In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Coprological Analysis
2.2. Recovery of Eimeria spp. Oocysts and Giardia Duodenalis Cysts
2.3. Water Ozonisation
2.4. In Vitro Test for Eimeria spp.
2.5. In Vitro Test for Giardia Duodenalis
2.6. Statistical Analysis
3. Results
3.1. Eimeria Oocysts Viability
3.2. Giardia Duodenalis Cysts Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pdo Buffalo Mozzarella Drives Italian Cheese Export. Available online: https://news.italianfood.net/2017/02/07/pdo-buffalo-mozzarella-drives-italian-cheese-export (accessed on 24 February 2020).
- Masucci, F.; De Rosa, G.; Barone, C.M.A.; Napolitano, F.; Grasso, F.; Uzun, P.; Di Francia, A. Effect of group size and maize silage dietary levels on behaviour, health, carcass and meat quality of Mediterranean buffaloes. Animal 2016, 10, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, L.; Musella, V.; Condoleo, R.; Saralli, G.; Veneziano, V.; Bruni, G.; Condoleo, R.U.; Cringoli, G. Giardia and Cryptosporidium in water buffaloes (Bubalus bubalis). Parasitol. Res. 2007, 100, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Rinaldi, L.; Maurelli, M.P.; Cringoli, G. Parasitological scenario of buffalo farms in central southern Italy: A review. In The Buffalo (Bubalus bubalis)-Production Research, 1st ed.; Presicce, G.A., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; pp. 298–312. [Google Scholar]
- De Aquino, M.C.C.; Inácio, S.V.; Rodrigues, F.S.; de Barros, L.D.; Garcia, J.L.; Headley, S.A.; Gomes, J.F.; Bresciani, K.D.S. Cryptosporidiosis and giardiasis in buffaloes (Bubalus bubalis). Front. Vet. Sci. 2020, 7, 557967. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. A review of coccidiosis in water buffaloes (Bubalus bubalis). Vet Parasitol. 2018, 256, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Keeton, S.T.N.; Navarre, C.B. Coccidiosis in large and small ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 201–208. [Google Scholar] [CrossRef]
- Daugschies, A.; Agneessens, J.; Goossens, L.; Mengel, H.; Veys, P. The effect of a metaphylactic treatment with diclazuril (Vecoxan) on the oocyst excretion and growth performance of calves exposed to a natural Eimeria infection. Vet. Parasitol. 2007, 149, 199–206. [Google Scholar] [CrossRef]
- Bosco, A.; Rinaldi, L.; Cappelli, G.; Saratsis, A.; Nisoli, L.; Cringoli, G. Metaphylactic treatment strategies with toltrazuril and diclazuril and growth performance of buffalo calves exposed to a natural Eimeria infection. Vet. Parasitol. 2015, 212, 408–410. [Google Scholar] [CrossRef]
- Thompson, R.C. The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Vet Parasitol. 2004, 126, 15–35. [Google Scholar] [CrossRef]
- Daugschies, A.; Böse, R.; Marx, J.; Teich, K.; Friedhoff, K.T. Development and application of a standardized assay for chemical disinfection of coccidia oocysts. Vet. Parasitol. 2002, 103, 299–308. [Google Scholar] [CrossRef]
- Riedewald, F. Utilities and effluent treatment: Water supply. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: London, UK, 2011; Volume 4, pp. 582–588. [Google Scholar]
- Baskaran, K.; Palmowski, L.M.; Watson, B.M. Wastewater reuse and treatment options for the dairy industry. Water Sci. Technol. Water Supply 2003, 3, 85–91. [Google Scholar] [CrossRef]
- Muñoz, A. Design and analysis of studies of the health effects of ozone. Environ. Health Perspect. 1993, 101, 231. [Google Scholar]
- Norton, T.; Misiewicz, P. Ozone for water treatment and its potential for process water reuse in the food industry. In Ozone in Food Processing; O’Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 177–199. [Google Scholar]
- Laszlo, Z.; Kertsz, S.; Mlinkovics, E.; Hodur, C. Dairy waste water treatment by combining ozonation and nanofiltration. Sep. Sci. Technol. 2007, 42, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Loorits, K.A.; Munter, R.; Siirde, E.K.; Lisenkova, L.L. Use of ozone for oxidation of major milk components in effluent. Molochnaya Promyshlennost 1975, 4, 27–30. (In Russian) [Google Scholar]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. Appl. Phys. 1987, 20, 1421. [Google Scholar] [CrossRef]
- Merhi, Z.; Garg, B.; Moseley-LaRue, R.; Moseley, A.R.; Smith, A.; Zhang, J. Ozone therapy: A potential therapeutic adjunct for improving female reproductive health. Med. Gas. Res. 2019, 9, 101–105. [Google Scholar] [CrossRef]
- Elvis, A.M.; Ekta, J.S. Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med. 2011, 2, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Đuričić, D.; Valpotić, H.; Samardžija, M. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge. Anim. Reprod Sci. 2015, 159, 1–7. [Google Scholar] [CrossRef]
- Sciorsci, R.L.; Lillo, E.; Occhiogrosso, L.; Rizzo, A. Ozone therapy in veterinary medicine: A review. Res. Vet. Sci. 2020, 130, 240–246. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Animal Waste, Water Quality and Human Health; Dufour, A., Bartram, J., Bos, R., Gannon, V., Eds.; IWA Publishing: London, UK, 2012. [Google Scholar]
- Loeb, B.L.; Thompson, C.M.; Drago, J.; Takahara, H.; Baig, S. Worldwide ozone capacity for treatment of drinking water and wastewater: A review. Ozone Sci. Eng. 2012, 34, 64–77. [Google Scholar] [CrossRef]
- Ozone Systems. Ozone Benefits for Dairy Farmers. Available online: http://www.puricare.co.za/UserFiles/Ozone%20 (accessed on 25 May 2015).
- Heacox, D. Use and Generation of Ozone as a Disinfectant of Dairy Animal Tissues, Dairy Equipment, and Infrastructure. U.S. Patent No. 8609120B2, 2013. [Google Scholar]
- Cringoli, G.; Rinaldi, L.; Maurelli, M.P.; Utzinger, J. FLOTAC: New multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat. Protoc. 2010, 5, 503–515. [Google Scholar] [CrossRef]
- Pepe, P.; Ianniello, D.; Alves, L.C.; Morgoglione, M.E.; Maurelli, M.P.; Bosco, A.; Cringoli, G.; Rinaldi, L. Comparative cost-effectiveness of immunoassays and FLOTAC for diagnosing Giardia spp. infection in dogs. Parasit. Vectors 2019, 12, 158. [Google Scholar] [CrossRef] [Green Version]
- Bosco, A.; Maurelli, M.P.; Ianniello, D.; Morgoglione, M.E.; Amadesi, A.; Coles, G.C.; Cringoli, G.; Rinaldi, L. The recovery of added nematode eggs from horse and sheep faeces by three methods. BMC Vet. Res. 2018, 14, 7. [Google Scholar] [CrossRef] [Green Version]
- Okada, F.; Naya, K. Electrolysis for Ozone Water Production. In Electrolysis, 1st ed.; Linkov, V., Kleperis, J., Eds.; IntechOpen: London, UK, 2012. [Google Scholar]
- Palin, A.T. Methods for the determination, in water, of free and combined available chlorine, chlorine dioxide and chlorite, bromine, iodine, and ozone using diethyl-p-phenylenediamine (DPD). J. Inst. Water Eng. 1967, 21, 537. [Google Scholar]
- Palin, A.T. Analytical control of water disinfection with special reference to differential DPD methods for chlorine, chlorine dioxide, bromine, iodine and ozone. J. Inst. Water Eng. 1974, 28, 139. [Google Scholar]
- Elovitz, M.S.; von Gunten, U.; Kaiser, H.-P. Hydroxyl radical/ozone ratios during ozonation Processes. II. The Effect of temperature, pH, alkalinity, and DOM properties, ozone. Sci. Eng. 2000, 22, 123–150. [Google Scholar] [CrossRef]
- Gardoni, D.A.; Vailati, A.; Canziani, R. Decay of ozone in Water: A review. Ozone Sci. Eng. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Galdeano, M.C.; Wilhelm, A.E.; Goulart, I.B.; Tonon, R.V.; Freitas-Silva, O.; Germani, R.; Chávez, D.W.H. Effect of water temperature and pH on the concentration and time of ozone saturation. Braz. J. Food Technol. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Liou, C.T.; Wang, J.S.; Ooi, H.K. Effect of ozone treatment on Eimeria colchici oocysts. J. Parasitol. 2002, 88, 159–162. [Google Scholar] [CrossRef]
- Rousseau, A.; La Carbona, S.; Dumètre, A.; Robertson, L.J.; Gargala, G.; Escotte-Binet, S.; Favennec, L.; Villena, I.; Gérard, C.; Aubert, D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: A review of methods. Parasite 2018, 25, 14. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, D.; El-Badry, A.; Abd El Wahab, W. Assessment of Giardia and Cryptosporidium assemblages/species and their viability in potable tap water in Beni-Suef, Egypt Using nested PCR/RFLP and staining. Iran J. Parasitol. 2019, 14, 368–378. [Google Scholar] [CrossRef]
- Sammaro Silva, K.J.; Sabogal-Paz, L.P. Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. Water Res. 2021, 1, 189. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.T.; Costa, A.O.; de Oliveira Silva, M.B.; Schuchard, W.; Osaki, S.C.; de Castro, E.A.; Paulino, R.C.; Soccol, V.T. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil. Appl. Biochem. Biotechnol. 2008, 151, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Li, S.; Huang., J.; Yuan, Y.; Cui, C.; Williams, C.D. Inactivation of Cryptosporidium by ozone and cell ultrastructures. J. Environ. Sci. 2010, 22, 1954–1959. [Google Scholar] [CrossRef]
- Rajabi, O.; Sazgarnia, A.; Abbasi, F.; Layegh, P. The activity of ozonated olive oil against Leishmania major promastigotes. Iran. J. Basic Med. Sci. 2015, 18, 915. [Google Scholar]
- Khalifa, A.M.; El Temsahy, M.M.; Abou El Naga, I.F. Effect of ozone on the viability of some protozoa in drinking water. J. Egypt. Soc. Parasitol. 2001, 31, 603–616. [Google Scholar]
- Betancourt, W.Q.; Rose, J.B. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 2004, 126, 219–234. [Google Scholar] [CrossRef]
- Erickson, M.C.; Ortega, Y.R. Inactivation of protozoan parasites in food, water, and environmental systems. J. Food Prot. 2006, 69, 2786–2808. [Google Scholar] [CrossRef]
- Chaohai, W.; Fengzhen, Z.; Yun, H.; Chunhua, F.; Haizhen, W. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49–89. [Google Scholar]
- Marino, M.; Maifreni, M.; Baggio, A.; Innocente, N. Inactivation of foodborne bacteria Biofilms by aqueous and gaseous ozone. Front. Microbiol. 2018, 28, 2024. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, M.; Giovannangeli, F.; Rotunno, S.; Trombetta, C.M.; Montomoli, E. Water and air ozone treatment as an alternative sanitizing technology. J. Prev. Med. Hyg. 2017, 58, 48–E52. [Google Scholar] [CrossRef] [Green Version]
- Adeyemo, F.E.; Singh, G.; Reddy, P.; Bux, F.; Stenström, T.A. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS ONE 2019, 14, e0216040. [Google Scholar] [CrossRef]
- Vitali, G.; Valdenassi, L. Use of ozone in water, agriculture and zootechnics: Relationships between dysbiosis and mental disorders. Ozone Ther. 2019, 4. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J. Use of ozone in the dairy industry: A review. Int. J. Dairy Technol. 2016, 69, 157–168. [Google Scholar] [CrossRef]
- Finch, G.R.; Black, E.K.; Labatiuk, C.W.; Gyürék, L.; Belosevic, M. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone. Appl. Environ. Microbiol. 1993, 59, 3674–3680. [Google Scholar] [CrossRef] [Green Version]
- Megahed, A.; Aldridge, B.; Lowe, J. Comparative study on the efficacy of sodium hypochlorite, aqueous ozone, and peracetic acid in the elimination of Salmonella from cattle manure contaminated various surfaces supported by Bayesian analysis. PLoS ONE 2019, 23, 14. [Google Scholar] [CrossRef]
- Iakovides, I.C.; Michael-Kordatou, I.; Moreira, N.F.F.; Ribeiro, A.R.; Fernandes, T.; Pereira, M.F.R.; Nunes, O.C.; Manaia, C.M.; Silva, A.M.T.; Fatta-Kassinos, D. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res. 2019, 159, 333–347. [Google Scholar] [CrossRef]
- Neretti, G.; Morandi, B.; Taglioli, M.; Poglayen, G.; Galuppi, R.; Tosi, G.; Borghi, C.A. Inactivation of Eimeria oocysts in aqueous solution by a dielectric barrier discharge plasma in contact with liquid. Plasma Med. 2018, 8, 155–162. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, N.K.; Singh, H.; Rath, S.S. Assessment of risk factors associated with prevalence of coccidiosis in dairy animals of Punjab. J. Parasit. Dis. 2016, 40, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Bangoura, B.; Bardsley, K.D. Ruminant coccidiosis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 187–203. [Google Scholar] [CrossRef]
- Morgoglione, M.E.; Rinaldi, L.; Bosco, A.; Cringoli, G.; Bray, P.S.; Coles, G.C. Ozone and animal health. In Proceedings of the Joint COMBAR-ACSRPC Meeting, Ghent, Belgium, 27–29 August 2019; p. 80. [Google Scholar]
- Ojeda-Robertos, N.F.; Torres-Chablé, O.M.; Peralta-Torres, J.A.; Luna-Palomera, C.; Aguilar-Cabrales, A.; Chay-Canul, A.J.; González-Garduño, R.; Machain-Williams, C.; Cámara-Sarmiento, R. Study of gastrointestinal parasites in water buffalo (Bubalus bubalis) reared under Mexican humid tropical conditions. Trop. Anim. Health Prod. 2017, 49, 613–618. [Google Scholar] [CrossRef]
- Tavassoli, M.; Dalir-Naghadeh, B.; Valipour, S.; Maghsoudlo, M. Prevalence of gastrointestinal parasites in water buffalo (Bubalus bubalis) calves raised with cattle in smallholder farming system in the Northwest of Iran. Acta Vet. Eurasia. 2018, 44, 6–11. [Google Scholar] [CrossRef]
- Morgoglione, M.E.; Bosco, A.; Maurelli, M.P.; Alves, L.C.; Saralli, G.; Bruni, G.; Cringoli, G.; Rinaldi, L. A 10-Year 255 Surveillance of Eimeria spp. in Cattle and Buffaloes in a Mediterranean Area. Front. Vet. Sci. 2020, 7, 410. [Google Scholar] [CrossRef] [PubMed]
- Giangaspero, A.; Cirillo, R.; Lacasella, V.; Lonigro, A.; Marangi, M.; Cavallo, P.; Berrilli, F.; Di Cave, D.; Brandonisio, O. Giardia and Cryptosporidium in inflowing water and harvested shellfish in a lagoon in Southern Italy. Parasitol. Int. 2009, 58, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caradonna, T.; Marangi, M.; Del Chierico, F.; Ferrari, N.; Reddel, S.; Bracaglia, G.; Normanno, G.; Putignani, L.; Giangaspero, A. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol. 2017, 67, 67–75. [Google Scholar] [CrossRef]
- Heim, C.; Ureña de Vivanco, M.; Rajab, M.; Muller, E.; Letzel, T.; Helmreich, B. Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes. Int. J. Environ. Sci. Technol. 2015, 12, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency (EPA). Guidance Manual H-10 Disinfection Profiling and Benchmarking. Available online: https://www.epa.gov/sites/production/files/2020-06/documents/disprof_bench_3rules_final_508.pdf (accessed on 1 June 2020).
Group-Eimeria (6 Replicates) | Ozone-Concentration (mg/L) | Time Exposure (Minutes) | Ct * Value |
---|---|---|---|
GE1 | 0.5 | 5 | 2.5 |
GE1.1 | 0.5 | 10 | 5 |
GE2 | 1 | 5 | 5 |
GE2.1 | 1 | 10 | 10 |
GE3 | 2 | 5 | 10 |
GE3.1 | 2 | 10 | 20 |
Control | - | - | - |
Group-Giardia (6 Replicates) | Ozone-Concentration (mg/L) | Time Exposure (Minutes) | Ct * Value |
---|---|---|---|
GG1 | 0.1 | 1 | 0.1 |
GG1.1 | 0.1 | 2 | 0.2 |
GG2 | 0.2 | 1 | 0.2 |
GG2.1 | 0.2 | 2 | 0.4 |
GG3 | 0.3 | 1 | 0.3 |
GG3.1 | 0.3 | 2 | 0.6 |
GG4 | 1 | 1 | 1 |
GG4.1 | 1 | 2 | 2 |
Control | - | - | - |
Group-Eimeria (6 Replicates) | Viable Oocysts (Sporulated) (%) |
---|---|
GE1 | 83.2 |
GE1.1 | 82.6 |
GE2 | 77.2 |
GE2.1 | 76.5 |
GE3 | 77.0 |
GE3.1 | 76.3 |
Control | 89.0 |
Group-Giardia (6 Replicates) | Non-Viable Cysts (%) |
---|---|
GG1 | 16.2 |
GG1.1 | 34.5 |
GG2 | 86.3 |
GG2.1 | 94.0 |
GG3 | 76.8 |
GG3.1 | 96.3 |
GG4 | 90.8 |
GG4.1 | 95.2 |
Control | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgoglione, M.E.; Bosco, A.; Ciuca, L.; Pepe, P.; Coles, G.C.; Cringoli, G.; Rinaldi, L. In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study. Vet. Sci. 2021, 8, 115. https://doi.org/10.3390/vetsci8060115
Morgoglione ME, Bosco A, Ciuca L, Pepe P, Coles GC, Cringoli G, Rinaldi L. In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study. Veterinary Sciences. 2021; 8(6):115. https://doi.org/10.3390/vetsci8060115
Chicago/Turabian StyleMorgoglione, Maria Elena, Antonio Bosco, Lavinia Ciuca, Paola Pepe, Gerald C. Coles, Giuseppe Cringoli, and Laura Rinaldi. 2021. "In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study" Veterinary Sciences 8, no. 6: 115. https://doi.org/10.3390/vetsci8060115