Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Collection
2.3. Platelet Rich Plasma Preparation
2.4. Platelet and Leukocyte Counts
2.5. Aggregometry Test
2.6. Determination of TGF-β1 Concentrations
2.7. Statistical Analyses
3. Results
3.1. Platelet and Leukocyte Counts and Platelet Concentration Times
3.2. Platelet Aggregation
3.3. TGF-β1 Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brossi, P.M.; Moreira, J.J.; Machado, T.S.L.; Baccarin, R.Y.A. Platelet-rich plasma in orthopedic therapy: A comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet. Res. 2015, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.A.; Saltzman, B.M.; Mascarenhas, R.; Khair, M.M.; Verma, N.N.; Bach, B.R.; Cole, B.J. Does Intra-articular Platelet-Rich Plasma Injection Provide Clinically Superior Outcomes Compared with Other Therapies in the Treatment of Knee Osteoarthritis? A Systematic Review of Overlapping Meta-analyses. Arthroscopy 2015, 31, 2213–2221. [Google Scholar] [CrossRef] [PubMed]
- Filardo, G.; Kon, E.; Roffi, A.; Di Matteo, B.; Merli, M.L.; Marcacci, M. Platelet-rich plasma: Why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg. Sport Traumatol. Arthrosc. 2015, 23, 2459–2474. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, C.P.; Alves, A.L.G.; Brossi, P.M.; Baccarin, R.Y.A. Uso do soro autólogo condicionado e do plasma rico em plaquetas na terapia ortopédica de equinos. Semina 2014, 35, 2607–2624. [Google Scholar] [CrossRef]
- Fortier, L.A.; Barker, J.U.; Strauss, E.J.; McCarrel, T.M.; Cole, B.J. The Role of Growth Factors in Cartilage Repair. Clin. Orthop. Relat. Res. 2011, 469, 2706–2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Doda, V.; Kotwal, U.; Dogra, M. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time. Transfus. Apher. Sci. 2016, 54, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Argüelles, D.; Carmona, J.U.; Pastor, J.; Iborra, A.; Viñals, L.; Martínez, P.; Bach, P.; Prades, M. Evaluation of single and double centrifugation tube methods for concentrating equine platelets. Res. Vet. Sci. 2006, 81, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Sutter, W.W.; Kaneps, A.J.; Bertone, A.L. Comparison of hematologic values and transforming growth factor-β and insulin-like growth factor concentrations in platelet concentrates obtained by use of buffy coat and apheresis methods from equine blood. Am. J. Vet. Res. 2004, 65, 924–930. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dolegowska, B.; Banfi, G. Growth factor content in PRP and their applicability in medicine. J. Biol. Regul. Homeost. Agents 2012, 26, 3–22. [Google Scholar]
- Van Beuningen, H.M.; Van Der Kraan, P.M.; Arntz, O.J.; Van Den Berg, W.B. Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor β: Studies in anatomically intact cartilage in vitro and in vivo. Ann. Rheum. Dis. 1993, 52, 185–191. [Google Scholar] [CrossRef]
- Van der Kraan, P.M.; Blaney Davidson, E.N.; Blom, A.; Van den Berg, W.B. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Modulation and integration of signaling pathways through receptor-Smads. Osteoarthr. Cartilage 2009, 17, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Freyria, A.M.; Mallein-Gerin, F. Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors. Injury 2012, 43, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Morales, T.I.; Roberts, A.B. Transforming growth factor β regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J. Biol. Chem. 1988, 263, 12828–12831. [Google Scholar]
- Imler, S.M.; Doshi, A.N.; Levenston, M.E. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr. Cartil. 2004, 12, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Baugé, C.; Girard, N.; Lhuissier, E.; Bazille, C.; Boumediene, K. Regulation and Role of TGFβ Signaling Pathway in Aging and Osteoarthritis Joints. Aging Dis. 2014, 5, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Denker, A.E.; Nicoll, S.B.; Tuan, R.S. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-β1. Differentiation 1995, 59, 25–34. [Google Scholar] [CrossRef]
- Van Beuningen, H.M.; Glansbeek, H.L.; Van Der Kraan, P.M.; Van Den Berg, W.B. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-β injections. Osteoarthr. Cartil. 2000, 8, 25–33. [Google Scholar] [CrossRef]
- Blaney Davidson, E.N.; Van der Kraan, P.M.; Van den Berg, W.B. TGF-β and osteoarthritis. Osteoarthr. Cartil. 2007, 15, 597–604. [Google Scholar] [CrossRef]
- Fortier, L.A.; Hackett, C.H.; Cole, B.J. The Effects of Platelet-Rich Plasma on Cartilage: Basic Science and Clinical Application. Oper. Tech. Sports Med. 2011, 19, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Floryan, K.; Berghoff, W. Intraoperative use of autologous platelet-rich and platelet-poor plasma for orthopedic surgery patients. AORN J. 2004, 80, 667–674. [Google Scholar] [CrossRef]
- Zavadil, D.P.; Satterlee, C.C.; Costigan, J.M.; Holt, D.W.; Shostrom, V.K. Autologous platelet gel and platelet-poor plasma reduce pain with total shoulder arthroplasty. J. Extra Corpor. Technol. 2007, 39, 177–182. [Google Scholar] [PubMed]
- Malahias, M.A.; Mavrogenis, A.F.; Nikolaou, V.S.; Megaloikonomos, P.D.; Kazas, S.T.; Chronopoulos, E.; Babis, G.C. Similar effect of ultrasound-guided platelet-rich plasma versus platelet-poor plasma injections for chronic plantar fasciitis. Foot 2019, 38, 30–33. [Google Scholar] [CrossRef]
- Hatakeyama, I.; Marukawa, E.; Takahashi, Y.; Omura, K. Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue Eng. A 2014, 20, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Ottaiano, T.F.; Andrade, S.S.; De Oliveira, C.; Silva, M.C.C.; Buri, M.V.; Juliano, M.A.; Girão, M.J.B.C.; Sampaio, M.U.; Schmaier, A.H.; Wlodawer, A.; et al. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie 2017, 135, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Born, G.V.R.; Cross, M.J. The aggregation of blood platelets. J. Physiol. 1963, 168, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Tablin, F.; Walker, N.J.; Hogle, S.E.; Pratt, S.; Norris, J.W. Assessment of platelet growth factors in supernatants from rehydrated freeze-dried equine platelets and their effects on fibroblasts in vitro. Am. J. Vet. Res. 2008, 69, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Textor, J.A.; Willits, N.H.; Tablin, F. Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Vet. J. 2013, 198, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, R.L.; Sink, C.A.; Were, S.R.; Weinstein, N.M.; Dahlgren, L.A. Simple tube centrifugation for processing platelet-rich plasma in the horse. Can. Vet. J. 2012, 53, 1266–1272. [Google Scholar] [PubMed]
- Vendruscolo, C.P.; De Carvalho, A.M.; Moraes, L.F.; Maia, L.; Queiroz, D.L.; Watanabe, M.J.; Yamada, A.L.M.; Alves, A.L.G. Avaliação da eficácia de diferentes protocolos de preparo do Plasma Rico em Plaquetas para uso em Medicina Equina. Pesqui. Vet. Bras. 2012, 32, 106–110. [Google Scholar] [CrossRef]
- Hessel, L.N.; Bosch, G.; Van Weeren, P.R.; Ionita, J.C. Equine autologous platelet concentrates: A comparative study between different available systems. Equine Vet. J. 2015, 47, 319–325. [Google Scholar] [CrossRef]
- Carmona, J.U.; Argüelles, D.; Climent, F.; Prades, M. Autologous Platelet Concentrates as a Treatment of Horses with Osteoarthritis: A Preliminary Pilot Clinical Study. J. Equine Vet. Sci. 2007, 27, 7–10. [Google Scholar] [CrossRef]
- Textor, J.A.; Norris, J.W.; Tablin, F. Effects of preparation method, shear force, and exposure to collagen on release of growth factors from equine platelet-rich plasma. Am. J. Vet. Res. 2011, 72, 271–278. [Google Scholar] [CrossRef] [PubMed]
- McCarrel, T.; Fortier, L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J. Orthop. Res. 2009, 27, 1033–1042. [Google Scholar] [CrossRef]
- Sundman, E.A.; Cole, B.J.; Fortier, L.A. Growth Factor and Catabolic Cytokine Concentrations Are Influenced by the Cellular Composition of Platelet-Rich Plasma. Am. J. Sports Med. 2011, 39, 2135–2140. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.C.D.F.; Zacarias, G.V.F.; Cantarelli, C.; Corrêa, M.M.B.; Silva, G.B.; Barbosa, A.L.T.; Brass, K.E.; De La Côrte, F.D. Avaliação De Sete Protocolos De Obtenção De Plasma Rico Em Plaquetas. Ciência Rural 2012, 43, 1122–1127. [Google Scholar] [CrossRef]
- McLellan, J.; Plevin, S. Temporal release of growth factors from platelet-rich Fibrin (PRF) and Platelet-rich Rlasma (PRP) in the horse: A comparative in vitro analysis. Int. J. Appl. Res. Vet. Med. 2014, 12, 48–57. [Google Scholar]
- Textor, J.A.; Tablin, F. Activation of equine platelet-rich plasma: Comparison of methods and characterization of equine autologous thrombin. Vet. Surg. 2012, 41, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, D.A.; Fortier, L.A. Platelet Rich Plasma: Formulations, Preparations, Constituents, and Their Effects. Oper. Tech. Sports Med. 2016, 25, 7–12. [Google Scholar] [CrossRef]
- Filardo, G.; Kon, E.; Pereira Ruiz, M.T.; Vaccaro, F.; Guitaldi, R.; Di Martino, A.; Cennachi, A.; Fornasari, P.M.; Marcacci, M. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: Single- versus double-spinning approach. Knee Surg. Sport Traumatol. Arthrosc. 2012, 20, 2082–2091. [Google Scholar] [CrossRef]
- Bausset, O.; Giraudo, L.; Veran, J.; Magalon, J.; Coudreuse, J.M.; Magalon, G.; Dubois, C.; Serratrice, N.; Dignat-George, F.; Sabatier, F. Formulation and storage of platelet-rich plasma homemade product. Biores. Open Access 2012, 1, 115–123. [Google Scholar] [CrossRef]
- Kingston, J.K.; Bayly, W.M.; Sellon, D.C.; Meyers, K.M.; Wardrop, K.J. Effects of sodium citrate, low molecular weight heparin, and prostaglandin E1 on aggregation, fibrinogen binding, and enumeration of equine platelets. Am. J. Vet. Res. 2001, 62, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Segura, D.; Monreal, L.; Espada, Y.; Pastor, J.; Mayós, I.; Homedes, J. Assessment of a platelet function analyser in horses: Reference range and influence of a platelet aggregation inhibitor. Vet. J. 2005, 170, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Vavken, P.; Kevy, S.; Jacobson, M.; Zurakowski, D.; Murray, M.M. Platelet activation by collagen provides sustained release of anabolic cytokines. Am. J. Sports Med. 2011, 39, 729–734. [Google Scholar] [CrossRef] [PubMed]
Animal | PRP-0 | PPP-1 | PPP-2 | PRP-1 |
---|---|---|---|---|
1 | 10.9 | 7.2 | 27.6 | 11.6 |
2 | 6.4 | 7.9 | 55.8 | 8.2 |
3 | 11.5 | 11.3 | 61.0 | 13.5 |
4 | 11.9 | 6.1 | 32.5 | 5.1 |
5 | 12.0 | 12.2 | 92.9 | 12.6 |
6 | 8.5 | 4.7 | 39.1 | 8.3 |
7 | 15.5 | 4.4 | 34.6 | 5.6 |
8 | 16.2 | 7.2 | 57.8 | 13.0 |
9 | 11.2 | 7.2 | 88.2 | 10.5 |
10 | 16.4 | 6.8 | 98.8 | 10.1 |
11 | 12.3 | 10.0 | 74.5 | 6.3 |
12 | 9.7 | 8.4 | 76.0 | 8.2 |
Mean | 11.9 | 7.8 | 61.6 * | 9.4 |
SD | 3.0 | 2.4 | 24.7 | 2.9 |
Product | Total Volume (mL) | Mean TGF-β1 (pg/mL) | Mean TGF-β1 Total |
---|---|---|---|
PRP-0 | 6.5 | 5537 | 35,992 |
PPP-1 | 6.5 | 5539 | 36,006 |
PPP-2 | 4.5 | 3102 | 13,960 |
PRP-1 | 2.0 | 12,407 | 24,815 |
Authors | Specie | Method | Agonist | Platelet Count × 103/μL | Leukocyte Count × 103/μL | TGF-β1 pg/mL |
---|---|---|---|---|---|---|
Arguelles et al. [7] | Equine | Single | Calcium chloride | 229 | 4.1 | 9400 |
Single | Calcium chloride | 228 | 3.1 | 10,300 | ||
Double | Calcium chloride | 272 | 8.4 | 10,500 | ||
Double | Calcium chloride | 191 | 0.93 | 9900 | ||
Sutter et al. [8] | Equine | Apheresis + filtration | - | 2172 | 61.2 | 57,900 |
Buffy coat | - | 1472 | 32.5 | 15,300 | ||
Apheresis | - | 855 | 33.7 | 23,600 | ||
Fontenot et al. [28] | Equine | Single | - | 267 | - | - |
Single | - | 399 | - | - | ||
Single | - | 433 | - | - | ||
GenesisSC® | - | 359.2 | - | - | ||
Vendruscolo et al. [29] | Equine | Double | - | 343.9 | 4.8 | 453.10 |
Double | - | 363.6 | 2.4 | 506.23 | ||
Double | - | 319.1 | 1.2 | 839.23 | ||
Double | - | 344.9 | 4.1 | 541.15 | ||
Hessel et al. [30] | Equine | Angel® | - | 320.3 | 9.1 | 660 |
ACP® | - | 183.2 | 0.6 | 850 | ||
E-PET® | - | 533.3 | 11.0 | 1700 | ||
GPS® | - | 761 | 40.6 | 680 | ||
Double | - | 310.4 | 18.2 | 1580 | ||
Carmona et al. [31] | Equine | Double | Calcium chloride | 250 | 8.68 | 12,515 |
Textor et al. [32] | Equine | Double | Collagen | 1765 | - | 2219 |
SmartPReP 2® | Collagen | 951 | - | 3707 | ||
McCarrel et al. [33] | Equine | SmartPReP 2® | - | 513 | 6.9 | 2000 |
Sundman et al. [34] | Human | Arthrex ACP® | - | 361 | 0.6 | 20,000 |
Biomet GPS III® | - | 701 | 23.7 | 87,000 | ||
Pereira et al. [35] | Equine | Double | - | 4.1× * | - | 14,053 |
Double | - | 4.7× * | - | 7634 | ||
Double | - | 4.6× * | - | 7198 | ||
Double | - | 4.8× * | - | 8796 | ||
Double | - | 4.8× * | - | 10,004 | ||
Double | - | 5.4× * | - | 10,518 | ||
Double | - | 4.5× * | - | 12,397 | ||
McLellan et al. [36] | Equine | Double | Calcium gluconate | - | - | 22,640 |
Textor & Tablin [37] | Equine | Double | Autologous thrombin | 770 | - | 3263 |
Double | Bovine thrombin | 770 | - | 9528 | ||
Double | Calcium chloride | 770 | - | 8808 | ||
Double | Freeze-thaw | 770 | - | 10,928 | ||
Our Results—PRP-0 | Equine | Single | Collagen | 494 | 0.23 | 5537 |
PPP-1 | Equine | Double—1st step | Collagen | 756 | 0.13 | 5539 |
PRP-1 | Equine | Double—2nd step | Collagen | 1371 | 4.18 | 12,408 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidel, S.R.T.; Vendruscolo, C.P.; Moreira, J.J.; Fülber, J.; Ottaiano, T.F.; Oliva, M.L.V.; Michelacci, Y.M.; Baccarin, R.Y.A. Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma? Vet. Sci. 2019, 6, 68. https://doi.org/10.3390/vetsci6030068
Seidel SRT, Vendruscolo CP, Moreira JJ, Fülber J, Ottaiano TF, Oliva MLV, Michelacci YM, Baccarin RYA. Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma? Veterinary Sciences. 2019; 6(3):68. https://doi.org/10.3390/vetsci6030068
Chicago/Turabian StyleSeidel, Sarah R. T., Cynthia P. Vendruscolo, Juliana J. Moreira, Joice Fülber, Tatiana F. Ottaiano, Maria L. V. Oliva, Yara M. Michelacci, and Raquel Y. A. Baccarin. 2019. "Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma?" Veterinary Sciences 6, no. 3: 68. https://doi.org/10.3390/vetsci6030068
APA StyleSeidel, S. R. T., Vendruscolo, C. P., Moreira, J. J., Fülber, J., Ottaiano, T. F., Oliva, M. L. V., Michelacci, Y. M., & Baccarin, R. Y. A. (2019). Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma? Veterinary Sciences, 6(3), 68. https://doi.org/10.3390/vetsci6030068