Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Diet Production
2.3. Wet Sieve Analysis
2.4. Particle Size
2.5. Chemical Analysis
2.6. Scores for Food Intake and Apparent Digestibility
2.7. Fecal Quality
2.8. pH Level
2.9. Volatile Fatty Acids
2.10. Statistical Analysis
3. Results
3.1. Chemical Composition of Experimental Diets
3.2. Apparent Nutrient Digestibility
3.3. Fecal Quality
3.4. Volatile Fatty Acids
4. Discussion
4.1. The Digestibility of Nutrients
4.2. Fecal Characteristics
4.3. Fecal Volatile Fatty Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanelli, K.; de Oliveira, A.C.F.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Soybean meal and poultry offal meal effects on digestibility of adult dogs diets: Systematic review. PLoS ONE 2021, 16, e0249321. [Google Scholar] [CrossRef] [PubMed]
- Federação Europeia das Indústrias de Food (FEDIAF). Nutritional Guidelines; The European Pet Food Industry Federation: Brussels, Belgium, 2017; pp. 1–100. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive Text with EEA relevance. Off. J. Eur. Union 2011, 54, 1–54. [Google Scholar]
- European Commission (EC). Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and De-Rived Products not Intended for Human Consumption and Repealing Regulation (EC) No. 1774/2002. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1069 (accessed on 24 December 2021).
- European Commission (EC). Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union 2001, 147, 1–40. [Google Scholar]
- European Commission (EC). Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene. Off. J. Eur. Union 2005, 35, 1–22. [Google Scholar]
- Alm, M. Review of the EU feed ban on non-ruminant Processed Animal Proteins. In Proceedings of the European Fat Processors and Renderers Association (EFPRA), Stavropol, Russia, 27 November 2012. [Google Scholar]
- Jedrejek, D.; Lević, J.; Wallace, J.; Oleszek, W. Animal by-products for feed: Characteristics, European regulatory framework, and potential impacts on human and animal health and the environment. J. Anim. Feed Sci. 2016, 28, 189–202. [Google Scholar] [CrossRef]
- The European Pet Food Industry Federation (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; The European Pet Food Industry Federation (FEDIAF): Brussels, Belgium, 2018. [Google Scholar]
- Jekanowski, M. Survey says: A snapshot of rendering. Render 2011, 40, 58–61. [Google Scholar]
- Meeker, D.L.; Meisinger, J.L. Companion Animals Symposium: Rendered ingredients significantly influence sustainability, quality, and safety of pet food. J. Anim. Sci. 2015, 93, 835–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbin, J.E. Inedible Meat, Poultry and Fish By-Products in Pet Foods. In Inedible Meat by-Products; Pearson, A.M., Dutson, T.R., Eds.; Springer: Dordrecht, The Netherlands, 1992; Volume 8. [Google Scholar]
- Batalov, A.; Luneva, R.; Gorelik, O. Methods of Production of Meat-and-Bone Meal According to New Technologies. Available online: http://min.usaca.ru/uploads/article/attachment/1744/42_%D0%91%D0%B0%D1%82%D0%B0%D0%BB%D0%BE%D0%B2_%D0%90.%D0%A1.pdf (accessed on 14 September 2021).
- Mushtruk, M.M. Analytical Review of Technologies and Equipment for Production of Feed Flour and Its Mixtures. Available online: https://www.researchgate.net/profile/Mikhail-Mushtruk-2/publication/328756194-ANALYTICAL_REVIEW_OF_TECHNOLOGIES_AND_EQUIPMENT_FOR_PRODUCTION_OF_FEED_FLOUR_AND_ITS_MIXTURES/links/60be28c6458515218f9edacf/ANALYTICAL-REVIEW-OF-TECHNOLOGIES-AND-EQUIPMENT-FOR-PRODUCTION-OF-FEED-FLOUR-AND-ITS-MIXTURES.pdf (accessed on 11 September 2021).
- Parsons, C.; Castanon, F.; Han, Y. Protein and amino acid quality of meat and bone meal. Poult. Sci. 1997, 76, 361–368. [Google Scholar] [CrossRef]
- Simonova, I.; Grabovskyi, S.; Drachuk, U.; Halukh, B.; Basarab, I. Amino acid composition of meat and bone meal from various manufacturers of pet food and animal feed. Ukr. J. Ecol. 2020, 10, 435–439. [Google Scholar] [CrossRef]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [Green Version]
- Rey, I.U.; Shakulikova, G.T.; Kozhakhmetova, G.A.; Lashkareva, O.V.; Bondarenko, E.G.; Bermukhambetova, B.B.; Baimagambetova, Z.A.; Zhetessova, M.T.; Beketova, K.N.; Anafiyaeva, Z. Labor Factor Efficiency in the Agricultural Industry. Int. J. Environ. Sci. Educ. 2016, 11, 9679–9691. [Google Scholar]
- Mizanbekova, S.; Umbetaliev, A.; Aitzhanova, A.; Akylbaev, R. Priorities of Mixed Fodder Production Development in Emerging Countries: The Case of Kazakhstan. Espacios 2017, 38, 29–41. [Google Scholar]
- Woodgate, S.; Van Der Veen, J. The role of fat processing and rendering in the European Union animal production industry. Biotechnol. Agron. Soc. Environ. 2004, 8, 283–294. [Google Scholar]
- European Commission (EC). Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002 Laying Down Health Rules Concerning Animal By-Products not Intended for Human Consumption. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R1774&from=ES (accessed on 21 September 2021).
- OIE. Bovine Spongiform Encephalopathy, Volume II. Recommendations Applicable to OIE Listed Diseases and Other Diseases of Importance to International Trade. Available online: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_bse.pdf (accessed on 25 September 2021).
- Bazolli, R.S.; Vasconcellos, R.S.; de-Oliveira, L.D.; Sá, F.C.; Pereira, G.T.; Carciofi, A.C. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products1. J. Anim. Sci. 2015, 93, 2956–2966. [Google Scholar] [CrossRef] [PubMed]
- Wondra, K.; Hancock, J.; Behnke, K.; Hines, R.; Stark, C. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. J. Anim. Sci. 1995, 73, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. Worlds Poult. Sci. J. 2007, 63, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Carciofi, A.C.; Takakura, F.S.; De-Oliveira, L.D.; Teshima, E.; Jeremias, J.T.; Brunetto, M.A.; Prada, F. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J. Anim. Physiol. Anim. Nutr. 2008, 92, 326–336. [Google Scholar] [CrossRef]
- Twomey, L.N.; Pluske, J.R.; Rowe, J.B.; Choct, M.; Brown, W.; Pethick, D.W. The replacement value of sorghum and maize with or without supplemental enzymes for rice in extruded dog foods. Anim. Feed Sci. Technol. 2003, 108, 61–69. [Google Scholar] [CrossRef]
- Twomey, L.N.; Pethick, D.W.; Rowe, J.B.; Choct, M.; Pluske, J.R.; Brown, W.; Laviste, M.C. The use of sorghum and corn as alternatives to rice in dog foods. J. Nutr. 2002, 132, 1704S–1705S. [Google Scholar] [CrossRef] [Green Version]
- Fortes, C.M.L.S.; Carciofi, A.C.; Sakomura, N.K.; Kawauchi, I.M.; Vasconcellos, R.S. Digestibility and metabolizable energy of some carbohydrate sources for dogs. Anim. Feed Sci. Technol. 2010, 156, 121–125. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Adeola, O. Metabolizable energy value of meat and bone meal for pigs. J. Anim. Sci. 2005, 83, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.; Adeola, O. Estimation of the metabolizable energy content of meat and bone meal for swine. J. Anim. Sci. 2009, 87, 2590–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Parsons, C.M. Effect of raw material source, processing systems, and processing temperatures on amino acid digestibility of meat and bone meals. Poult. Sci. 1998, 77, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Wolf, P.; Rust, P.; Kamphues, J. How to assess particle size distribution in diets for pigs? Livest. Sci. 2010, 133, 78–80. [Google Scholar] [CrossRef]
- Naumann, C.; Bassler, R. Methoden der Landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln; VDLUFA: Darmstadt, Germany, 2012. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Gerickend, S.; Kurmies, B. Die kolorimetrische Phosphorsäuerebestimmung mit Ammonium-Vanadat-Molybdat und ihre Nawendung in der Pflanzenanalyse. Pflanzenernähr. Dünger Bodenk. 1952, 59, 235–247. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006.
- Zahn, S. Untersuchungen zum Futterwert (Zusammensetzung, Akzeptanz, Verdaulichkeit) und zur Verträglichkeit (Kotbeschaffenheit) von Nebenprodukten der Putenschlachtung bei Hunden. Doctoral Thesis, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany, 2010. [Google Scholar]
- Association of American Feed Control Officials (AAFCO). Model Regulations for Pet Food and Specialty Pet Food under the Model Bill; AAFCO Incorporated: Atlanta, GA, USA, 2014. [Google Scholar]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Männer, K.; Zebeli, Q.; Zentek, J. Supplement zur Tierernährung für Studium und Praxis; Verlag, M. & H. Schaper: Hanover, Germany, 2014. [Google Scholar]
- Moxham, G. Waltham feces scoring system—A tool for veterinarians and pet owners: How does your pet rate. Waltham Focus 2001, 11, 24–25. [Google Scholar]
- Abd El-Wahab, A.; Wilke, V.; Grone, R.; Visscher, C. Nutrient Digestibility of a Vegetarian Diet with or without the Supplementation of Feather Meal and Either Corn Meal, Fermented Rye or Rye and Its Effect on Fecal Quality in Dogs. Animals 2021, 11, 496. [Google Scholar] [CrossRef]
- Bunte, S.; Keller, B.; Chuppava, B.; Kamphues, J.; Visscher, C.; El-Wahab, A.A. Influence of Fermented Diets on In Vitro Survival Rate of Some Artificially Inoculated Pathogens—A Preliminary Study. Processes 2020, 8, 1345. [Google Scholar] [CrossRef]
- Earle, K.E.; Kienzle, E.; Opitz, B.; Smith, P.M.; Maskell, I.E. Fiber affects digestibility of organic matter and energy in pet foods. J. Nutr. 1998, 128, 2798S–2800S. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nut. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [PubMed]
- Hilcko, K.P.; Félix, A.P.; de Oliveira, S.G.; Bortolo, M.; Maiorka, A.; de Brito, C.B.M.; Alves, P.F. Diferentes graus de moagem em dietas para cães. Ciência Rural 2009, 39, 2511–2515. [Google Scholar] [CrossRef]
- Zentek, J. Cellulose, pectins and guar gum as fibre sources in canine diets. J. Anim. Physiol. Anim. Nutr. 1996, 76, 36–45. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, V.; Hendriks, W.H.; Camden, B.J.; Thomas, D.V.; Morel, P.C.H.; Butts, C.A. Amino acid digestibility of meat and bone meals for broiler chickens. Aust. J. Agric. Res. 2002, 53, 1257–1264. [Google Scholar] [CrossRef]
- Batterham, E.; Lowe, R.; Darnell, R.; Major, E. Availability of lysine in meat meal, meat and bone meal and blood meal as determined by the slope-ratio assay with growing pigs, rats and chicks and by chemical techniques. Br. J. Nutr. 1986, 55, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Mundt, H. Untersuchungen zum Einsatz von Knochenschrot in Futterationen fur Hunde. Dtsch. Tierarztl. Wochenschr. 1983, 90, 81–86. [Google Scholar] [PubMed]
- Nery, J.; Goudez, R.; Biourge, V.; Tournier, C.; Leray, V.; Martin, L.; Thorin, C.; Nguyen, P.; Dumon, H. Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance. J. Anim. Sci. 2012, 90, 2570–2580. [Google Scholar] [CrossRef]
- Johnson, M.L.; Parsons, C.M.; Fahey, G.C., Jr.; Merchen, N.R.; Aldrich, C.G. Effects of species raw material source, ash content, and processing temperature on amino acid digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J. Anim. Sci. 1998, 76, 1112–1122. [Google Scholar] [CrossRef]
- Shirley, R.; Parsons, C. Effect of ash content on protein quality of meat and bone meal. Poultr. Sci. 2001, 80, 626–632. [Google Scholar] [CrossRef]
- Hill, R.; Burrows, C.; Ellison, G.; Bauer, J. The effect of texturized vegetable protein from soy on nutrient digestibility compared to beef in cannulated dogs. J. Anim. Sci. 2001, 79, 2162–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Fahey, G.C., Jr.; Merchen, N.; Bajjalieh, N. Digestion responses to low oligosaccharide soybean meal by ileally-cannulated dogs. J. Anim. Sci. 1996, 74, 2441–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zentek, J.; Kaufmann, D.; Pietrzak, T. Digestibility and effects on fecal quality of mixed diets with various hydrocolloid and water contents in three breeds of dogs. J. Nutr. 2002, 132, 1679S–1681S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, L.W.; Boll, M.; Stampfl, A. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 2004, 10, 3081–3087. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Melendez, L.D.; Jewell, D.E. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. PLoS ONE 2013, 8, e54405. [Google Scholar] [CrossRef] [Green Version]
- Murakami, F.Y.; de Lima, D.C.; Menezes Souza, C.M.; Kaele, G.B.; de Oliveira, S.G.; Félix, A.P. Digestibility and palatability of isolated porcine protein in dogs. Ital. J. Anim. Sci. 2018, 17, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Zanu, H.K.; Kheravii, S.K.; Bedford, M.R.; Swick, R.A. Dietary calcium and meat and bone meal as potential precursors for the onset of necrotic enteritis. Worlds Poult. Sci. J. 2020, 76, 743–756. [Google Scholar] [CrossRef]
- Musco, N.; Lombardi, P.; Calabrò, S.; Mastellone, V.; Tudisco, R.; Grossi, M.; Addi, L.; Grazioli, R.; Cutrignelli, M.I. Aloe arborescens supplementation in cat diet: Evaluation of effects by in vitro gas production technique. Ital. J. Anim. Sci. 2016, 15, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Chow, J.; Wolf, B.W.; Garleb, K.A.; Fahey, G.C., Jr. Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs. J. Nutr. 2002, 132, 3721–3731. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.; Pellikaan, W.F.; Rutten, P.G.P.; van der Poel, A.F.B.; Verstegen, M.W.A.; Hendriks, W.H. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. J. Anim. Sci. 2008, 86, 2979–2989. [Google Scholar] [CrossRef] [Green Version]
- McNeil, N.I.; Cummings, J.; James, W. Short chain fatty acid absorption by the human large intestine. Gut 1978, 19, 819–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Steen, I.; Rohde, J.; Zentek, J.; Amtsberg, G. Fütterungseinflüsse auf das Vorkommen und die Enterotoxinbildung von Clostridium perfringens im Darmkanal des Hundes. Kleintierprax 1997, 42, 871–886. [Google Scholar]
Parameter | Unit | Basic | Coarse | Fine | ||||
---|---|---|---|---|---|---|---|---|
MBMc6 | MBMc12 | MBMc24 | MBMf6 | MBMf12 | MBMf24 | |||
Basic diet | % | 100 | 94 | 88 | 76 | 94 | 88 | 76 |
MBMc | 0 | 6 | 12 | 24 | 0 | 0 | 0 | |
MBMf | 0 | 0 | 0 | 0 | 6 | 12 | 24 | |
DM | g/kg fed | 924 | 923 | 921 | 918 | 924 | 923 | 922 |
Crude ash | g/kg DM | 83.5 | 97.9 | 112 | 141 | 97.4 | 111 | 139 |
Crude protein | 207 | 228 | 248 | 290 | 229 | 251 | 294 | |
Crude fat | 77.8 | 79.4 | 80.9 | 84.1 | 79.4 | 80.9 | 84.1 | |
Crude fiber | 28.9 | 27.2 | 25.4 | 22.0 | 27.2 | 25.4 | 22.0 | |
Nitrogen-free extract | 603 | 568 | 533 | 464 | 567 | 532 | 461 | |
Calcium | 21.6 | 27.3 | 33.1 | 44.5 | 26.8 | 32.0 | 42.3 | |
Phosphorus | 12.8 | 15.6 | 18.4 | 24.0 | 15.3 | 17.9 | 22.9 | |
Particle size | % | |||||||
>1.00 mm | 36.8 | 37.4 | 7.50 | |||||
0.20–1.00 mm | 30.3 | 43.5 | 64.7 | |||||
<0.20 mm | 32.9 | 32.9 | 27.8 | |||||
ME 1 | MJ/100 g DM | 15.6 | 15.6 | 15.6 | 15.7 | 15.6 | 15.7 | 15.7 |
Parameters | Particle Size | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Coarse | Fine | ||||||||
Level | Particle Size | Level | Particle Size × Level | ||||||
MBMc6 | MBMc12 | MBMc24 | MBMf6 | MBMf12 | MBMf24 | ||||
Organic matter | 84.4 ± 2.03 | 83.8 ± 0.91 | 83.8 ± 0.81 | 83.7 ± 1.41 | 83.8 ± 3.08 | 82.5 ± 0.86 | 0.3059 | 0.7223 | 0.6861 |
Crude protein | 82.3 ± 2.16 | 82.5 ± 1.19 | 83.1 ± 0.75 | 81.3 ± 2.28 | 81.5 ± 3.99 | 82.1 ± 1.47 | 0.2073 | 0.9493 | 0.8178 |
Crude fat | 87.2 ± 2.10 | 87.2 ± 1.17 | 88.0 ± 1.23 | 87.4 ± 1.36 | 88.3 ± 2.50 | 86.9 ± 1.56 | 0.9714 | 0.6732 | 0.7945 |
Parameters | Particle Size | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Coarse | Fine | ||||||||
Level | Particle Size | Level | Particle Size × Level | ||||||
MBMc6 | MBMc12 | MBMc24 | MBMf6 | MBMf12 | MBMf24 | ||||
Defecation frequency (n/d) | 2.60 ± 0.34 | 2.97 ± 0.57 | 3.20 ± 0.34 | 2.73 ± 0.70 | 2.53 ± 0.58 | 3.37 ± 0.95 | 0.8407 | 0.0904 | 0.1458 |
Amount of feces (g DM/d) | 67.4 b ± 8.06 | 73.7 b ± 4.40 | 81.5 a ± 5.78 | 70.4 b ± 5.28 | 73.5 b ± 13.2 | 87.4 a ± 4.05 | 0.0800 | 0.0333 | 0.0192 |
Fecal score (1–5) | 2.61 a ± 0.19 | 2.21 b ± 0.12 | 1.82 c ± 0.23 | 2.56 a ± 0.22 | 2.37 b ± 0.17 | 1.90 c ± 0.22 | 0.5985 | <0.0001 | <0.0001 |
DM content (%) | 31.8 b ± 2.04 | 34.4 a ± 1.28 | 35.4 a ± 1.98 | 32.0 b ± 1.60 | 33.8 ab ± 1.76 | 36.2 a ± 2.10 | 0.8778 | 0.0005 | 0.0011 |
pH value | 7.21 b ± 0.62 | 7.17 b ± 0.22 | 7.30 a ± 0.14 | 7.03 b ± 0.10 | 7.18 b ± 0.18 | 7.47 a ± 0.12 | 0.9863 | 0.0001 | 0.0003 |
Parameters | Particle Size | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Coarse | Fine | ||||||||
Level | Particle Size | Level | Particle Size × Level | ||||||
MBMc6 | MBMc12 | MBMc24 | MBMf6 | MBMf12 | MBMf24 | ||||
Acetic acid | 23.4 ± 6.75 | 47.9 ± 35.0 | 32.0 ± 16.8 | 21.7 ± 14.2 | 27.1 ± 7.35 | 41.4 ± 23.8 | 0.5346 | 0.2561 | 0.1751 |
Propionic acid | 10.2 ± 2.78 | 23.6 ± 16.5 | 13.5 ± 4.82 | 12.5 ± 10.3 | 12.3 ± 3.56 | 19.5 ± 10.7 | 0.7743 | 0.4182 | 0.1458 |
iso-Butyric acid | 0.68 c ± 0.10 | 1.21 a ± 0.50 | 1.07 b ± 0.51 | 0.49 c ± 0.25 | 0.67 b ± 0.31 | 1.08 a ± 0.58 | 0.1269 | 0.0342 | 0.0259 |
n-Butyric acid | 6.54 ± 5.53 | 17.4 ± 17.9 | 7.73 ± 6.84 | 6.19 ± 7.75 | 7.27 ± 5.32 | 5.99 ± 4.01 | 0.1990 | 0.3011 | 0.2613 |
iso-Valeric acid | 0.99 c ± 0.13 | 1.69 a ± 0.68 | 1.54 ab ± 0.68 | 0.74 c ± 0.40 | 0.97 b ± 0.49 | 1.54 a ± 0.84 | 0.1352 | 0.0411 | 0.0396 |
n-Valeric acid | 0.08 ± 0.10 | 0.20 ± 0.15 | 0.08 ± 0.05 | 0.11 ± 0.15 | 0.10 ± 0.09 | 0.05 ± 0.05 | 0.3438 | 0.4962 | 0.2769 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Wahab, A.; Chuppava, B.; Zeiger, A.L.; Visscher, C.; Kamphues, J. Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food. Vet. Sci. 2022, 9, 164. https://doi.org/10.3390/vetsci9040164
Abd El-Wahab A, Chuppava B, Zeiger AL, Visscher C, Kamphues J. Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food. Veterinary Sciences. 2022; 9(4):164. https://doi.org/10.3390/vetsci9040164
Chicago/Turabian StyleAbd El-Wahab, Amr, Bussarakam Chuppava, Anna Lisa Zeiger, Christian Visscher, and Josef Kamphues. 2022. "Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food" Veterinary Sciences 9, no. 4: 164. https://doi.org/10.3390/vetsci9040164
APA StyleAbd El-Wahab, A., Chuppava, B., Zeiger, A. L., Visscher, C., & Kamphues, J. (2022). Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food. Veterinary Sciences, 9(4), 164. https://doi.org/10.3390/vetsci9040164