Abstract
The avian respiratory system hosts a wide range of commensal and potential pathogenic bacteria and/or viruses that interact with each other. Such interactions could be either synergistic or antagonistic, which subsequently determines the severity of the disease complex. The intensive rearing methods of poultry are responsible for the marked increase in avian respiratory diseases worldwide. The interaction between avian influenza with other pathogens can guarantee the continuous existence of other avian pathogens, which represents a global concern. A better understanding of the impact of the interaction between avian influenza virus and other avian respiratory pathogens provides a better insight into the respiratory disease complex in poultry and can lead to improved intervention strategies aimed at controlling virus spread.
1. Introduction
Avian influenza viruses (AIVs), caused by influenza A viruses, are members of the Orthomyxoviridae family [1]. AIVs infect both domestic poultry and wild birds; in addition, many reports have described their natural transmission to humans and occasionally to other mammals [2,3]. AIVs are further classified, based on the presence of multiple basic amino acids at the cleavage site of their hemagglutinin (HA) protein and/or their virulence in chickens, as low pathogenic avian influenza (LPAI) or high pathogenic avian influenza (HPAI) viruses [4].
LPAIVs continue to spread worldwide and have been isolated frequently from apparently normal migrating waterfowl, shorebirds, and domestic poultry [5]. LPAIV has become endemic in domestic poultry in different countries in Asia and the Middle-East, causing subclinical infections, mild respiratory symptoms, and/or drops in egg production [6]. Since 2003, HPAIV H5N1 of the Eurasian lineage has spread worldwide in a very short time, causing continuous emerging threats mainly to the Middle East and Asian countries [7,8]. Recently, frequent reassortments of HPAIV H5 have been noted, with other co-circulating AIVs in different countries in Europe, North America, East Asia, and the Middle East [9,10,11].
In poultry, HPAIV induces a very high mortality rate and a sharp decline in productivity both under field conditions and experimental trials using specific pathogen-free (SPF) chickens. In contrast, LPAIV induces minimal or no clinical signs in controlled SPF challenge experiments; however, field observations associated with LPAIV H9N2 infections showed slight mortality rates and a loss in egg productivity. One of the most important reasons for this difference is the mixed infection with other viral and/or bacterial respiratory pathogens. Mixed infections of LPAIV and/or HPAIV were reported in association with other viral diseases such as Newcastle disease virus (NDV) and/or infectious bronchitis disease (IB). In addition, many bacterial diseases were observed with positively AI-infected birds such as Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS), Ornithobacterium rhinotracheale (ORT), Escherichia coli, and Staphylococcus. The impact of such co-infections on the host responses, which includes viral shedding, sites of virus replication sites, and clinical outcome, was addressed in several studies [12,13,14,15,16] under field and experimental conditions.
The interaction between pathogens at the same infection site could be either synergistic or antagonistic, and these interactions could subsequently determine the severity of the disease complex. These two phenomena depend on interaction time (pre, simultaneous, or superinfection), host immune response, biological product, and/or other environmental factors.
Viral respiratory infections in human, mammals, and avian species can augment the secondary bacterial infection, including commensal bacteria, through mechanical damage of ciliated and goblet cells. This in turn facilitates the bacterial attachment and colonization [17,18,19] or impairment of the phagocytic activity and/or the alteration of the innate immune response [20,21,22]. It is worth noting that the worst effect of the secondary bacterial infection is not only the exaggeration of the pathogenesis but also an increase in bacterial density [23]. On the other hand, bacterial preinfection could be of benefit to AIV pathogenesis as in cases of protease secreting bacteria that facilitate cleavage of the HA of LPAIV [24,25]. In contrast, bacterial infection might limit the viral pathogenicity either through augmentation of the immune response to viral pathogens and/or inhibit or reduce the viral attachment to susceptible cells [26].
The surface glycoprotein hemagglutinin (HA) represents the main determinant of the influenza A pathogenicity, as it initiates the infection and then mediates the fusion of viral and endosomal membranes. The HA protein of HAPIVs contains multiple basic amino acids at the cleavage site cleaved by ubiquitous expressed furin in the target cell cytoplasm leading to systemic infection [27], while LPAIV-HA contains monobasic amino acids at the cleavage site that are cleaved extracellularly by cell type-specific, extracellular trypsin-like proteases, leading to localized infection in respiratory and intestinal tissues [28]. The bacterial infection, mediating the proteolytic activation of AIV, has been well documented; however, the exact mechanism is still not well known. Four proposed mechanisms could illustrate the role of bacterial coinfection: (a) directly through the cleavage of the HA, (b) indirectly through activation of host proteases, (c) as an antagonist of the host protease inhibitors, and (d) as a stimulation of host inflammatory response that subsequently increases the leakage of host proteases [29,30,31]. The common recovery of highly proteolytic bacteria in the avian upper respiratory tract flora highlights the importance of respiratory bacterial proteases that mediate the proteolytic activation of AIVs [32].
Infection of a host with a heterologous virus may result in the occurrence of viral interference [33]. Viral interference is a phenomenon in which virus-infected cells do not permit the replication of a second homologous or heterologous virus [33,34]. Viral interference can be elucidated by different mechanisms encompassing (a) competition for cell receptors attachment for replication, (b) intracellular host machinery competition, and (c) virus-induced interferon interference. Measurable differences that are described as being associated with mixed virus infection include changes in viral replication patterns, tissue tropism, pathological responses, and immunological responses [34]. This viral interference can be detrimental by obtaining the correct complete diagnosis, since co-infected flocks revealed lower or undetectable virus titers that might mask the real diagnostic picture. Co-infection usually occurs, but due to confusing similar clinical signs it cannot be easily diagnosed.
So far, most of the viral-viral or viral-bacterial interference studies do not entirely reflect the field situation in which poultry are exposed to more than one infectious and/or non-infectious agent. The aim of this review is to assess the incidence, clinical significance, and impact of coinfection/secondary infection associated with AI in different domestic poultry species.
3. Avian Influenza and Other Bacterial Co-Infections
3.1. Avian Influenza Coinfection with Staphylococcus sp.
Staphylococcus is a gram-positive bacterium that affects a wide range of avian species and widely spreads in poultry rearing environments, and presents itself as a part of normal flora of mucous membranes.
Staphylococcus has several pathogenicity markers, including a clumping factor that correlates with clinical cases of Staphylococcus in avian species. Protein A, present on the bacterial cell surface, can bind to the fragment crystallizable region (FC) fragment of immunoglobulin and subsequently inhibit the phagocytosis of the bacteria.
Regarding the coinfection with AIVs, staphylococcus sp. produces soluble proteases that are able to activate the HA of AIVs [30]. In the same context, with in vitro treatment of AIVs with staphylococcus aureus proteases, the infectivity of most strains is enhanced by at least 100 fold [58]. Furthermore, indirect activation of the HA could occur by staphylokinase that could activate chicken plasminogen into plasmin [59]. Experimentally, pre-infection of chickens with S. aureus, three days before infection with LPAIV H9N2 (A/chicken/aq-Y-55/01 and A/chicken/Beijing/2/97), leads to severe clinical signs. Viruses were recovered from the blood of all co-infected chickens with extensive replication in respiratory tissue, which may explain the dissemination of the virus through the chicken body and the observed severe clinical signs. In contrast, chickens infected with same LPAIV H9N2 strains alone showed no clinical signs, no virus was recovered from their blood, and there was lower replication efficiency in respiratory tissues [25]. Under field conditions, staphylococcus sp. are commonly recovered from chicken’s respiratory tract tissues with respiratory clinical symptoms, with a higher prevalence among other causative agents (50.2% as reported by Türkyilmaz [60] and 41.4% as reported by Popy, et al. [61]).
3.2. Avian Influenza Coinfection with Ornithobacterium rhinotracheale
Ornithobacterium rhinotracheale (ORT) is gram negative, non-motile, rod shaped, non-sporulating bacteria. ORT is reported in many countries worldwide as being associated with respiratory signs and is isolated from a wide variety of hosts such as pheasant, pigeon, rook, duck, ostrich, goose, guinea fowl, turkey, chicken, red-legged partridge, and falcon; in particular, in chickens and turkeys it causes airsacculitis and pneumonia [62,63,64,65,66,67,68]. The pathogenicity of the ORT depends on the route of inoculation, virulence of the strain, environmental factors, the immune status of the host, and the presence of the concurrent infection [62]. ORT spreads horizontally through aerosols and drinking water with longer survival rates at lower temperature, which also explains its dissemination during winter months and concurrent infection with other respiratory diseases common during winter season [69]. In China, 83% of serum collected from birds with respiratory manifestation were seropositive for ORT, and 15% of serum collected from apparent healthy birds were seropositive for ORT; five of six ORT strains recovered were associated with LPAIV H9N2 infection [70].
Furthermore, experimental preinfection with ORT and secondary infection with LPAIV H9N2 (A/chicken/Shandong/2011 (H9N2)) three days later induced the highest mortality rate with development of severe pneumonia and airsacculitis. On the other hand, a lower mortality was induced by coinfection and pre-infection with LPAIV H9N2 than in association with a secondary infection of ORT [70]. Lower mortality rate was also recorded by Azizpour, et al. [71] with coinfection of ORT and LPAIV H9N2 but with a different route of inoculation. Altogether, ORT as a preinfection, concurrent infection, or secondary infection is able to exacerbate the virulence of LPAIV H9N2 as compared to infection with LPAIV H9N2 alone. However, pre-infection with ORT and secondary infection with H9N2 induces a higher mortality rate with unique histopathological lesions represented by severe pulmonary fibrosis [70].
3.3. Avian Influenza Coinfection with Avian Mycoplasmosis
Mycoplasmas are prokaryote that are characterized by its very small size, absence of cell wall, small genome, and being surrounded by plasma membrane. Almost 25 mycoplasma species have been isolated from various species of birds [72]. Some mycoplasma species are able to penetrate the host cells as Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS), and these two species are also able to hemagglutinate chickens and turkeys’ RBCs [73]. MG and MS can display little to no clinical signs in avian species unless they are complicated by other respiratory pathogens [74]. Stipkovits et al. [75] demonstrated that chickens pre-infected with MG aerosol one week before challenge with LPAIV H3N8 (A/mallard/Hungary/19616/07) exhibit clinical signs and pathological lesions along the entire respiratory system (tracheitis, bronchitis, airsacculitis, and pneumonia), as well as a significant reduction in body weight gain comparing to MG alone, while LPAIV H3N8 infection did not induce clinical signs or result in a reduction in body weight gain. Furthermore, pre-infection with MG accompanied with post challenge of a LPAIV H3N8 revealed a decrease in the anti-MG antibodies level as compared to the chicken group infected with MG only [13].
Additionally, the host pathogen-pathogen interaction of MG and another LPAIV candidate like H9N2 (A/chicken/Saudi Arabia/CP7/1998) was also investigated using tracheal organ cultures (TOC) model as described by Sid et al., 2016 [26]. Results revealed that MG can modify the pathogenesis of LPAIV H9N2 depending on the interval between the two infections. The longer time of incubation with MG before the LPAIV H9N2 challenge enhanced ciliostasis and significant down regulated the antiviral innate immune response that subsequently enhanced the effect of H9N2. In contrast, incubation with MG for 24 h followed by a LPAIV H9N2 infection promotes both viral and bacterial replications, while longer incubation promotes only bacterial growth and viral replication, which are significantly decreased as compared to LPAIV H9N2 infection alone. This could be attributed to MG-inducing destruction of cilia, hyperplesia of epithelial cells, and desialytion of the tracheal epithelial cells. These findings could explain the ability of subclinical MG infection in birds, under field conditions, to develop severe respiratory signs with other concurrent live respiratory vaccines. These infections could be attributed to the immune modulation mediated by MG [26]. A high prevalence of LPAIV and MG and/or MS coinfection has been frequently reported in intensified poultry production areas with respiratory manifestation [76,77] that increases the severity of the clinical signs with fibro necrotic cast in the tracheal bifurcation [78].
3.4. Avian Influenza Coinfection with Avian Collibacillosis
Escherichia coli (E. coli) is a gram-negative, non-spore-forming, rod-shaped bacteria that grows both aerobically and anaerobically, and many strains are motile and have peritrichous flagella.
E. coli is a ubiquitous micro-organism that is wildly spread in poultry environments and is a normal inhabitant in poultry microflora. Some E. coli strains such as avian pathogenic E. coli (APEC) cause collibacillosis that could be either systemic or localized. It is widely accepted that Collibacillosis is the most common infectious bacterial diseases of poultry of all ages [79].
Pre-infection of chickens with LPAIV H9N2 and secondary inoculation with E. coli four days later was reported to induce significantly higher AIV antibodies 2 weeks post-infection (wpi) compared to secondary infection with IB or ORT. Furthermore, in the pre-infected group, a prolonged virus shedding up to 14 dpi was observed as compared to only 7 dpi in the group inoculated with H9N2 alone [80].
Chickens pre-infected with LPAIV H9N2 before being inoculated intrathoracically with 1.6 × 109 cfu/ bird of E. Coli (Bekaa Valley of the Lebanon (BVL-strain) three days later showed significant early mortality with more predominant clinical signs (conjunctivitis, diarrhea, ocular exudates, and rales) and gross lesions (abdominal airsacculitis, left thoracic airsacculitis, pericarditis, right thoracic airsacculitis and tracheitis) compared to groups that received lower E. coli count in the challenge [81].
4. Perspectives and Future Directions
The articles discussed in this review recapitulate the adverse impacts of co/secondary viral and/or bacterial infections on AIVs infection in poultry, as well as the synergy between different pathogens (Table 1). Moreover, this review provides important insights into the variation in the rates of severe morbidity and/or mortality that subsequently occur in the case of co-infection or pre-infection with another bacterial or viral pathogen. Coinfection with AIVs and a bacterial pathogen can exacerbate the course of the viral or bacterial disease.
Table 1.
Summary of the impact of co-infection/interference of different bacterial and viral pathogens on avian influenza viruses.
It has also been documented that AI-related bacterial and viral infections overall may account for up to a remarkable percent of reported cases under field conditions in different countries. In developing countries, where less biosafety measures are applied, this percentage is much higher, leading to severe economic losses in the poultry industry. This could also blur syndromic surveillance. We recommend the diagnosis of more pathogens during the inspection of an infected poultry flock that could be varied due to co-infection or pre-infection history. Moreover, the application of good biosafety and biosecurity measures is likely to reduce the severity of co-infection, and can restrict the widespread transmission of those bacterial and viral pathogens. In conclusion, this review may hopefully contribute to future knowledge regarding the diagnosis and control of avian disease among different poultry sectors.
Acknowledgments
We acknowledge Tomas Edgren for his fruitful discussion and helpful comments on this written work.
Author Contributions
Ahmed Samy and Mahmoud Naguib collected the data and wrote the paper.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Thomas, J.K.; Noppenberger, J. Avian influenza: A review. Am. J. Health Syst. Pharm. 2007, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Kalthoff, D.; Globig, A.; Beer, M. (Highly pathogenic) avian influenza as a zoonotic agent. Vet. Microbiol. 2010, 140, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Imai, M.; Herfst, S.; Sorrell, E.M.; Schrauwen, E.J.; Linster, M.; De Graaf, M.; Fouchier, R.A.; Kawaoka, Y. Transmission of influenza a/h5n1 viruses in mammals. Virus Res. 2013, 178, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Suarez, D.L.; Sims, L.D. Influenza. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Willey-Blackwell: Hoboken, NJ, USA, 2013; pp. 181–218. [Google Scholar]
- Kuiken, T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc. Biol. Sci. 2013, 280, 20130990. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, D.A. Control of low pathogenicity avian influenza. In Avian Influenza; Swayne, D.E., Ed.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 513–536. [Google Scholar]
- Peiris, J.S.M.; de Jong, M.D.; Guan, Y. Avian influenza virus (H5N1): A threat to human health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Smith, G.J.; Webby, R.; Webster, R.G. Molecular epidemiology of H5N1 avian influenza. Rev. Sci. Tech. 2009, 28, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Bahl, J.; Torchetti, M.K.; Killian, M.L.; Ip, H.S.; DeLiberto, T.J.; Swayne, D.E. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Shortridge, K.F.; Krauss, S.; Webster, R.G. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc. Natl. Acad. Sci. USA 1999, 96, 9363–9367. [Google Scholar] [CrossRef] [PubMed]
- Gerloff, N.A.; Khan, S.U.; Balish, A.; Shanta, I.S.; Simpson, N.; Berman, L.; Haider, N.; Poh, M.K.; Islam, A.; Gurley, E.; et al. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh. Virology 2014, 450–451, 297–307. [Google Scholar] [CrossRef] [PubMed]
- El Zowalaty, M.E.; Chander, Y.; Redig, P.T.; Abd El Latif, H.K.; El Sayed, M.A.; Goyal, S.M. Selective isolation of avian influenza virus (AIV) from cloacal samples containing aiv and newcastle disease virus. J. Vet. Diagn. Investig. 2011, 23, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Stipkovits, L.; Egyed, L.; Palfi, V.; Beres, A.; Pitlik, E.; Somogyi, M.; Szathmary, S.; Denes, B. Effect of low-pathogenicity influenza virus H3N8 infection on Mycoplasma gallisepticum infection of chickens. Avian Pathol. 2012, 41, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Haghighat-Jahromi, M.; Asasi, K.; Nili, H.; Dadras, H.; Shooshtari, A.H. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine. Arch. Virol. 2008, 153, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Roussan, D.A.; Haddad, R.; Khawaldeh, G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan. Poult. Sci. 2008, 87, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Franca, M.; Howerth, E.W.; Carter, D.; Byas, A.; Poulson, R.; Afonso, C.L.; Stallknecht, D.E. Co-infection of mallards with low-virulence Newcastle disease virus and low-pathogenic avian influenza virus. Avian Pathol. 2014, 43, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Bakaletz, L.O. Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol. 1995, 3, 110–114. [Google Scholar] [CrossRef]
- Wilson, R.; Dowling, R.; Jackson, A. The biology of bacterial colonization and invasion of the respiratory mucosa. Eur. Respir. J. 1996, 9, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- El Ahmer, O.R.; Raza, M.W.; Ogilvie, M.M.; Weir, D.M.; Blackwell, C.C. Binding of bacteria to hep-2 cells infected with influenza a virus. FEMS Immunol. Med. Microbiol. 1999, 23, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Debets-Ossenkopp, Y.; Mills, E.L.; Van Dijk, W.C.; Verbrugh, H.A.; Verhoef, J. Effect of influenza viras on phagocytic cells. Eur. J. Clin. Microbiol. 1982, 1, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Engelich, G.; White, M.; Hartshorn, K.L. Role of the respiratory burst in co-operative reduction in neutrophil survival by influenza A virus and Escherichia coli. J. Med. Microbiol. 2002, 51, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Navarini, A.A.; Recher, M.; Lang, K.S.; Georgiev, P.; Meury, S.; Bergthaler, A.; Flatz, L.; Bille, J.; Landmann, R.; Odermatt, B.; et al. Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl. Acad. Sci. USA 2006, 103, 15535–15539. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Smith, R.P.; Srimani, J.K.; Riccione, K.A.; Prasada, S.; Kuehn, M.; You, L. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol. Syst. Biol. 2012, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Ciborowski, P.; Reinacher, M.; Pulverer, G.; Klenk, H.D.; Rott, R. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology 1987, 157, 421–430. [Google Scholar] [CrossRef]
- Kishida, N.; Sakoda, Y.; Eto, M.; Sunaga, Y.; Kida, H. Co-infection of staphylococcus aureus or haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch. Virol. 2004, 149, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Sid, H.; Hartmann, S.; Petersen, H.; Ryll, M.; Rautenschlein, S. Mycoplasma gallisepticum modifies the pathogenesis of influenza a virus in the avian tracheal epithelium. Int. J. Med. Microbiol. 2016, 306, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [PubMed]
- Böttcher-Friebertshäuser, E.; Garten, W.; Matrosovich, M.; Klenk, H.D. The hemagglutinin: A determinant of pathogenicity. In Influenza Pathogenesis and Control-Volume I; Compans, R.W., Oldstone, M.B.A., Eds.; Springer: Cham, Switzerland, 2014; pp. 3–34. [Google Scholar]
- Akaike, T.; Molla, A.; Ando, M.; Araki, S.; Maeda, H. Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice. J. Virol. 1989, 63, 2252–2259. [Google Scholar] [PubMed]
- Scheiblauer, H.; Reinacher, M.; Tashiro, M.; Rott, R. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J. Infect. Dis. 1992, 166, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Callan, R.J.; Hartmann, F.A.; West, S.; Hinshaw, V.S. Cleavage of influenza a virus H1 hemagglutinin by swine respiratory bacterial proteases. J. Virol. 1997, 71, 7579–7585. [Google Scholar] [PubMed]
- Byrum, B.; Slemons, R.D. Detection of proteolytic bacteria in the upper respiratory tract flora of poultry. Avian Dis. 1995, 39, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Dianzani, F. Viral interference and interferon. Ric. Clin. Lab. 1975, 5, 196–213. [Google Scholar] [PubMed]
- DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A systematic approach to virus-virus interactions. Virus Res. 2010, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Arafa, A.S.; Hagag, N.M.; Yehia, N.; Zanaty, A.M.; Naguib, M.M.; Nasef, S.A. Effect of cocirculation of highly pathogenic avian influenza H5N1 subtype with low pathogenic H9N2 subtype on the spread of infections. Avian Dis. 2012, 56, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Webster, R.G. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J. Virol. 2001, 75, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Khalenkov, A.; Perk, S.; Panshin, A.; Golender, N.; Webster, R.G. Modulation of the severity of highly pathogenic H5N1 influenza in chickens previously inoculated with Israeli H9N2 influenza viruses. Virology 2009, 383, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.M.; Grund, C.; Arafa, A.S.; Abdelwhab, E.M.; Beer, M.; Harder, T.C. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not. J. Gen. Virol. 2017, 98, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Jackwood, M.W. Review of infectious bronchitis virus around the world. Avian Dis. 2012, 56, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.K.; Jackwood, M.; Jones, R.C. The long view: 40 Years of infectious bronchitis research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.E.; Shany, S.A.; Ali, A.; Dahshan, A.H.; El-Sawah, A.A.; El-Kady, M.F. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult. Sci. 2016, 95, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, I.N.; de Vries, R.P.; Grone, A.; de Haan, C.A.; Verheije, M.H. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J. Virol. 2011, 85, 8903–8912. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Brierley, I.; Brown, T.D. Identification of a trypsin-like serine proteinase domain encoded by ORF 1a of the coronavirus IBV. Adv. Exp. Med. Biol. 1995, 380, 405–411. [Google Scholar] [PubMed]
- Naguib, M.M.; El-Kady, M.F.; Lüschow, D.; Hassan, K.E.; Arafa, A.-S.; El-Zanaty, A.; Hassan, M.K.; Hafez, H.M.; Grund, C.; Harder, T.C. New real time and conventional RT-PCRs for updated molecular diagnosis of infectious bronchitis virus infection (IBV) in chickens in Egypt associated with frequent co-infections with avian influenza and Newcastle disease viruses. J. Virol. Meth. 2017, 245, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Seifi, S.; Asasi, K.; Mohammadi, A. An experimental study on broiler chicken co-infected with the specimens containing avian influenza (H9 subtype) and infectious bronchitis (4/91 strain) viruses. Iran. J. Vet. Res. 2012, 13, 138–142. [Google Scholar]
- Miller, P.J.; Koch, G. Newcastle disease, other avian paramyxoviruses and avian metapneumovirus infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 89–138. [Google Scholar]
- Heiden, S.; Grund, C.; Röder, A.; Granzow, H.; Kühnel, D.; Mettenleiter, T.C.; Römer-Oberdörfer, A. Different regions of the Newcastle disease virus fusion protein modulate pathogenicity. PLoS ONE 2014, 9, e113344. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. The epidemiology and control of avian influenza and Newcastle disease. J. Comp. Pathol. 1995, 112, 105–126. [Google Scholar] [CrossRef]
- Shortridge, K.F.; King, A.P. Cocultivation of avian orthomyxoviruses and paramyxoviruses in embryonated eggs: Implications for surveillance studies. Appl. Environ. Microbiol. 1983, 45, 463–467. [Google Scholar] [PubMed]
- Suzuki, Y. Receptor and molecular mechanism of the host range variation of influenza viruses. Uirusu 2001, 51, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Dortmans, J.C.; Koch, G.; Rottier, P.J.; Peeters, B.P. Virulence of Newcastle disease virus: What is known so far? Vet. Res. 2011, 42, 122. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.; Azeem, T.; Abid, A.S.; Mushtaq, A.; Kiran, A.; Qayyum, M.R.; Rehman, A. Effect of lentogenic Newcastle disease virus (Lasota) on low pathogenic avian influenza virus (H9N2) infection in fayoumi chicken. J. Avian Res. 2015, 1, 1–4. [Google Scholar]
- Costa-Hurtado, M.; Afonso, C.L.; Miller, P.J.; Spackman, E.; Kapczynski, D.R.; Swayne, D.E.; Shepherd, E.; Smith, D.; Zsak, A.; Pantin-Jackwood, M. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet. Res. 2014, 45, 1. [Google Scholar] [CrossRef] [PubMed]
- Costa-Hurtado, M.; Afonso, C.L.; Miller, P.J.; Shepherd, E.; Cha, R.M.; Smith, D.; Spackman, E.; Kapczynski, D.R.; Suarez, D.L.; Swayne, D.E.; et al. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens. Vet. Res. 2015, 46, 97. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J.; Costa-Hurtado, M.; Miller, P.J.; Afonso, C.L.; Spackman, E.; Kapczynski, D.R.; Shepherd, E.; Smith, D.; Swayne, D.E. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses. Vet. Microbiol. 2015, 177, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Ciborowski, P.; Klenk, H.; Pulverer, G.; Rott, R. Role of staphylococcus protease in the development of influenza pneumonia. Nature 1987, 325, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Longping, V.T.; Whittaker, G.R. Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase. Virology 2015, 482, 1–8. [Google Scholar]
- Türkyilmaz, S. Isolation and serotyping of ornithobacterium rhinotracheale from poultry. Turk. J. Vet. Anim. Sci. 2006, 29, 1299–1304. [Google Scholar]
- Popy, N.; Asaduzzaman, M.; Miah, M.; Siddika, A.; Sufian, M.; Hossain, M. Pathological study on the upper respiratory tract infection of chickens and isolation, identification of causal bacteria. Bangladesh Vet. 2012, 28, 60–69. [Google Scholar] [CrossRef]
- Van Empel, P.; Hafez, H. Ornithobacterium rhinotracheale: A review. Avian Pathol. 1999, 28, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Amonsin, A.; Wellehan, J.; Li, L.L.; Vandamme, P.; Lindeman, C.; Edman, M.; Robinson, R.A.; Kapur, V. Molecular epidemiology of Ornithobacterium rhinotracheale. J. Clin. Microbiol. 1997, 35, 2894–2898. [Google Scholar] [PubMed]
- Charlton, B.R.; Channing-Santiago, S.E.; Bickford, A.A.; Cardona, C.J.; Chin, R.P.; Cooper, G.L.; Droual, R.; Jeffrey, J.S.; Meteyer, C.U.; Shivaprasad, H. Preliminary characterization of a pleomorphic gram-negative rod associated with avian respiratory disease. J. Vet. Diagn. Investig. 1993, 5, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.; Hommez, J.; Vandamme, P.; Kersters, K.; Haesebrouck, F. In vitro antibiotic sensitivity of Ornithobacterium rhinotracheale strains from poultry and wild birds. Vet. Rec. 1995, 137, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.M.; Lierz, M. Ornithobacterium rhinotracheale in nestling falcons. Avian Dis. 2010, 54, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.; Chacón, G.; Villa, A.; Fernández, A.; Vela, A.; Fernández-Garayzábal, J.; Ferré, S.; Gracia, E. Nervous signs associated with otitis and cranial osteomyelitis and with Ornithobacterium rhinotracheale infection in red-legged partridges (Alectoris rufa). Avian Pathol. 2009, 38, 341–347. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsai, H.-J.; Huang, C.-W. Phenotypic and molecular characterization of isolates of Ornithobacterium rhinotracheale from chickens and pigeons in Taiwan. Avian Dis. 2006, 50, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.P.; van Empel, P.C.M.; Hafez, H.M. Ornithobacterium rhinotracheale infection. In Diseases of Poultry, 11th ed.; Saif, Y.M., Barnes, H.J., Glisson, J.R., Eds.; Iowa State University Press: Ames, IA, USA, 2003; pp. 683–690. [Google Scholar]
- Pan, Q.; Liu, A.; Zhang, F.; Ling, Y.; Ou, C.; Hou, N.; He, C. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus. BMC Vet. Res. 2012, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Azizpour, A.; Goudarzi, H.; Charkhkar, S.; Momayez, R.; Hablolvarid, M. Experimental study on tissue tropism and dissemination of H9N2 avian influenza virus and Ornithobacterium rhinotracheale co-infection in SPF chickens. J. Anim. Plant Sci. 2014, 24, 1655–1662. [Google Scholar]
- Ferguson-Noel, N. Introduction: Mycoplasmosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Wiley-Blackwell: Ames, IA, USA, 2013; pp. 875–876. [Google Scholar]
- Oie, A. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Office International des Epizooties: Paris, France, 2008; pp. 525–541. [Google Scholar]
- Bradbury, J.M. Avian mycoplasma infections: Prototype of mixed infections with mycoplasmas, bacteria and viruses. In Annales de l’Institut Pasteur/Microbiologie; Elsevier Masson: Paris, France, 1984; pp. 83–89. [Google Scholar]
- Stipkovits, L.; Glavits, R.; Palfi, V.; Beres, A.; Egyed, L.; Denes, B.; Somogyi, M.; Szathmary, S. Pathologic lesions caused by coinfection of Mycoplasma gallisepticum and H3N8 low pathogenic avian influenza virus in chickens. Vet. Pathol. 2012, 49, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Roussan, D.A.; Khawaldeh, G.; Shaheen, I.A. A survey of Mycoplasma gallisepticum and Mycoplasma synovaie with avian influenza H9 subtype in meat-type chicken in Jordan between 2011–2015. Poult. Sci. 2015, 94, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Sid, H.; Benachour, K.; Rautenschlein, S. Co-infection with multiple respiratory pathogens contributes to increased mortality rates in Algerian poultry flocks. Avian Dis. 2015, 59, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Nili, H.; Asasi, K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol. 2002, 31, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.K.; Barnes, H.J.; Vaillancourt, J.-P.; Abdul-Aziz, T.; Logue, C.M. Colibacillosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Eds.; Wiley-Blackwell Press: Ames, IA, USA, 2013; pp. 751–805. [Google Scholar]
- Bano, S.; Naeem, K.; Malik, S. Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis. 2003, 47, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Barbour, E.K.; Mastori, F.A.; Nour, A.M.A.; Shaib, H.A.; Jaber, L.S.; Yaghi, R.H.; Sabra, A.; Sleiman, F.T.; Sawaya, R.K.; Niedzwieck, A. Standardisation of a new model of H9N2/Escherichia coli challenge in broilers in the Lebanon. Vet. Ital. 2009, 45, 317–322. [Google Scholar] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).