Radiation-Induced Valvular Heart Disease: A Narrative Review of Epidemiology, Diagnosis and Management
Abstract
1. Introduction
2. Epidemiology
| Study | RT–VHD Interval (Years) | Median Dose (Gy) | Patients with VHD (%) | Aortic Regurgitation | Aortic Stenosis | Mitral Regurgitation | Mitral Stenosis | Tricuspid Regurgitation | Pulmonary Regurgitation | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mild (%) | ≥Mod (%) | Mild (%) | ≥Mod (%) | Mild (%) | ≥Mod (%) | Mild (%) | ≥Mod (%) | Mild (%) | ≥Mod (%) | Mild (%) | ≥Mod (%) | ||||
| Jesse M. Bijl et al. [7] * | 16.5 | 40 | 61.3 | 26 | 12 | 4 | 12 | 25 | 12 | 2 | 2 | 15 | 36 | 9 | 0 |
| Cutter et al. [10] ** | 23.3 | 37 † | 4.8 | 3.4 ‡ | 2.2 ‡ | 0.49 ‡ | N/A | ||||||||
| Galper SL et al. [11] ** | 16.1 | 40 | 6.1 | N/A | 15.2 § | N/A | 13.3 § | N/A | 47.6 § | N/A | 0.9 § | N/A | 22.8 § | N/A | N/A |
| Schellong et al. [12] ** | 19.5 | 25 | 3.96 | 2.88 | 1.68 | 0.72 | 0.36 | ||||||||
| Wethal et al. [13] ** | 22 | 40 | N/A | 29.4 | 68.6 | 25.5 | 13.7 | 29.4 | 68.6 | N/A | N/A | N/A | 3.9 | N/A | 3.9 |
| Adams MJ et al. [14] * | 15.5 | 40 | 42.6 | 19 | 6 | 20.8 | 2 | 25.6 ‖ | 2.6 ‖ | ||||||
| Hull MC et al. [15] ** | 22 | 37 | 6.2 | N/A | 3.4 § | N/A | 48.2 § | N/A | 27.6 § | N/A | 10.3§ | N/A | 10.3 § | N/A | N/A |
| Heidenreich P. et al. [16] * | 15 | 43 † | 29 | 21.1 | 5.1 | 4 | 35.7 | 3.4 | N/A | N/A | 14.6 | 1.4 | 6.8 | 0 | |
| Lund et al. [17] * | 9 | 40.6 | 31 | 9.5 | 17.2 | N/A | N/A | 12.9 | 10.3 | N/A | N/A | 26.7 | 5.2 | 6 | 1.7 |
3. Pathophysiology and Histopathology
4. Risk Factors
5. Diagnostic Tests
6. Management and Follow-Up
7. Treatment
7.1. Aortic Valve
7.2. Mitral Valve
8. Research Gaps and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D-CRT | Three-dimensional conformal radiotherapy |
| AMC | Aorto-mitral curtain |
| AS | Aortic stenosis |
| CABG | Coronary artery bypass grafting |
| CCS | Childhood cancer survivor |
| CMR | Cardiac magnetic resonance |
| CS | Cancer survivor |
| CT | Computer tomography |
| CV | Cardiovascular |
| CVRFs | Cardiovascular risk factors |
| DIBH | Deep inspiration breath-hold |
| ECG | Electrocardiogram |
| ESC | European Society of Cardiology |
| EuroSCOREII | European System for Cardiac Operative Risk Evaluation II |
| Gy | Gray |
| HFA-ICOS | Heart Failure Association–International Cardio-Oncology Society |
| HL | Hodgkin lymphoma |
| ICOS | International Cardio-Oncology Society |
| IMRT | Intensity-modulated radiation therapy |
| LVOT | Left ventricular outflow tract |
| MAC | Mitral annular calcification |
| MHD | Mean heart dose |
| MR | Mitral regurgitation |
| MRT | Mediastinal radiotherapy |
| NPs | Natriuretic peptides |
| RT | Radiotherapy |
| SAVR | Surgical aortic valve replacement |
| STS-PROM | Society of Thoracic Surgeons Predicted Risk of Mortality |
| TAVI | Transcatheter aortic valve implantation |
| TEE | Transesophageal echocardiography |
| TEER | Transcatheter edge-to-edge repair |
| TMVR | Transcatheter mitral valve replacement |
| TTE | Transthoracic echocardiography |
| VHD | Valvular heart disease |
| VMAT | Volumetric modulated arc therapy |
References
- Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 2019, 40, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Ratosa, I.; Ivanetic Pantar, M. Cardiotoxicity of mediastinal radiotherapy. Rep. Pract. Oncol. Radiother. 2019, 24, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Gujral, D.M.; Lloyd, G.; Bhattacharyya, S. Radiation-induced valvular heart disease. Heart 2016, 102, 269–276. [Google Scholar] [CrossRef]
- Lancellotti, P.; Nkomo, V.T.; Badano, L.P.; Bergler-Klein, J.; Bogaert, J.; Davin, L.; Cosyns, B.; Coucke, P.; Dulgheru, R.; Edvardsen, T.; et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: A report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 721–740. [Google Scholar] [CrossRef]
- Bergom, C.; Bradley, J.A.; Ng, A.K.; Samson, P.; Robinson, C.; Lopez-Mattei, J.; Mitchell, J.D. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncol 2021, 3, 343–359. [Google Scholar] [CrossRef]
- Lee, C.; Hahn, R.T. Valvular Heart Disease Associated With Radiation Therapy: A Contemporary Review. Struct. Heart 2022, 7, 100104. [Google Scholar] [CrossRef]
- Bijl, J.M.; Roos, M.M.; van Leeuwen-Segarceanu, E.M.; Vos, J.M.; Bos, W.W.; Biesma, D.H.; Post, M.C. Assessment of Valvular Disorders in Survivors of Hodgkin’s Lymphoma Treated by Mediastinal Radiotherapy ± Chemotherapy. Am. J. Cardiol. 2016, 117, 691–696. [Google Scholar] [CrossRef]
- Bates, J.E.; Shrestha, S.; Liu, Q.; Smith, S.A.; Mulrooney, D.A.; Leisenring, W.; Gibson, T.; Robison, L.L.; Chow, E.J.; Oeffinger, K.C.; et al. Cardiac Substructure Radiation Dose and Risk of Late Cardiac Disease in Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2023, 41, 3826–3838. [Google Scholar] [CrossRef]
- De Baat, E.C.; Feijen, E.A.M.; Reulen, R.C.; Allodji, R.S.; Bagnasco, F.; Bardi, E.; Belle, F.N.; Byrne, J.; van Dalen, E.C.; Debiche, G.; et al. Risk Factors for Heart Failure Among Pan-European Childhood Cancer Survivors: A PanCareSurFup and ProCardio Cohort and Nested Case-Control Study. J. Clin. Oncol. 2023, 41, 96–106. [Google Scholar] [CrossRef]
- Cutter, D.J.; Schaapveld, M.; Darby, S.C.; Hauptmann, M.; van Nimwegen, F.A.; Krol, A.D.; Janus, C.P.; van Leeuwen, F.E.; Aleman, B.M. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J. Natl. Cancer Inst. 2015, 107, djv008. [Google Scholar] [CrossRef] [PubMed]
- Galper, S.L.; Yu, J.B.; Mauch, P.M.; Strasser, J.F.; Silver, B.; Lacasce, A.; Marcus, K.J.; Stevenson, M.A.; Chen, M.H.; Ng, A.K. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood 2011, 117, 412–418. [Google Scholar] [CrossRef]
- Schellong, G.; Riepenhausen, M.; Bruch, C.; Kotthoff, S.; Vogt, J.; Bölling, T.; Dieckmann, K.; Pötter, R.; Heinecke, A.; Brämswig, J.; et al. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for hodgkin disease in children and adolescents: Report from the longitudinal GPOH follow-up project of the German–Austrian DAL-HD studies. Pediatr. Blood Cancer 2010, 55, 1145–1152. [Google Scholar] [CrossRef]
- Wethal, T.; Lund, M.B.; Edvardsen, T.; Fosså, S.D.; Pripp, A.H.; Holte, H.; Kjekshus, J.; Fosså, A. Valvular dysfunction and left ventricular changes in Hodgkin’s lymphoma survivors. A longitudinal study. Br. J. Cancer 2009, 101, 575–581. [Google Scholar] [CrossRef]
- Adams, M.J.; Lipsitz, S.R.; Colan, S.D.; Tarbell, N.J.; Treves, S.T.; Diller, L.; Greenbaum, N.; Mauch, P.; Lipshultz, S.E. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J. Clin. Oncol. 2004, 22, 3139–3148. [Google Scholar] [CrossRef]
- Hull, M.C.; Morris, C.G.; Pepine, C.J.; Mendenhall, N.P. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 2003, 290, 2831–2837. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Hancock, S.L.; Lee, B.K.; Mariscal, C.S.; Schnittger, I. Asymptomatic cardiac disease following mediastinal irradiation. J. Am. Coll. Cardiol. 2003, 42, 743–749. [Google Scholar] [CrossRef]
- Lund, M.B.; Ihlen, H.; Voss, B.M.; Abrahamsen, A.F.; Nome, O.; Kongerud, J.; Stugaard, M.; Forfang, K. Increased risk of heart valve regurgitation after mediastinal radiation for Hodgkin’s disease: An echocardiographic study. Heart 1996, 75, 591–595. [Google Scholar] [CrossRef]
- Ferdinand, S.; Mondal, M.; Mallik, S.; Goswami, J.; Das, S.; Manir, K.S.; Sen, A.; Palit, S.; Sarkar, P.; Mondal, S.; et al. Dosimetric analysis of Deep Inspiratory Breath-hold technique (DIBH) in left-sided breast cancer radiotherapy and evaluation of pre-treatment predictors of cardiac doses for guiding patient selection for DIBH. Tech. Innov. Patient Support Radiat. Oncol. 2021, 17, 25–31. [Google Scholar] [CrossRef]
- Patil, S.; Pingle, S.R.; Shalaby, K.; Kim, A.S. Mediastinal irradiation and valvular heart disease. Cardio-Oncol. 2022, 8, 7. [Google Scholar] [CrossRef]
- Filippi, A.R.; Ragona, R.; Piva, C.; Scafa, D.; Fiandra, C.; Fusella, M.; Giglioli, F.R.; Lohr, F.; Ricardi, U. Optimized volumetric modulated arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: A comparison of second cancers and heart disease risk. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 161–168. [Google Scholar] [CrossRef]
- Hoppe, B.S.; Bates, J.E.; Mendenhall, N.P.; Morris, C.G.; Louis, D.; Ho, M.W.; Hoppe, R.T.; Shaikh, M.; Li, Z.; Flampouri, S. The Meaningless Meaning of Mean Heart Dose in Mediastinal Lymphoma in the Modern Radiation Therapy Era. Pract. Radiat. Oncol. 2020, 10, e147–e154. [Google Scholar] [CrossRef]
- Hug, E.B. Proton Therapy for Primary Breast Cancer. Breast Care 2018, 13, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.D.; Maes, S.M.; Kicska, G.; Sponsellor, P.; Traneus, E.; Wong, T.; Stewart, R.D.; Saini, J. Comparative photon and proton dosimetry for patients with mediastinal lymphoma in the era of Monte Carlo treatment planning and variable relative biological effectiveness. Radiat. Oncol. 2019, 14, 243. [Google Scholar] [CrossRef] [PubMed]
- Veinot, J.P.; Edwards, W.D. Pathology of radiation-induced heart disease: A surgical and autopsy study of 27 cases. Hum. Pathol. 1996, 27, 766–773. [Google Scholar] [CrossRef]
- Yarnold, J.; Vozenin Brotons, M.C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–161. [Google Scholar] [CrossRef] [PubMed]
- van Rijswijk, J.W.; Farag, E.S.; Bouten, C.V.C.; de Boer, O.J.; van der Wal, A.; de Mol, B.A.J.M.; Kluin, J. Fibrotic aortic valve disease after radiotherapy: An immunohistochemical study in breast cancer and lymphoma patients. Cardiovasc. Pathol. 2020, 45, 107176. [Google Scholar] [CrossRef]
- Taunk, N.K.; Haffty, B.G.; Kostis, J.B.; Goyal, S. Radiation-induced heart disease: Pathologic abnormalities and putative mechanisms. Front. Oncol. 2015, 5, 39. [Google Scholar] [CrossRef]
- Nadlonek, N.A.; Weyant, M.J.; Yu, J.A.; Cleveland, J.C., Jr.; Reece, T.B.; Meng, X.; Fullerton, D.A. Radiation induces osteogenesis in human aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg. 2012, 144, 1466–1470. [Google Scholar] [CrossRef]
- Ureña-Torres, P.; D’Marco, L.; Raggi, P.; García-Moll, X.; Brandenburg, V.; Mazzaferro, S.; Lieber, A.; Guirado, L.; Bover, J. Valvular heart disease and calcification in CKD: More common than appreciated. Nephrol. Dial. Transplant. 2020, 35, 2046–2053. [Google Scholar] [CrossRef]
- Small, A.M.; Yutzey, K.E.; Binstadt, B.A.; Voigts Key, K.; Bouatia-Naji, N.; Milan, D.; Aikawa, E.; Otto, C.M.; St Hilaire, C. American Heart Association Council on Genomic and Precision Medicine; et al. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024, 150, e109–e128. [Google Scholar] [CrossRef]
- Glele, R.A.; Feijen, E.A.M.; Fresneau, B.; Reulen, R.C.; Allodji, R.S.; Vu-Bezin, G.; Schwartz, B.; Journy, N.; Minard-Colin, V.; Bagnasco, F.; et al. Risk Factors for Valvulopathy Among Childhood Cancer Survivors. JAMA Oncol. 2025, 11, e253863. [Google Scholar] [CrossRef]
- van Nimwegen, F.A.; Schaapveld, M.; Janus, C.P.; Krol, A.D.; Petersen, E.J.; Raemaekers, J.M.; Kok, W.E.; Aleman, B.M.; van Leeuwen, F.E. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern. Med. 2015, 175, 1007–1017. [Google Scholar] [CrossRef]
- Luu, S.; Woolley, I.J.; Andrews, R.K. Platelet phenotype and function in the absence of splenic sequestration (Review). Platelets 2021, 32, 47–52. [Google Scholar] [CrossRef]
- Bartoli-Leonard, F.; Zimmer, J.; Aikawa, E. Innate and adaptive immunity: The understudied driving force of heart valve disease. Cardiovasc. Res. 2021, 117, 2506–2524. [Google Scholar] [CrossRef]
- Houtman, B.M.; Walraven, I.; Kapusta, L.; Teske, A.J.; van Dulmen-den Broeder, E.; Tissing, W.J.E.; van den Heuvel-Eibrink, M.M.; Versluys, A.B.B.; Bresters, D.; van der Heiden-van der Loo, M.; et al. Treatments affecting splenic function as a risk factor for valvular heart disease in Childhood Cancer Survivors: A DCCSS-LATER study. Pediatr. Blood Cancer 2024, 71, e31251. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Clavel, M.A.; Mascherbauer, J.; Mick, S.L.; Asgar, A.W.; Douglas, P.S. Sex-Related Factors in Valvular Heart Disease: JACC Focus Seminar 5/7. J. Am. Coll. Cardiol. 2022, 79, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Y.; Fradley, M.; Dasu, N.; Dasu, K.; Shah, A.; Levine, A. Gender disparity in cardiovascular mortality following radiation therapy for Hodgkin’s lymphoma: A systematic review. Cardio-Oncol. 2020, 6, 12. [Google Scholar] [CrossRef]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Ajmone Marsan, N.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2025, 46, 4635–4736. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [PubMed]
- Monte, I.P.; Cameli, M.; Losi, V.; Privitera, F.; Citro, R. Valvular Damage. J. Cardiovasc. Echogr. 2020, 30, S26. [Google Scholar] [CrossRef]
- Desai, M.Y.; Wu, W.; Masri, A.; Popovic, Z.B.; Agarwal, S.; Smedira, N.G.; Lytle, B.W.; Griffin, B.P. Increased aorto-mitral curtain thickness independently predicts mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. Ann. Thorac. Surg. 2014, 97, 1348–1355. [Google Scholar] [CrossRef]
- Honaryar, M.K.; Locquet, M.; Allodji, R.; Jimenez, G.; Pinel, B.; Lairez, O.; Panh, L.; Camilleri, J.; Broggio, D.; Ferrières, J.; et al. Cancer therapy-related cardiac dysfunction after radiation therapy for breast cancer: Results from the BACCARAT cohort study. Cardiooncology 2024, 10, 54. [Google Scholar] [CrossRef]
- Marinko, T. Pericardial Disease after Breast Cancer Radiotherapy. Radiol. Oncol. 2018, 53, 1. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.; Singh, P.; Brar, J.; Fain, R. Contemporary review: Recognition, management, and screening for radiation-induced heart disease. Explor Med. 2023, 4, 772–781. [Google Scholar] [CrossRef]
- Cottini, M.; Polizzi, V.; Pino, P.G.; Buffa, V.; Musumeci, F. Transesophageal Echocardiography and Radiation-induced Damages. Heart Views 2016, 17, 114. [Google Scholar] [CrossRef]
- Plana, J.C.; Thavendiranathan, P.; Bucciarelli-Ducci, C.; Lancellotti, P. Multi-Modality Imaging in the Assessment of Cardiovascular Toxicity in the Cancer Patient. JACC Cardiovasc. Imaging 2018, 11, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Podlesnikar, T.; Berlot, B.; Dolenc, J.; Goričar, K.; Marinko, T. Radiotherapy-Induced Cardiotoxicity: The Role of Multimodality Cardiovascular Imaging. Front. Cardiovasc. Med. 2022, 9, 887705. [Google Scholar] [CrossRef]
- Lopez-Mattei, J.; Yang, E.H.; Baldassarre, L.A.; Agha, A.; Blankstein, R.; Choi, A.D.; Chen, M.Y.; Meyersohn, N.; Daly, R.; Slim, A.; et al. Cardiac computed tomographic imaging in cardio-oncology: An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS). J. Cardiovasc. Comput. Tomogr. 2023, 17, 66–83. [Google Scholar] [CrossRef]
- Addison, D.; Neilan, T.G.; Barac, A.; Scherrer-Crosbie, M.; Okwuosa, T.M.; Plana, J.C.; Reding, K.W.; Taqueti, V.R.; Yang, E.H.; Zaha, V.G.; et al. Cardiovascular Imaging in Contemporary Cardio-Oncology: A Scientific Statement From the American Heart Association. Circulation 2023, 148, 1271–1286. [Google Scholar] [CrossRef]
- Lopes, V.; Almeida, P.C.; Moreira, N.; Ferreira, L.A.; Teixeira, R.; Donato, P.; Gonçalves, L. Computed tomography imaging in preprocedural planning of transcatheter valvular heart interventions. Int. J. Cardiovasc. Imaging 2024, 40, 1163–1181. [Google Scholar] [CrossRef]
- Budde, R.P.J.; Faure, M.E.; Abbara, S.; Alkadhi, H.; Cremer, P.C.; Feuchtner, G.M.; Gonzales, H.M.; Kiefer, T.L.; Leipsic, J.; Nieman, K.; et al. Cardiac computed tomography for prosthetic heart valve assessment. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the European Society of Cardiovascular Radiology (ESCR), the North American Society of Cardiovascular Imaging (NASCI), the Radiological Society of North America (RSNA), the Society for Cardiovascular Angiography & Interventions (SCAI) and Society of Thoracic Surgeons (STS). J. Cardiovasc. Comput. Tomogr. 2025, 19, 366–386. [Google Scholar] [CrossRef]
- Mitchell, J.D.; Cehic, D.A.; Morgia, M.; Bergom, C.; Toohey, J.; Guerrero, P.A.; Ferencik, M.; Kikuchi, R.; Carver, J.R.; Zaha, V.G.; et al. Cardiovascular Manifestations From Therapeutic Radiation: A Multidisciplinary Expert Consensus Statement From the International Cardio-Oncology Society. JACC CardioOncol 2021, 3, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Groarke, J.D.; Nguyen, P.L.; Nohria, A.; Ferrari, R.; Cheng, S.; Moslehi, J. Cardiovascular complications of radiation therapy for thoracic malignancies: The role for non-invasive imaging for detection of cardiovascular disease. Eur. Heart J. 2014, 35, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.Y.; Jellis, C.L.; Kotecha, R.; Johnston, D.R.; Griffin, B.P. Radiation-Associated Cardiac Disease: A Practical Approach to Diagnosis and Management. JACC Cardiovasc. Imaging 2018, 11, 1132–1149. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, E72–E227. [Google Scholar] [PubMed]
- Chang, A.S.; Smedira, N.G.; Chang, C.L.; Benavides, M.M.; Myhre, U.; Feng, J.; Blackstone, E.H.; Lytle, B.W. Cardiac surgery after mediastinal radiation: Extent of exposure influences outcome. J. Thorac. Cardiovasc. Surg. 2007, 133, 404–413.e3. [Google Scholar] [CrossRef]
- Yang, E.H.; Marmagkiolis, K.; Balanescu, D.V.; Hakeem, A.; Donisan, T.; Finch, W.; Virmani, R.; Herrman, J.; Cilingiroglu, M.; Grines, C.L.; et al. Radiation-Induced Vascular Disease—A State-of-the-Art Review. Front. Cardiovasc. Med. 2021, 8, 652761. [Google Scholar] [CrossRef]
- Donnellan, E.; Masri, A.; Johnston, D.R.; Pettersson, G.B.; Rodriguez, L.L.; Popovic, Z.B.; Roselli, E.E.; Smedira, N.G.; Svensson, L.G.; Griffin, B.P.; et al. Long-term outcomes of patients with mediastinal radiation-associated severe aortic stenosis and subsequent surgical aortic valve replacement: A matched cohort study. J. Am. Heart Assoc. 2017, 6, e005396. [Google Scholar] [CrossRef]
- Ejiofor, J.I.; Ramirez-Del Val, F.; Nohria, A.; Norman, A.; McGurk, S.; Aranki, S.F.; Shekar, P.; Cohn, L.H.; Kaneko, T. The risk of reoperative cardiac surgery in radiation-induced valvular disease. J. Thorac. Cardiovasc. Surg. 2017, 154, 1883–1895. [Google Scholar] [CrossRef]
- Angellotti, D.; Manzo, R.; Castiello, D.S.; Piccolo, R.; Avvedimento, M.; Leone, A.; Ilardi, F.; Mariani, A.; Iapicca, C.; Di Serafino, L.; et al. Impact of COVID-19 pandemic on timing and early clinical outcomes of transcatheter aortic valve implantation. Acta Cardiol. 2022, 77, 937–942. [Google Scholar] [CrossRef]
- Abramowitz, Y.; Jilaihawi, H.; Chakravarty, T.; Mack, M.J.; Makkar, R.R. Porcelain aorta: A comprehensive review. Circulation 2015, 131, 827–836. [Google Scholar] [CrossRef]
- Niezink, A.G.H.; de Jong, R.A.; Muijs, C.T.; Langendijk, J.A.; Widder, J. Pulmonary Function Changes After Radiotherapy for Lung or Esophageal Cancer: A Systematic Review Focusing on Dose-Volume Parameters. Oncologist 2017, 22, 1257. [Google Scholar] [CrossRef]
- Shahian, D.M.; Jacobs, J.P.; Badhwar, V.; Kurlansky, P.A.; Furnary, A.P.; Cleveland, J.C., Jr.; Lobdell, K.W.; Vassileva, C.; Wyler von Ballmoos, M.C.; Thourani, V.H.; et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1—Background, Design Considerations, and Model Development. Ann. Thorac. Surg. 2018, 105, 1411–1418. [Google Scholar] [CrossRef]
- Lestuzzi, C.; Mascarin, M.; Coassin, E.; Canale, M.L.; Turazza, F. Cardiologic Long-Term Follow-Up of Patients Treated With Chest Radiotherapy: When and How? Front. Cardiovasc. Med. 2021, 8, 671001. [Google Scholar] [CrossRef]
- Belzile-Dugas, E.; Fremes, S.E.; Eisenberg, M.J. Radiation-Induced Aortic Stenosis: An Update on Treatment Modalities. JACC Adv. 2023, 2, 100163. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, W.; Al-Hijji, M.A.; El Sabbagh, A.; Lewis, B.R.; Greason, K.; Sandhu, G.S.; Eleid, M.F.; Holmes, D.R.; Herrmann, J. Outcomes of Patients With Severe Symptomatic Aortic Valve Stenosis After Chest Radiation: Transcatheter Versus Surgical Aortic Valve Replacement. J. Am. Heart Assoc. 2019, 8, e012110. [Google Scholar] [CrossRef] [PubMed]
- Bedeir, K.; Kaneko, T.; Aranki, S. Current and evolving strategies in the management of severe mitral annular calcification. J. Thorac. Cardiovasc. Surg. 2019, 157, 555–566. [Google Scholar] [CrossRef]
- Chehab, O.; Roberts-Thomson, R.; Bivona, A.; Gill, H.; Patterson, T.; Pursnani, A.; Grigoryan, K.; Vargas, B.; Bokhary, U.; Blauth, C.; et al. Management of Patients With Severe Mitral Annular Calcification: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 80, 722–738. [Google Scholar] [CrossRef] [PubMed]
- Crestanello, J.A.; McGregor, C.G.; Danielson, G.K.; Daly, R.C.; Dearani, J.A.; Orszulak, T.A.; Mullany, C.J.; Puga, F.J.; Zehr, K.J.; Schleck, C.; et al. Mitral and tricuspid valve repair in patients with previous mediastinal radiation therapy. Ann. Thorac. Surg. 2004, 78, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, E.; Alashi, A.; Johnston, D.R.; Gillinov, A.M.; Pettersson, G.B.; Svensson, L.G.; Griffin, B.P.; Desai, M.Y. Outcomes of Patients With Mediastinal Radiation-Associated Mitral Valve Disease Undergoing Cardiac Surgery. Circulation 2019, 140, 1288–1290. [Google Scholar] [CrossRef]
- Ismayl, M.; Ahmed, H.; Goldsweig, A.M.; Herrmann, J.; Eleid, M.F.; Rihal, C.S.; Guerrero, M. Utilization and Outcomes of Structural Heart Disease Interventions in Patients With Prior Mediastinal Radiation. JACC Adv. 2025, 4, 102319. [Google Scholar] [CrossRef] [PubMed]
- Scarfò, I.; Denti, P.; Citro, R.; Buzzatti, N.; Alfieri, O.; La Canna, G. MitraClip for radiotherapy-related mitral valve regurgitation. Hell. J. Cardiol. 2019, 60, 232–238. [Google Scholar] [CrossRef]
- Ali, K.; Lee, D.J.; Adamson, D.L.; Khan, J.N. Radiation-induced dystrophic calcification and severe valvular stenosis: The central role of multimodality 3D cardiac imaging in disease assessment and planning of combined transcatheter aortic and mitral valve replacement. BMJ Case Rep. 2020, 13, e239368. [Google Scholar] [CrossRef] [PubMed]
- Eleid, M.F.; Collins, J.D.; Mahoney, P.; Williamson, E.E.; Killu, A.M.; Whisenant, B.K.; Rihal, C.S.; Guerrero, M.E. Emerging Approaches to Management of Left Ventricular Outflow Obstruction Risk in Transcatheter Mitral Valve Replacement. JACC Cardiovasc. Interv. 2023, 16, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.; Wang, D.D.; Eleid, M.F.; Pursnani, A.; Salinger, M.; Russell, H.M.; Kodali, S.K.; George, I.; Bapat, V.N.; Dangas, G.D.; et al. Prospective Study of TMVR Using Balloon-Expandable Aortic Transcatheter Valves in MAC: MITRAL Trial 1-Year Outcomes. JACC Cardiovasc. Interv. 2021, 14, 830–845. [Google Scholar] [CrossRef]




| ESC | |
|---|---|
| Childhood and adolescent cancer survivors | |
| Very high | RT > 25 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) DOX ≥ 400 mg/m2 RT > 15 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 |
| High | RT 15–25 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) DOX 250–399 mg/m2 RT 5–15 Gy MHD (or prescribed RT 15–34 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 |
| Moderate | RT 5–15 Gy MHD (or prescribed RT 15–34 Gy to a volume exposing the heart) DOX 100–249 mg/m2 RT < 5 Gy MHD (or prescribed RT < 15 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 |
| Low | RT < 5 Gy MHD (or prescribed RT < 15 Gy to a volume exposing the heart) DOX 100–249 mg/m2 |
| Adult cancer survivors | |
| Very high | Very high baseline CV toxicity risk pre-treatment Doxorubicin ≥ 400 mg/m2 RT > 25 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) RT > 15–25 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 |
| Early high | High baseline CV toxicity risk Symptomatic or asymptomatic moderate-to-severe CTRCD during treatment DOX 250–399 mg/m2 High-risk HSCT |
| Late high | RT > 15–25 Gy MHD (or prescribed RT ≥ 35 Gy to a volume exposing the heart) RT 5–15 Gy MHD (or prescribed RT 15–34 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 Poorly controlled CVRF |
| Moderate | Moderate baseline CV toxicity risk DOX 100–249 mg/m2 RT 5–15 Gy MHD (or prescribed RT 15–34 Gy to a volume exposing the heart) RT < 5 Gy MHD or prescribed RT < 15 Gy to a volume exposing the heart) + DOX ≥ 100 mg/m2 |
| Low | Low baseline CV toxicity risk and normal end-of-therapy cardiac assessment Mild CTRCD during therapy but recovered by the end of cancer therapy RT < 5 Gy MHD DOX < 100 mg/m2 |
| ICOS | |
| High | Mediastinal radiotherapy ≥ 30 Gy with the heart in the treatment field Lower dose radiotherapy (<30 Gy) with anthracycline exposure Patients aged <50 years and longer time since RT High dose of radiation fractions (>2 Gy/d) Presence and extent of tumor in or next to the heart Presence of CV risk factors Pre-existing CV disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Varvara, A.-M.; Parasca, C.A.; Iliescu, V.A.; Jurcuț, R.O. Radiation-Induced Valvular Heart Disease: A Narrative Review of Epidemiology, Diagnosis and Management. J. Cardiovasc. Dev. Dis. 2026, 13, 1. https://doi.org/10.3390/jcdd13010001
Varvara A-M, Parasca CA, Iliescu VA, Jurcuț RO. Radiation-Induced Valvular Heart Disease: A Narrative Review of Epidemiology, Diagnosis and Management. Journal of Cardiovascular Development and Disease. 2026; 13(1):1. https://doi.org/10.3390/jcdd13010001
Chicago/Turabian StyleVarvara, Andreea-Mădălina, Cătălina Andreea Parasca, Vlad Anton Iliescu, and Ruxandra Oana Jurcuț. 2026. "Radiation-Induced Valvular Heart Disease: A Narrative Review of Epidemiology, Diagnosis and Management" Journal of Cardiovascular Development and Disease 13, no. 1: 1. https://doi.org/10.3390/jcdd13010001
APA StyleVarvara, A.-M., Parasca, C. A., Iliescu, V. A., & Jurcuț, R. O. (2026). Radiation-Induced Valvular Heart Disease: A Narrative Review of Epidemiology, Diagnosis and Management. Journal of Cardiovascular Development and Disease, 13(1), 1. https://doi.org/10.3390/jcdd13010001

