-ray and ECD |
| 67 | 4-acetoxy-isocochlioquinone D | C32H47NO8S | Cytotoxic activity; cona-induced T cell proliferation | B. zeicola | [38] | NMR, X-ray and ECD |
| 68 | 4-acetoxy-31α-methoxy-isocochlioquinone D | C33H49NO9S | Cytotoxic activity | B. zeicola | [38,39] | NMR, X-ray and ECD |
| 69 | 19-dehydroxyl-31-keto-3-epi-arthripenoid A | C31H45NO8S | Cytotoxic activity | B. zeicola | [38,39] | NMR, X-ray and ECD |
| 70 | Bipolaquinones A | C30H44O6 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 71 | Bipolaquinones B | C30H44O6 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 72 | Bipolaquinones C | C28H42O5 | Not reported | B. zeicola | [39] | NMR, X-ray and ECD |
| 73 | Bipolaquinones D | C28H44O5 | Not reported | B. zeicola | [39] | NMR, X-ray and ECD |
| 74 | Bipolaquinones E | C28H44O5 | Not reported | B. zeicola | [39] | NMR, X-ray and ECD |
| 75 | Bipolaquinones F | C30H46O7 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 76 | Bipolaquinones G | C30H46O7 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 77 | Bipolaquinones H | C30H46O7 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 78 | Bipolaquinones I | C30H46O7 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 79 | Bipolaquinones J | C28H42O6 | Cona induced T cell proliferation | B. zeicola | [39] | NMR, X-ray and ECD |
| 80 | Furanocochlioquinol | C28H36O5 | Cytotoxic activity | C. rosea B5–2; N. pseudotrichia B69–1 | [32] | HR-MS, NMR and ECD |
| 81 | Bipolaquinone K | C28H36O6 | Cytotoxic activity; antioxidant activity | B. sorokiniana | [40] | NMR and MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Li, Q.; Chen, L.; Ding, G. Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives. J. Fungi 2025, 11, 712. https://doi.org/10.3390/jof11100712
Fang H, Li Q, Chen L, Ding G. Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives. Journal of Fungi. 2025; 11(10):712. https://doi.org/10.3390/jof11100712
Chicago/Turabian StyleFang, Huiqi, Qi Li, Lin Chen, and Gang Ding. 2025. "Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives" Journal of Fungi 11, no. 10: 712. https://doi.org/10.3390/jof11100712
APA StyleFang, H., Li, Q., Chen, L., & Ding, G. (2025). Cochlioquinones 1968–2024: Chemistry, Biosynthesis, and Biological Activities with Future Perspectives. Journal of Fungi, 11(10), 712. https://doi.org/10.3390/jof11100712

