Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review
Abstract
:1. Introduction
2. Austin-Type Meroterpenoids Compounds
2.1. Tetracyclic Systems Austin-Type Meroterpenoids
2.1.1. Tetracyclic Systems-Rings A and B Are Spirocyclic
2.1.2. Tetracyclic Systems-Rings A and B Are Bicyclic Fused
2.2. Pentacyclic Systems Austin-Type Meroterpenoids
2.2.1. Pentacyclic Systems-Rings A and B Are Spirocyclic—Typical Austin-Type Meroterpenoids
2.2.2. Pentacyclic Systems-Rings A and B Are Bicyclic Fused
2.3. Hexacyclic Systems Austin-Type Meroterpenoids
2.3.1. Hexacyclic Systems-Rings A and B Are Spirocyclic
2.3.2. Hexacyclic Systems-Rings A and B Are Bicyclic Fused
2.4. Heptacyclic Systems Austin-Type Meroterpenoids
Heptacyclic Systems-Rings A and B Are Bicyclic Fused
3. Comprehensive Overview and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.P.; Wu, Y.F.; Yuan, B.C.; Liu, D.; Zhu, K.; Huang, J.; Proksch, P.; Lin, W.H. DMOA-based meroterpenoids with diverse scaffolds from the sponge-associated fungus Penicillium brasilianum. Tetrahedron 2019, 75, 2193–2205. [Google Scholar] [CrossRef]
- Wen, H.L.; Yang, X.L.; Liu, Q.; Li, S.J.; Li, Q.; Zang, Y.; Chen, C.M.; Wang, J.P.; Zhu, H.C.; Zhang, Y.H. Structurally diverse meroterpenoids from a marine-derived Aspergillus sp. Fungus. J. Nat. Prod. 2020, 83, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Chexal, K.K.; Springer, J.P.; Clardy, J.; Cole, R.J.; Kirksey, J.W.; Dorner, J.W.; Cutler, B.J.; Strawter, B.J. Austin, a novel polyisoprenoid mycotoxin from Aspergillus ustus. J. Am. Chem. Soc. 1976, 98, 6748–6750. [Google Scholar] [CrossRef] [PubMed]
- Schürmann, B.T.M.; Sallum, W.S.T.; Takahashi, J.A. Austin, dehydroaustin and other metabolites from Penicillium brasilianum. Quim. Nova 2010, 33, 1044–1046. [Google Scholar] [CrossRef]
- Zhang, G.J.; Sun, S.W.; Zhu, T.J.; Lin, Z.J.; Gu, J.Y.; Li, D.H.; Gu, Q.Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 2011, 72, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, K.; Katsube, Y.; Ishido, H.; Yamazaki, M.; Maebayashi, Y. The absolute configuration of desacetylaustin isolated from Emericella nidulans var. dentate. Chem. Pharm. Bull. 1980, 28, 2270–2271. [Google Scholar] [CrossRef]
- Simpson, T.J.; Stenzel, D.J.; Bartlett, A.J.; Brien, E.O.; Holker, J.S.E. Studies on fungal metabolites. Part 3. 13C NMR spectral and structural studies on austin and new related meroterpenoids from Aspergillus ustus, Aspergillus variecolor, and Penicillium diversum. J. Chem. Soc. Perkin Trans. 1982, 1, 2687–2692. [Google Scholar] [CrossRef]
- Park, J.S.; Quang, T.H.; Yoon, C.S.; Kim, H.J.; Sohn, J.H.; Oh, H. Furanoaustinol and 7-acetoxydehydroaustinol: New meroterpenoids from a marine-derived fungal strain penicillium sp. sf-5497. J. Antibiot. 2018, 71, 557–563. [Google Scholar] [CrossRef]
- Geris, R.; Rodrigues-Fo, E.; Silva, H.H.G.; Silva, I.G. Larvicidal effects of fungal meroterpenoids in the control of Aedes aegypti L., the main vector of dengue and yellow fever. Chem. Biodiver. 2010, 5, 341–345. [Google Scholar] [CrossRef]
- Stierle, D.B.; Stierle, A.A.; Patacini, B.; Mcintyre, K.; Girtsman, T.; Bolstad, E. Berkeleyones and related meroterpenes from a deep water acidmine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J. Nat. Prod. 2011, 74, 2273–2277. [Google Scholar] [CrossRef]
- Qi, B.; Liu, T.; Mo, T.; Zhu, Z.; Li, J.; Wang, J.; Shi, X.; Zeng, K.; Wang, X.; Tu, P.; et al. 3,5-dimethylorsellinic acid derived meroterpenoids from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrate. J. Nat. Prod. 2017, 80, 2699–2707. [Google Scholar] [CrossRef]
- Centko, R.M.; Williams, D.E.; Patrick, B.O.; Akhtar, Y.; Chavez, M.A.G.; Wang, Y.A.; Isman, M.; Silva, E.D.; Andersen, R.J. Dhilirolides E–N, meroterpenoids produced in culture by the fungus Penicillium purpurogenum collected in Sri Lanka: Structure elucidation, stable isotope feeding studies, and insecticidal activity. J. Org. Chem. 2014, 79, 3327–3335. [Google Scholar] [CrossRef]
- Silva, E.D.; Williams, D.E.; Jayanetti, D.R.; Centko, R.M.; Patrick, B.O.; Wijesunder, R.L.C.; Andersen, R.J. Dhilirolides A-D, meroterpenoids produced in culture by the fruit-infecting fungus Penicillium purpurogenum collected in Sri Lanka. Org. Lett. 2011, 13, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Furutani, S.; Ihara, M.; Ling, Y.; Yang, X.; Kai, K.; Hayashi, H.; Matsuda, K. Meroterpenoid chrodrimanins are selective and potent blockers of insect GABA-gated chloride channels. PLoS ONE 2015, 10, e0122629. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zheng, C.J.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Zheng, C.; Niu, Z.G.; Chen, G.Y. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112. J. Nat. Prod. 2019, 82, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Valiante, V.; Mattern, D.J.; Schueffler, A.; Horn, F.; Walther, G.; Scherlach, K.; Petzke, L.; Dickhaut, J.; Guthke, R.; Hertweck, C.; et al. Discovery of an extended austinoid biosynthetic pathway in Aspergillus calidoustus. ACS Chem. Biol. 2017, 12, 1227–1234. [Google Scholar] [CrossRef]
- Lo, H.C.; Entwistle, R.; Guo, C.J.; Ahuja, M.; Szewczyk, E.; Hung, J.H.; Chiang, Y.M.; Oakley, B.R.; Wang, C.C. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J. Am. Chem. Soc. 2012, 134, 4709–4720. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Awakawa, T.; Wakimoto, T.; Abe, I. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. J. Am. Chem. Soc. 2013, 135, 10962–10965. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Iwabuchi, T.; Fujimoto, T.; Awakawa, T.; Nakashima, Y.; Mori, T.; Zhang, H.P.; Hayashi, F.; Abe, I. Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum. J. Am. Chem. Soc. 2016, 138, 12677–12761. [Google Scholar] [CrossRef]
- Mattern, D.J.; Valiante, V.; Horn, F.; Petzke, L.; Brakhage, A.A. Rewiring of the austinoid biosynthetic pathway in filamentous fungi. ACS Chem. Biol. 2017, 12, 2927–2933. [Google Scholar] [CrossRef]
- Dos Santos, R.M.G.; Rodrigues-Filho, E. Structures of meroterpenes produced by Penicillium sp., an endophytic fungus found associated with Melia azedarach. J. Braz. Chem. Soc. 2003, 14, 722–727. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, C.J.; Chen, G.Y. Austins-type meroterpenoids from a mangrove-derived Penicillium sp. J. Nat. Prod. 2021, 84, 2104–2110. [Google Scholar] [CrossRef]
- Dos Santos, R.M.G.; Rodrigues-Fo, E. Meroterpenes from Penicillium sp. found in association with Melia azedarach. Phytochemistry 2002, 61, 907–912. [Google Scholar] [CrossRef]
- Mo, S.Y.; Yin, J.; Ye, Z.; Li, F.L.; Lin, S.; Zhang, S.T.; Yang, B.Y.; Yao, J.; Wang, J.P.; Hu, Z.X.; et al. Asperanstinoids A–E: Undescribed 3,5-dimethylorsellinic acid-based meroterpenoids from Aspergillus calidoustus. Phytochemistry 2021, 190, 112892. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.M.G.; Rodrigues-Fo, E.Z. Further meroterpenes produced by Penicillium sp. an endophyte obtained from Melia azedarach. Z. Naturforsch. 2003, 58, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Fill, T.P.; Pereira, G.K.; Dos Santos, R.M.G.; Rodrigues-Fo, E. Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach. possible biosynthetic intermediates to austin. Z. Naturforsch. 2007, 62, 1035–1044. [Google Scholar] [CrossRef]
- Orfali, R.; Perveen, S.; Peng, J.N.; Alqahtani, A.S.; Nasr, F.A.; Ahmed, M.Z.; Luciano, P.; Chianese, G.; Al-Taweel, A.M.; Taglialatela-Scafati, O. Penicillactonin and preaustinoid C, lactone-containing metabolites from a hot spring sediment Penicillium sp. Fitoterapia 2022, 163, 105330. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, M.; Chen, J.; Pan, W.C.; Tan, S.L.; Cui, H.; Zhao, Z.X. Seven new meroterpenoids from the fungus Penicillium sclerotiorum GZU-XW03-2. Fitoterapia 2023, 165, 105428. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Mo, S.Y.; Yin, J.; Zhang, S.T.; Gu, S.S.; Ye, Z.; Wang, J.P.; Hu, Z.X.; Zhang, Y.H. Structurally diverse metabolites from a soil-derived fungus Aspergillus calidoustus. Bioorg. Chem. 2022, 127, 105988. [Google Scholar] [CrossRef]
- Gu, B.B.; Wu, W.; Liu, L.Y.; Tang, J.; Zeng, Y.J.; Wang, S.P.; Sun, F.; Li, L.; Yang, F.; Lin, H.W. 3,5-dimethylorsellinic acid derived meroterpenoids from Eupenicillium sp. 6A-9, a fungus isolated from the marine sponge Plakortis simplex. Eur. J. Org. Chem. 2018, 1, 48–59. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, X.C.; Pan, W.C.; Liu, X.; Tan, S.L.; Cui, H.; Zhao, Z.X. Meroterpenoids from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Phytochemistry 2022, 202, 113307. [Google Scholar] [CrossRef]
- Ku, H.; Lee, Y.; Lee, S.; Lee, J.W.; Kang, H.S.; Joo, H.S.; Shim, S.H. New meroterpenoids from a soil-derived fungus Penicillium sp. SSW03M2 GY and their anti-virulence activity. J. Antibiot. 2023, 76, 57–64. [Google Scholar] [CrossRef]
- Duan, R.T.; Zhou, H.; Yang, Y.B.; Li, H.T.; Dong, J.W.; Li, X.Z.; Chen, G.Y.; Zhao, L.X.; Ding, Z.T. Antimicrobial meroterpenoids from the endophytic fungus penicillium sp. T2-8 associated with Gastrodia elata. Phytochem. Lett. 2016, 18, 197–201. [Google Scholar] [CrossRef]
- Zhang, J.P.; Yuan, B.C.; Liu, D.; Gao, S.; Prokschm, P.; Lin, W.H. Brasilianoids A–F, new meroterpenoids from the sponge-associated fungus Penicillium brasilianum. Front. Chem. 2018, 6, 314. [Google Scholar] [CrossRef]
- Park, J.S.; Quang, T.H.; Nguyen, T.; Sohn, J.H.; Oh, H. New preaustinoids from a marine-derived fungal strain Penicillium sp. SF-5497 and their inhibitory effects against PTP1B activity. J. Antibiot. 2019, 76, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Mukaihara, M.; Murao, S.; Arai, M.; Lee, A.L.; Clardy, J. Acetoxydehydroaustin, a new bioactive compound, and related compound neoaustin from Penicillium sp. MG-11. Biosci. Biotechnol. Biochem. 1994, 58, 334–338. [Google Scholar] [CrossRef]
- Arunpanichlert, J.; Rukachaisirikul, V.; Phongpaichit, S.; Supaphon, O.; Sakayaroj, J. Meroterpenoid, isocoumarin and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron 2015, 71, 882–888. [Google Scholar] [CrossRef]
- Li, J.W.; Duan, R.G.; Zou, J.H.; Chen, R.D.; Dai, J.G. Meroterpenoids and isoberkedienolactone from endophytic fungus Penicillium sp. associated with Dysosma versipellis. Acta Pharm. Sin. B 2014, 49, 913–920. [Google Scholar]
- Mo, T.X.; Huang, X.S.; Zhang, W.X.; Schäberle, T.F.; Qin, J.K.; Zhou, D.X.; Qin, X.Y.; Xu, Z.L.; Li, J.; Yang, R.Y. A series of meroterpenoids with rearranged skeletons from an endophytic fungus Penicillium sp. GDGJ-285. Org. Chem. Front. 2021, 8, 2232–2241. [Google Scholar] [CrossRef]
- Hwang, J.Y.; You, M.J.; Oh, O.C.; Oh, K.B.; Shin, J.H. New meroterpenoids from a Penicillium sp. Fungus. Nat. Prod. Sci. 2018, 24, 253–258. [Google Scholar] [CrossRef]
- Maebayashi, Y.K.; Okuyama, E.; Yamazaki, M.K.; Katsube, Y.K. Structure of ED-1 isolated from Emericella dentate. Chem. Pharm. Bull. 1982, 30, 1911–1912. [Google Scholar] [CrossRef]
- Song, Y.X.; Qiao, L.T.; Wang, J.J.; Zeng, H.M.; She, Z.G.; Miao, C.D.; Hong, K.; Gu, Y.C.; Liu, L.; Lin, Y.C. New meroterpenes from the mangrove endophytic fungus Aspergillus sp. 085241B. Helv. Chim. Acta 2011, 94, 1875–1880. [Google Scholar] [CrossRef]
- Akira, H.; Mariko, T.; Takeshi, T.; Kazuhiko, O.; Masaaki, M. PF1364 of Aspergilus for use as horticultural and agriculture pesticide (or insecticide). Jpn. Kokai Tokkyo Koho 2010, JA 2010018586 A 20100128. [Google Scholar]
- Long, Y.H.; Hui, C.; Liu, X.L.; Xiao, Z.E.; Wen, S.T.; She, Z.G.; Huang, X.S. Acetylcholinesterase inhibitory meroterpenoid from a mangrove endophytic fungus Aspergillus sp. 16-5c. Molecules 2017, 22, 727. [Google Scholar] [CrossRef]
- Liu, Z.M.; Liu, H.J.; Chen, Y.; She, Z.G. A new anti-inflammatory meroterpenoid from the fungus Aspergillus terreus H010. Nat. Prod. Res. 2018, 32, 2652–2656. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.P.; Shi, Y.T.; Auckloo, B.N.; Hassan, S.S.; Akhter, N.; Wang, K.W.; Ye, Y.; Chen, S.H.; Tao, X.Y.; Wu, B. Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate. Mar. Biotechnol. 2017, 19, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, L.; Li, X.M.; Li, H.L.; Konuklugil, B.; Wang, B.G. Ustusaustin A: A new neuraminidase inhibitory meroterpene from the ascidian-derived endophytic fungus Aspergillus ustus TK-5. Nat. Prod. Res. 2021, 35, 4939–4944. [Google Scholar] [CrossRef] [PubMed]
Compound | Molecular Formula | Producer Strain | Habitat | Activity | Ref |
---|---|---|---|---|---|
ustinoneol A (1) | C24H30O6 | Penicillium sp. | the root bark of Melia azedarach | NA b | [21] |
preaustinoid A5 (2) | C26H32O7 | Aspergillus nidulans | NR a | NA | [17] |
preaustinoid A4 (3) | C26H32O7 | Aspergillus nidulans | NR | NA | [17] |
preaustinoid A3 (4) | C26H32O7 | Aspergillus nidulans | NR | NA | [17] |
Penicillium sp. | the root bark of Melia azedarach | NA | [26] | ||
austinoid C (5) | C26H32O6 | Aspergillus oryzae NSAR1 | NR | NA | [18] |
penicianstinoid C (6) | C25H30O7 | Penicillium sp. TGM112 | the mangrove Brguiera sexangula var. rhynchopetala | inhibitory activity against newly hatched larvae of Helicoverpa armigera Hubner (IC50 = 100 μg/mL); | [22] |
preaustinoid A (7) | C26H36O6 | Penicillium sp. | the root bark of Melia azedarach | NA | [23] |
preaustinoid C (8) | C26H34O6 | Aspergillus oryzae NSAR1 | NR | NA | [18] |
asperanstinoid E (9) | C26H34O7 | Aspergillus calidoustus | Dianchi Lake | NA | [24] |
penicianstinoid D (10) | C29H40O7 | Penicillium sp. TGM112 | the mangrove Brguiera sexangula var. rhynchopetala | NA | [22] |
preaustinoid B (11) | C26H36O6 | Penicillium sp. | the root bark of Melia azedarach | NA | [23] |
preaustinoid B1 (12) | C26H36O6 | Penicillium sp. | the root bark of Melia azedarach | NA | [25] |
preaustinoid B2 (13) | C24H34O5 | Penicillium sp. | the root bark of Melia azedarach | NA | [26] |
preaustinoid C (14) | C26H34O7 | Penicillium sp. RO-11 | the sediments of a hydrothermal spring | significant activity against LPS-induced NO production | [27] |
protoaustinoid A (15) | C26H38O5 | Aspergillus nidulans | NR | NA | [17] |
5-hydroxyberkeleyone A (16) | C26H38O7 | Aspergillus oryzae NSAR1 | NR | NA | [18] |
berkeleyone A (17) | C26H38O6 | Aspergillus oryzae NSAR1 | NR | NA | [18] |
preaustinoid A1 (18) | C26H36O7 | Penicillium sp. | the root bark of Melia azedarach | NA | [25] |
preaustinoid A2 (19) | C26H34O7 | Penicillium sp. | the root bark of Melia azedarach | NA | [25] |
peniscmeroterpenoid N (20) | C26H34O8 | Penicillium sclerotiorum GZU-XW03–2 | the intestinal tract of the Onchidium sp. | NA | [28] |
dhilirolide F (21) | C26H32O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
dhilirolide G (22) | C26H32O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
dhilirolide H (23) | C26H32O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
dhilirolide I (24) | C24H30O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
3,16-epoxy-preaustinoid D (25) | C26H36O8 | Aspergillus calidoustus | Dianchi Lake | NA | [29] |
1-methoxy-hydropreaustinoid A1 (26) | C27H40O8 | Eupenicillium sp. 6A-9 | the marine sponge Plakortis simplex | the immune-suppressive activities (IC50 = 42.3 μM) | [30] |
hydroberkeleyone B (27) | C26H36O8 | Eupenicillium sp. 6A-9 | the marine sponge Plakortis simplex | the immune-suppressive activities (IC50 = 28.5 μM) | [30] |
peniscmeroterpenoid F (28) | C26H34O7 | Penicillium sclerotiorum GZU-XW03-2 | the intestinal tract of the Onchidium sp. | NA | [31] |
peniscmeroterpenoid G (29) | C26H36O8 | Penicillium sclerotiorum GZU-XW03-2 | the intestinal tract of the Onchidium sp. | NA | [31] |
(4S, 5S, 7R, 9S, 11R, 12S)-1-methoxyberkeleyone C (30) | C27H36O7 | Penicillium sp. SSW03M2 GY | a sediment at Seosan bay | significantly inhibited the production of α-toxin (Hla) by greater than 85% (at 10 μg/mL) | [32] |
peniscmeroterpenoid K (31) | C26H34O8 | Penicillium sclerotiorum GZU-XW03–2 | the intestinal tract of the Onchidium sp. | NA | [28] |
peniscmeroterpenoid M (32) | C26H34O8 | Penicillium sclerotiorum GZU-XW03–2 | the intestinal tract of the Onchidium sp. | NA | [28] |
peniscmeroterpenoid L (33) | C27H38O8 | Penicillium sclerotiorum GZU-XW03–2 | the intestinal tract of the Onchidium sp. | inhibitory effects on NO production (IC50 = 48.04 ± 2.51 μM) | [28] |
preaustinoid D (34) | C27H40O8 | Penicillium sp. T2-8 | fresh rhizomes of Gastrodia elata | antimicrobial (Candida albicans: 128 μg/mL); | [33] |
brasilianoid D (35) | C26H38O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [34] |
brasilianoid E (36) | C26H38O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [34] |
preaustinoid A6 (37) | C26H38O8 | Penicillium sp. SF-5497 | sea sand | inhibited PTP1B activity with a Ki value of 17.0 μM) | [35] |
preaustinoid A7 (38) | C26H36O7 | Penicillium sp. SF-5497 | sea sand | NA | [35] |
austin (39) | C27H32O9 | Aspergillus ustus | black-eyed peas (Vigna sinensis) | gross signs of toxicity in cockerels (listlessness: 250 mg/kg; death: 375 mg/kg) | [3] |
austinol (40) | C25H30O8 | Aspergillus ustus | NR | NA | [7] |
austinolide (41) | C25H30O7 | Penicillium sp. | the root bark of Melia azedarach | NA | [26] |
isoaustin (42) | C27H32O9 | Penicillium diversum | NR | NA | [7] |
11β-hydroxyisoaustinone (43) | C25H30O7 | Aspergillus nidulans | NR | NA | [17] |
isoaustinone (44) | C25H30O6 | Penicillium sp. | the root bark of Melia azedarach | NA | [26] |
(5′R)-isoaustinone (45) | C25H30O6 | Aspergillus nidulans | NR | NA | [17] |
neoaustin (46) | C25H30O6 | Penicillium sp. MG-11 | soil | NA | [36] |
neosuatinone (47) | C25H30O7 | Aspergillus nidulans | NR | NA | [17] |
ED-2 (48) | C25H30O8 | Emericella nidulans var. dentata | NR | NA | [6] |
ED-2H (49) | C25H32O8 | Emericella nidulans var. dentata | NR | NA | [6] |
11β-acetoxyisoaustinone (50) | C27H32O9 | Pestalotiopsis sp. PSU-ES194 | the seagrass Enhalus acoroides | NA | [37] |
Penicillium sp. | Dysosma versipellis | NA | [38] | ||
brasilianoid G (51) | C25H28O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [1] |
brasilianoid H (52) | C25H30O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [1] |
brasilianoid I (53) | C25H28O8 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [1] |
brasilianoid L (54) | C27H32O8 | Penicillium brasilianum WZXY-m122-9 | sponge | cytotoxicity (RAW264.1, IC50 = 84.67 μg/mL; IEC-6, IC50 = 2.52 μg/mL; A549, IC50 = 180.5 μg/mL) | [1] |
asperaustin A (55) | C27H32O8 | Aspergillus sp. | the brown alga Saccharina ichorioides f. sachalinensis | NA | [2] |
asperaustin B (56) | C27H32O9 | Aspergillus sp. | the brown alga Saccharina ichorioides f. sachalinensis | NA | [2] |
asperaustin C (57) | C26H34O7 | Aspergillus sp. | the brown alga Saccharina ichorioides f. sachalin ensis | NA | [2] |
6-hydroxyisoaustinone (58) | C25H30O7 | Penicillium sp. GDGJ-285 | the traditional Chinese medicinal plant Sophora tonkinensis | NA | [39] |
6-ketoisoaustinone (59) | C25H28O9 | Penicillium sp. GDGJ-285 | the traditional Chinese medicinal plant Sophora tonkinensis | NA | [39] |
penicianstinoid E (60) | C27H32O10 | Penicillium sp. TGM112 | the mangrove Brguiera sexangula var. rhynchopetala | inhibitory activity against newly hatched larvae of Helicoverpa armigera Hubner (IC50 = 200 μg/mL) | [22] |
asperanstinoid A (60) | Aspergillus calidoustus | Dianchi Lake | NA | [24] | |
dhilirolide D (61) | C25H30O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [13] |
dhilirolide E (62) | C25H30O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
dhilirolide K (63) | C25H28O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
dhilirolide M (64) | C25H28O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
brasilianoid A (65) | C26H34O8 | Penicillium brasilianum WZXY-m122-9 | sponge | significantly stimulated the expression of filaggrin and caspase-14 in HaCaT cells | [34] |
brasilianoid B (66) | C25H32O6 | Penicillium brasilianum WZXY-m122-9 | sponge | inhibitory effects on NO production (IC50 = 37.69 ± 5.25 μM) | [34] |
brasilianoid C (67) | C25H32O6 | Penicillium brasilianum WZXY-m122-9 | sponge | inhibitory effects on NO production (IC50 = 33.76 ± 3.13 μM) | [34] |
preaustinoid E (68) | C25H32O6 | Penicillium sp. FCH061 | sediment samples | NA | [40] |
preaustinoid F (69) | C25H32O6 | Penicillium sp. FCH061 | sediment samples | NA | [40] |
asperaustin C (70) | C25H32O6 | Aspergillus sp. | the brown alga Saccharina cichorioides f. sachalinensis | NA | [2] |
brasilianoid K (71) | C25H32O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [1] |
dehydroaustin (72) | C27H30O9 | Aspergillum variecolor | NR | growth inhibitory activity against the third-instar larvae of Aedes aegypti (LC50 = 2.9 ppm) | [7] |
dehydroaustinol (73) | C25H28O8 | Penicillium sp. MG-11 | soil | NA | [36] |
acetoxydehydroaustin (74) | C29H32O11 | Penicillium sp. MG-11 | soil | antimicrobial activity (Escherichia coli: 250 μg/mL); growth inhibitory activity against the third-instar larvae of Aedes aegypti (LC50 = 7.3 ppm) | [36] |
ED-1 (75) | C25H28O8 | Emericella dentata | NR | NA | [41] |
ED-1H (76) | C25H30O8 | Emericella dentata | NR | NA | [41] |
acetoxydehydroaustin B′ (77) | C29H32O11 | Aspergillus sp. 085241B | the Shankou Mangrove National Nature Reserve | NA | [42] |
1,2-dihydro-acetoxydehydroaustin B′ (78) | C29H34O11 | Aspergillus sp. 085241B | the Shankou Mangrove National Nature Reserve | NA | [42] |
PF1364 (79) | C31H36O13 | Aspergillus sp. PF1364 | NR | control of pest and insect, such as the greenhouse whitefly | [43] |
2-hydroacetoxydehydroaustin (80) | C29H34O12 | Aspergillus sp. 16-5c | Sonneratia apetala | NA | [44] |
1,2-dehydro-terredehydroaustin (81) | C32H38O11 | Aspergillus terreus H010 | Kandelia obovata | inhibitory effects on NO production (IC50 = 42.3 μM) | [45] |
furanoaustinol (82) | C25H30O9 | Penicillium sp. SF-5497 | sea sand | inhibited the activity of protein tyrosine phosphatase 1B in a dose-dependent manner (IC50 = 77.2 μM) | [8] |
7-acetoxydehydroaustinol (83) | C27H30O10 | Penicillium sp. SF-5497 | sea sand | inhibitory effects on NO production (IC50 = 61.0 μM) | [8] |
asperaustin A (84) | C27H32O8 | Aspergillus sp. | the brown alga Saccharina cichorioides f. sachalinensis | NA | [2] |
asperaustin B (85) | C27H32O9 | Aspergillus sp. | the brown alga Saccharina cichorioides f. sachalinensis | NA | [2] |
brasilianoid J (86) | C27H30O10 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [1] |
penicianstinoid A (87) | C31H36O12 | Penicillium sp. TGM112 | Bruguiera sexangula var. rhynchopetala | inhibition activity against newly hatched larvae of Helicoverpa armigera Hubner (IC50 = 200 μg/mL); insecticidal activity against C. elegans (EC50 = 9.4 ± 1.0 μg/mL) | [15] |
penicianstinoid B (88) | C25H28O9 | Penicillium sp. TGM112 | Bruguiera sexangula var. rhynchopetala | inhibition activity against newly hatched larvae of Helicoverpa armigera Hubner (IC50 = 200 μg/mL); insecticidal activity against C. elegans (EC50 = 9.9 ± 0 μg/mL) | [15] |
7-hydroxydehydroaustin (89) | C27H30O10 | Pestalotiopsis sp. PSU-ES194 | the seagrass Enhalus acoroides | NA | [37] |
austinone (90) | C32H40O13 | Penicillium sp. Y-5-2 | NR | NA | [46] |
ustusaustin A (91) | C34H36O11 | Aspergillus ustus TK-5 | the marine ascidian Pyuramomus | neuraminidase inhibitory activity (IC50 = 5.28 μM) | [47] |
asperanstinoid B (92) | C31H36O13 | Aspergillus calidoustus | Dianchi Lake | NA | [24] |
asperanstinoid C (93) | C32H38O12 | Aspergillus calidoustus | Dianchi Lake | NA | [24] |
asperanstinoid D (94) | C27H30O9 | Aspergillus calidoustus | Dianchi Lake | NA | [24] |
peniclactone A (95) | C26H28O9 | Penicillium sp. GDGJ-285 | the traditional Chinese medicinal plant Sophora tonkinensis | NA | [39] |
peniclactone B (96) | C25H28O8 | Penicillium sp. GDGJ-285 | the traditional Chinese medicinal plant Sophora tonkinensis | NA | [39] |
peniclactone C (97) | C26H28O8 | Penicillium sp. GDGJ-285 | the traditional Chinese medicinal plant Sophora tonkinensis | inhibitory effects on NO production (IC50 = 39.03 μM) | [39] |
dhilirolide L (98) | C25H28O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | against the cabbage looper Trichoplusia ni (DC50 = 5.9 μg/cm2) | [12] |
dhilirolide N (99) | C25H26O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
brasilianoid F (100) | C25H32O7 | Penicillium brasilianum WZXY-m122-9 | sponge | NA | [34] |
dhilirolide A (101) | C25H28O9 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [13] |
dhilirolide B (102) | C25H28O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [13] |
dhilirolide C (103) | C25H28O8 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [13] |
dhilirolide J (104) | C25H28O7 | Penicillium purpurogenum | Averrhoa bilimbi fruit | NA | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-L.; Chen, C.-J.; Liu, Y.-H.; Gao, C.-H.; Wang, R.-P.; Zhang, W.-F.; Bai, M. Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review. J. Fungi 2024, 10, 162. https://doi.org/10.3390/jof10020162
He J-L, Chen C-J, Liu Y-H, Gao C-H, Wang R-P, Zhang W-F, Bai M. Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review. Journal of Fungi. 2024; 10(2):162. https://doi.org/10.3390/jof10020162
Chicago/Turabian StyleHe, Jia-Li, Chang-Jing Chen, Yong-Hong Liu, Cheng-Hai Gao, Rui-Ping Wang, Wen-Fei Zhang, and Meng Bai. 2024. "Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review" Journal of Fungi 10, no. 2: 162. https://doi.org/10.3390/jof10020162
APA StyleHe, J.-L., Chen, C.-J., Liu, Y.-H., Gao, C.-H., Wang, R.-P., Zhang, W.-F., & Bai, M. (2024). Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review. Journal of Fungi, 10(2), 162. https://doi.org/10.3390/jof10020162