Assessment of Age and Sex Difference in Cardiopulmonary Function of Children and Adolescents with Ventricular Septal Defect
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. The Cardiopulmonary Exercise Testing (CPET)
2.3. The Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.-K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970-2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef]
- Chen, L.J.; Chiou, J.Y.; Huang, J.Y.; Su, P.H.; Chen, J.Y. Birth defects in Taiwan: A 10-year nationwide population-based, cohort study. J. Formos. Med. Assoc. 2020, 119 Pt 3, 553–559. [Google Scholar] [CrossRef]
- Lopez, L.; Houyel, L.; Colan, S.D.; Anderson, R.H.; Béland, M.J.; Aiello, V.D.; Bailliard, F.; Cohen, M.S.; Jacobs, J.P.; Kurosawa, H.; et al. Classification of Ventricular Septal Defects for the Eleventh Iteration of the International Classification of Diseases-Striving for Consensus: A Report From the International Society for Nomenclature of Paediatric and Congenital Heart Disease. Ann. Thorac. Surg. 2018, 106, 1578–1589. [Google Scholar] [CrossRef]
- Eckerstrom, F.; Nyboe, C.; Redington, A.; Hjortdal, V.E. Lifetime Burden of Morbidity in Patients With Isolated Congenital Ven-tricular Septal Defect. J. Am. Heart Assoc. 2023, 12, e027477. [Google Scholar] [CrossRef]
- Eckerstrom, F.; Nyboe, C.; Maagaard, M.; Redington, A.; Hjortdal, V.E. Survival of patients with congenital ventricular septal defect. Eur. Heart J. 2023, 44, 54–61. [Google Scholar] [CrossRef]
- Heiberg, J.; Petersen, A.K.; Laustsen, S.; Hjortdal, V.E. Abnormal ventilatory response to exercise in young adults operated for ventricular septal defect in early childhood: A long-term follow-up. Int. J. Cardiol. 2015, 194, 2–6. [Google Scholar] [CrossRef]
- Rex, C.E.; Eckerström, F.; Heiberg, J.; Maagaard, M.; Rubak, S.; Redington, A.; Hjortdal, V.E. Surgical closure of a ventricular septal defect in early childhood leads to altered pul-monary function in adulthood: A long-term follow-up. Int. J. Cardiol. 2019, 274, 100–105. [Google Scholar] [CrossRef]
- Maagaard, M.; Eckerstrom, F.; Redington, A.; Hjortdal, V. Comparison of Outcomes in Adults With Ventricular Septal Defect Closed Earlier in Life Versus Those in Whom the Defect Was Never Closed. Am. J. Cardiol. 2020, 133, 139–147. [Google Scholar] [CrossRef]
- Jablonsky, G.; Hilton, J.D.; Liu, P.P.; Morch, J.E.; Druck, M.N.; Bar-Shlomo, B.-Z.; McLaughlin, P.R.; Winter, K.M. Rest and exercise ventricular function in adults with congenital ventricular septal de-fects. Am. J. Cardiol. 1983, 51, 293–298. [Google Scholar] [CrossRef]
- Eckerström, F.; Rex, C.E.; Maagaard, M.; Heiberg, J.; Rubak, S.; Redington, A.; Hjortdal, V.E. Cardiopulmonary dysfunction in adults with a small, unrepaired ventricular septal defect: A long-term follow-up. Int. J. Cardiol. 2020, 306, 168–174. [Google Scholar] [CrossRef]
- Maagaard, M.; Eckerstrom, F.; Boutrup, N.; Hjortdal, V.E. Functional Capacity Past Age 40 in Patients With Congenital Ventricu-lar Septal Defects. J. Am. Heart Assoc. 2020, 9, e015956. [Google Scholar] [CrossRef] [PubMed]
- Takken, T.; Bongers, B.C.; van Brussel, M.; Haapala, E.A.; Hulzebos, E.H.J. Cardiopulmonary Exercise Testing in Pediatrics. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. 1), S123–S128. [Google Scholar] [CrossRef]
- Rottermann, K.; Weigelt, A.; Stabler, T.; Ehrlich, B.; Dittrich, S.; Schoffl, I. New kids on the CPET: Age-appropriate outdoor cardio-pulmonary exercise testing in preschoolers. Eur. J. Appl. Physiol. 2022, 122, 791–800. [Google Scholar] [CrossRef]
- Verheugt, C.L.; Uiterwaal, C.S.; van der Velde, E.T.; Meijboom, F.J.; Pieper, P.G.; Vliegen, H.W.; van Dijk, A.P.; Bouma, B.J.; Grobbee, D.E.; Mulder, B.J. Gender and outcome in adult congenital heart disease. Circulation 2008, 118, 26–32. [Google Scholar] [CrossRef]
- van Genuchten, W.J.; Helbing, W.A.; Harkel, A.D.J.T.; Fejzic, Z.; Kuipers, I.M.; Slieker, M.G.; van der Ven, J.P.G.; Boersma, E.; Takken, T.; Bartelds, B. Exercise capacity in a cohort of children with congenital heart dis-ease. Eur. J. Pediatr. 2023, 182, 295–306. [Google Scholar] [CrossRef]
- Das, B.B.; Godoy, A.; Kadish, T.; Niu, J. Maximal versus sub-maximal effort during cardiopulmonary exercise testing in adults with congenital heart disease: Outcome analysis of short-term cardiac-related events. Cardiol. Young 2021, 31, 91–96. [Google Scholar] [CrossRef]
- Eshuis, G.; Hock, J.; du Sarvaas, G.M.; van Duinen, H.; Neidenbach, R.; Heuvel, F.v.D.; Hillege, H.; Berger, R.M.; Hager, A. Exercise capacity in patients with repaired Tetralogy of Fallot aged 6 to 63 years. Heart 2022, 108, 186–193. [Google Scholar] [CrossRef]
- Shustak, R.J.; McGuire, S.B.; October, T.W.; Phoon, C.K.; Chun, A.J. Prevalence of obesity among patients with congenital and ac-quired heart disease. Pediatr. Cardiol. 2012, 33, 8–14. [Google Scholar] [CrossRef]
- Tamayo, C.; Manlhiot, C.; Patterson, K.; Lalani, S.; McCrindle, B.W. Longitudinal evaluation of the prevalence of over-weight/obesity in children with congenital heart disease. Can. J. Cardiol. 2015, 31, 117–123. [Google Scholar] [CrossRef]
- Binkhorst, M.; van de Belt, T.; de Hoog, M.; van Dijk, A.; Schokking, M.; Hopman, M. Exercise capacity and participation of chil-dren with a ventricular septal defect. Am. J. Cardiol. 2008, 102, 1079–1084. [Google Scholar] [CrossRef]
- Perrault, H.; Drblik, S.P.; Montigny, M.; Davignon, A.; Lamarre, A.; Chartrand, C.; Stanley, P. Comparison of cardiovascular adjustments to exercise in adolescents 8 to 15 years of age after correction of tetralogy of fallot, ventricular septal defect or atrial septal defect. Am. J. Cardiol. 1989, 64, 213–217. [Google Scholar] [CrossRef]
- Qu, J.; Shi, H.; Chen, X.; Li, K.; Liang, H.; Cui, Y. Evaluation of Physical Fitness in Children With Congenital Heart Diseases Versus Healthy Population. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Nederend, I.; de Geus, E.J.C.; Blom, N.A.; Ten Harkel, A.D.J. Long-term follow-up after ventricular septal defect repair in children: Cardiac autonomic control, cardiac function and exercise capacity. Eur. J. Cardiothorac. Surg. 2018, 53, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Washington, R.L. Cardiorespiratory testing: Anaerobic threshold/respiratory threshold. Pediatr. Cardiol. 1999, 20, 12–15, discussion 16. [Google Scholar] [CrossRef]
- Yu, C.C.W.; McManus, A.M.; Au, C.T.; So, H.K.; Chan, A.; Sung, R.Y.T.; Li, A.M. Appropriate scaling approach for evaluating peak VO2 development in Southern Chinese 8 to 16 years old. PLoS ONE 2019, 14, e0213674. [Google Scholar] [CrossRef]
- Chen, W.; Chang, M.H. New growth charts for Taiwanese children and adolescents based on World Health Organization standards and health-related physical fitness. Pediatr. Neonatol. 2010, 51, 69–79. [Google Scholar] [CrossRef]
- Tuan, S.H.; Chen, G.-B.; Chen, C.-H.; Chen, Y.-J.; Liou, I.-H.; Su, Y.-T.; Lin, K.-L. Comparison of Peak Oxygen Consumption During Exercise Testing Between Sexes Among Children and Adolescents in Taiwan. Front. Pediatr. 2021, 9, 657551. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.R. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc. Sport Sci. Rev. 1994, 22, 435–476. [Google Scholar] [CrossRef]
- Lai, N.; Fiutem, J.J.; Pfaff, N.; Salvadego, D.; Strainic, J. Relating cardiorespiratory responses to work rate during incremental ramp exercise on treadmill in children and adolescents: Sex and age differences. Eur. J. Appl. Physiol. 2021, 121, 2731–2741. [Google Scholar] [CrossRef]
- van der Steeg, G.E.; Takken, T. Reference values for maximum oxygen uptake relative to body mass in Dutch/Flemish subjects aged 6-65 years: The LowLands Fitness Registry. Eur. J. Appl. Physiol. 2021, 121, 1189–1196. [Google Scholar] [CrossRef]
- Amedro, P.; Gavotto, A.; Guillaumont, S.; Bertet, H.; Vincenti, M.; De La Villeon, G.; Bredy, C.; Acar, P.; Ovaert, C.; Picot, M.-C.; et al. Cardiopulmonary fitness in children with congenital heart diseases versus healthy children. Heart 2018, 104, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Subramanian, S.K.; Arunachalam, V. Evaluation of body composition and its association with cardio respiratory fitness in south Indian adolescents. Indian. J. Physiol. Pharmacol. 2013, 57, 399–405. [Google Scholar] [PubMed]
- Van Hecke, L.; Loyen, A.; Verloigne, M.; van der Ploeg, H.P.; Lakerveld, J.; Brug, J.; De Bourdeaudhuij, I.; Ekelund, U.; Donnelly, A.; Hendriksen, I.; et al. Variation in population levels of physical activity in European children and ado-lescents according to cross-European studies: A systematic literature review within DEDIPAC. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Zaqout, M.; Vandekerckhove, K.; De Wolf, D.; Panzer, J.; Bové, T.; François, K.; De Henauw, S.; Michels, N. Determinants of Physical Fitness in Children with Repaired Congenital Heart Disease. Pediatr. Cardiol. 2021, 42, 857–865. [Google Scholar] [CrossRef]
- Moola, F.; Faulkner, G.E.; Kirsh, J.A.; Kilburn, J. Physical activity and sport participation in youth with congenital heart disease: Perceptions of children and parents. Adapt. Phys. Act. Q. 2008, 25, 49–70. [Google Scholar] [CrossRef]
- Caterini, J.E.; Campisi, E.S.; Cifra, B. Physical Activity Promotion in Pediatric Congenital Heart Disease: Are We Running Late? Can. J. Cardiol. 2020, 36, 1406–1416. [Google Scholar] [CrossRef]
- Diez-Fernandez, A.; Sanchez-Lopez, M.; Mora-Rodriguez, R.; Notario-Pacheco, B.; Torrijos-Nino, C.; Martinez-Vizcaino, V. Obesity as a mediator of the influence of cardiorespiratory fitness on cardiometabolic risk: A mediation analysis. Diabetes Care 2014, 37, 855–862. [Google Scholar] [CrossRef]
- Hansen, D.; Marinus, N.; Remans, M.; Courtois, I.; Cools, F.; Calsius, J.; Massa, G.; Takken, T. Exercise tolerance in obese vs. lean adolescents: A systematic review and me-ta-analysis. Obes. Rev. 2014, 15, 894–904. [Google Scholar] [CrossRef]
- Jackson, J.L.; Fox, K.R.; Cotto, J.; Harrison, T.M.; Tran, A.H.; Keim, S.A. Obesity across the lifespan in congenital heart disease survi-vors: Prevalence and correlates. Heart Lung 2020, 49, 788–794. [Google Scholar] [CrossRef]
- Martinez, S.C.; Byku, M.; Novak, E.L.; Cedars, A.M.; Eghtesady, P.; Ludbrook, P.A.; Billadello, J.J. Increased Body Mass Index Is Associated with Congestive Heart Failure and Mortali-ty in Adult Fontan Patients. Congenit. Heart Dis. 2016, 11, 71–79. [Google Scholar] [CrossRef]
Age Group | Age 5–9 | Age 10–13 | Age 14–18 | All Age | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Boys (n = 44) | Girls (n = 35) | p-value | Boys (n = 44) | Girls (n = 50) | p-value | Boys (n = 69) | Girls (n = 47) | p-value | Boys (n = 157) | Girls (n = 132) | p-value |
Height | 126.16 ± 9.42 | 128.10 ± 8.79 | 0.350 | 148.72 ± 12.09 | 146.32 ± 13.44 | 0.672 | 168.19 ± 8.97 | 157.05 ± 5.88 | <0.001 | 150.95 ± 20.1 | 145.31 ± 15.12 | 0.007 |
Weight | 28.85 ± 9.72 | 29.64 ± 7.75 | 0.695 | 43.31 ± 12.40 | 41.55 ± 10.17 | 0.945 | 65.02 ± 17.46 | 51.37 ± 8.20 | <0.001 | 48.8 ± 20.9 | 41.88 ± 12.26 | 0.001 |
BMI | 17.71 ± 3.52 | 17.88 ± 3.39 | 0.833 | 19.21 ± 4.17 | 19.66 ± 4.20 | 0.289 | 22.91 ± 5.60 | 20.61 ± 3.04 | 0.005 | 20.42 ± 5.2 | 19.52 ± 3.74 | 0.092 |
Age Group | ATVO2 | ATVO2 | PEAKVO2 | PEAKVO2 | Peak RER | ||
---|---|---|---|---|---|---|---|
(mL/kg/min) | (mL/min) | (mL/kg/min) | (mL/min) | (N/A) | |||
Ages 5–9 | Boys (n = 44) | 25.42 ± 5.37 | 722.99 ± 262.23 | 35.48 ± 6.43 | 1007.08 ± 354.64 | 1.14 ± 0.09 | |
Girls (n = 35) | 25.38 ± 4.56 | 736.31 ± 170.27 | 35.17 ± 3.87 | 1029.05 ± 228.95 | 1.16 ± 0.08 | ||
p-value | 0.970 | 0.796 | 0.794 | 0.752 | 0.343 | ||
Ages 10–13 | Boys (n = 44) | 23.71 ± 3.87 | 1001.16 ± 224.52 | 35.13 ± 5.91 | 1477.80 ± 316.98 | 1.15 ± 0.08 | |
Girls (n = 50) | 21.74 ± 4.41 | 894.86 ± 246.78 | 30.28 ± 5.46 | 1243.56 ± 318.25 | 1.16 ± 0.10 | ||
p-value | 0.024 | 0.032 | <0.001 | 0.001 | 0.569 | ||
Ages 14–18 | Boys (n = 69) | 22.05 ± 4.80 | 1402.38 ± 367.46 | 32.93 ± 8.00 | 2086.66 ± 549.93 | 1.18 ± 0.08 | |
Girls (n = 47) | 20.01 ± 4.58 | 1024.22 ± 267.92 | 27.98 ± 6.24 | 1423.17 ± 328.84 | 1.22 ± 0.12 | ||
p-value | 0.024 | <0.001 | 0.001 | <0.001 | 0.063 | ||
Age 5–18 | Boys (n = 157) | 23.46 ± 4.91 | 1099.54 ± 418.32 | 34.26 ± 7.10 | 1613.47 ± 634.14 | 1.16 ± 0.09 | |
Girls (n = 132) | 22.09 ± 4.95 | 898.88 ± 261.18 | 30.76 ± 6.07 | 1250.63 ± 336.57 | 1.18 ± 0.10 | ||
p-value | 0.019 | <0.001 | <0.001 | <0.001 | 0.071 | ||
Age Group | Rest SBP | Rest DBP | Rest HR | Peak HR | Peak SBP | Peak DBP | |
(mmHg) | (mmHg) | (beat/min) | (beat/min) | (mmHg) | (mmHg) | ||
Ages 5–9 | Boys (n = 44) | 101.61 ± 11.17 | 61.41 ± 7.92 | 88.73 ± 16.20 | 175.09 ± 15.27 | 146.0 ± 24.1 | 81.2 ± 17.3 |
Girls (n = 35) | 99.89 ± 12.74 | 60.69 ± 9.02 | 89.77 ± 14.51 | 179.09 ± 8.50 | 155.6 ± 35.4 | 80.4 ± 19.5 | |
p-value | 0.523 | 0.706 | 0.767 | 0.145 | 0.175 | 0.850 | |
Ages 10–13 | Boys (n = 44) | 114.09 ± 14.73 | 67.30 ± 7.80 | 87.11 ± 14.86 | 176.09 ± 9.27 | 159.9 ± 24.1 | 83.8 ± 21.3 |
Girls (n = 50) | 107.96 ± 13.68 | 63.84 ± 8.17 | 86.86 ± 11.70 | 175.90 ± 14.65 | 156.0 ± 29.8 | 85.7 ± 20.2 | |
p-value | 0.039 | 0.039 | 0.927 | 0.941 | 0.487 | 0.655 | |
Ages 14–18 | Boys (n = 69) | 122.97 ± 17.15 | 71.29 ± 10.80 | 83.68 ± 13.02 | 177.70 ± 14.88 | 179.5 ± 27.6 | 91.5 ± 21.5 |
Girls (n = 47) | 116.04 ± 18.54 | 69.81 ± 9.25 | 82.94 ± 10.34 | 172.28 ± 15.40 | 163.7 ± 30.3 | 90.2 ± 21.7 | |
p-value | 0.041 | 0.444 | 0.743 | 0.060 | 0.005 | 0.751 | |
Ages 5–18 | Boys (n = 157) | 114.50 ± 17.35 | 67.40 ± 10.09 | 86.06 ± 14.56 | 176.52 ± 13.62 | 164.7 ± 29.2 | 86.5 ± 20.8 |
Girls (n = 132) | 108.70 ± 16.52 | 65.13 ± 9.48 | 86.23 ± 12.28 | 175.45 ± 13.77 | 158.6 ± 31.5 | 85.9 ± 20.8 | |
p-value | 0.04 | 0.051 | 0.912 | 0.512 | 0.90 | 0.804 |
Age Group | ATVO2 | ATVO2 | PEAKVO2 | PEAKVO2 | ||
---|---|---|---|---|---|---|
(mL/kg/min) | (mL/min) | (mL/kg/min) | (mL/min) | |||
Age 5–9 | Boys (n = 44) | BMI | −0.306 * | 0.664 ** | −0.386 ** | 0.664 ** |
Girls (n = 35) | BMI | −0.527 ** | 0.452 ** | −0.557 ** | 0.636 ** | |
Total (n = 79) | BMI | −0.392 ** | 0.584 ** | −0.430 ** | 0.644 ** | |
Age 10–13 | Boys (n = 44) | BMI | −0.580 ** | 0.539 ** | −0.599 ** | 0.536 ** |
Girls (n = 50) | BMI | −0.297 * | 0.164 | −0.347 * | 0.151 | |
Total (n = 94) | BMI | −0.420 ** | 0.309 ** | −0.452 ** | 0.290 ** | |
Age 14–18 | Boys (n = 69) | BMI | −0.459 ** | 0.473 ** | −0.506 ** | 0.382 ** |
Girls (n = 47) | BMI | −0.100 | 0.412 ** | −0.329 * | 0.215 | |
Total (n = 116) | BMI | −0.288 ** | 0.502 ** | −0.351 ** | 0.415 ** | |
Age 5–18 | Total (n = 289) | BMI | −0.425 ** | 0.568 ** | −0.447 ** | 0.532 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-R.; Liu, Y.-F.; Huang, I.-C.; Chen, Y.-J.; Chen, C.-H.; Lin, K.-L. Assessment of Age and Sex Difference in Cardiopulmonary Function of Children and Adolescents with Ventricular Septal Defect. J. Cardiovasc. Dev. Dis. 2025, 12, 204. https://doi.org/10.3390/jcdd12060204
Lin C-R, Liu Y-F, Huang I-C, Chen Y-J, Chen C-H, Lin K-L. Assessment of Age and Sex Difference in Cardiopulmonary Function of Children and Adolescents with Ventricular Septal Defect. Journal of Cardiovascular Development and Disease. 2025; 12(6):204. https://doi.org/10.3390/jcdd12060204
Chicago/Turabian StyleLin, Chao-Ruei, Ya-Fen Liu, I-Ching Huang, Yi-Jen Chen, Chia-Hsin Chen, and Ko-Long Lin. 2025. "Assessment of Age and Sex Difference in Cardiopulmonary Function of Children and Adolescents with Ventricular Septal Defect" Journal of Cardiovascular Development and Disease 12, no. 6: 204. https://doi.org/10.3390/jcdd12060204
APA StyleLin, C.-R., Liu, Y.-F., Huang, I.-C., Chen, Y.-J., Chen, C.-H., & Lin, K.-L. (2025). Assessment of Age and Sex Difference in Cardiopulmonary Function of Children and Adolescents with Ventricular Septal Defect. Journal of Cardiovascular Development and Disease, 12(6), 204. https://doi.org/10.3390/jcdd12060204