Hepatic Gene Expression of Angiogenic and Regeneration Markers in Cats with Congenital Portosystemic Shunts (CPSS)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment & Ethical Approval
2.2. RNA Extraction and Multiplexed Reverse Transcription PCR (XP-PCR)
2.3. Data Presentation & Analysis
3. Results
3.1. Clinical Information
3.2. Hepatic Gene Expression in Control Cats and CPSS Cats
3.3. Comparison of Hepatic Gene Expression in CPSS Cats That Tolerated Complete or Partial Shunt Attenuation at First Surgery
3.4. Hepatic Gene Expression in Cats with CPSS Does Not Change Following Shunt Attenuation Surgery
3.5. Hepatic Gene Expression Cats with CPSS Does Not Correlate with Pre-Operative Ammonia Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konstantinidis, A.O.; Adamama-Moraitou, K.K.; Patsikas, M.N.; Papazoglou, L.G. Congenital Portosystemic Shunts in Dogs and Cats: Treatment, Complications and Prognosis. Vet. Sci. 2023, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, M. Unusual haemodynamics in two dogs and two cats with portosystemic shunt–implications for distinguishing between congenital and acquired conditions. Open Vet. J. 2017, 7, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.J.; Walsh, V.P.; Braddock, J.A. Congenital portosystemic shunts in dogs and cats. N. Z. Vet. J. 2004, 52, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, A.O.; Patsikas, M.N.; Papazoglou, L.G.; Adamama-Moraitou, K.K. Congenital Portosystemic Shunts in Dogs and Cats: Classification, Pathophysiology, Clinical Presentation and Diagnosis. Vet. Sci. 2023, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Tivers, M.; Lipscomb, V. Congenital portosystemic shunts in cats: Investigation, diagnosis and stabilisation. J. Feline Med. Surg. 2011, 13, 173–184. [Google Scholar] [CrossRef]
- Ruland, K.; Fischer, A.; Hartmann, K. Sensitivity and specificity of fasting ammonia and serum bile acids in the diagnosis of portosystemic shunts in dogs and cats. Vet. Clin. Pathol. 2010, 39, 57–64. [Google Scholar] [CrossRef]
- Tivers, M.S.; Handel, I.; Gow, A.G.; Lipscomb, V.J.; Jalan, R.; Mellanby, R.J. Hyperammonemia and systemic inflammatory response syndrome predicts presence of hepatic encephalopathy in dogs with congenital portosystemic shunts. PLoS ONE 2014, 9, e82303. [Google Scholar] [CrossRef]
- Tivers, M.; Lipscomb, V. Congenital portosystemic shunts in cats: Surgical management and prognosis. J. Feline Med. Surg. 2011, 13, 185–194. [Google Scholar] [CrossRef]
- Janas, K.E.A.; Tobias, K.M.; Aisa, J. Clinical outcomes for 20 cats with congenital extrahepatic portosystemic shunts treated with ameroid constrictor ring attenuation (2002–2020). Vet. Surg. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Tillson, D.M.; Winkler, J.T. Diagnosis and treatment of portosystemic shunts in the cat. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 881–899, vi–vii. [Google Scholar] [CrossRef]
- Lipscomb, V.J.; Lee, K.C.; Lamb, C.R.; Brockman, D.J. Association of mesenteric portovenographic findings with outcome in cats receiving surgical treatment for single congenital portosystemic shunts. J. Am. Vet. Med. Assoc. 2009, 234, 221–228. [Google Scholar] [CrossRef]
- Kummeling, A.; Vrakking, D.J.; Rothuizen, J.; Gerritsen, K.M.; van Sluijs, F.J. Hepatic volume measurements in dogs with extrahepatic congenital portosystemic shunts before and after surgical attenuation. J. Vet. Intern. Med. 2010, 24, 114–119. [Google Scholar] [CrossRef]
- Stieger, S.M.; Zwingenberger, A.; Pollard, R.E.; Kyles, A.E.; Wisner, E.R. Hepatic volume estimation using quantitative computed tomography in dogs with portosystemic shunts. Vet. Radiol. Ultrasound. 2007, 48, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Tivers, M.S.; House, A.K.; Smith, K.C.; Wheeler-Jones, C.P.; Lipscomb, V.J. Markers of angiogenesis associated with surgical attenuation of congenital portosystemic shunts in dogs. J. Vet. Intern. Med. 2014, 28, 1424–1432. [Google Scholar] [CrossRef]
- Tivers, M.S.; Lipscomb, V.J.; Smith, K.C.; Wheeler-Jones, C.P.; House, A.K. Lipopolysaccharide and toll-like receptor 4 in dogs with congenital portosystemic shunts. Vet. J. 2015, 206, 404–413. [Google Scholar] [CrossRef]
- Tivers, M.S.; Lipscomb, V.J.; Smith, K.C.; Wheeler-Jones, C.P.; House, A.K. Markers of hepatic regeneration associated with surgical attenuation of congenital portosystemic shunts in dogs. Vet. J. 2014, 200, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kummeling, A.; Penning, L.C.; Rothuizen, J.; Brinkhof, B.; Weber, M.F.; van Sluijs, F.J. Hepatic gene expression and plasma albumin concentration related to outcome after attenuation of a congenital portosystemic shunt in dogs. Vet. J. 2012, 191, 383–388. [Google Scholar] [CrossRef]
- Spee, B.; Penning, L.C.; van den Ingh, T.S.; Arends, B.; Ijzer, J.; van Sluijs, F.J.; Rothuizen, J. Regenerative and fibrotic pathways in canine hepatic portosystemic shunt and portal vein hypoplasia, new models for clinical hepatocyte growth factor treatment. Comp. Hepatol. 2005, 4, 7. [Google Scholar] [CrossRef]
- Van den Bossche, L.; van Steenbeek, F.G.; Weber, M.F.; Spee, B.; Penning, L.C.; van Sluijs, F.J.; Zomerdijk, F.; Groot Koerkamp, M.J.A.; Rothuizen, J.; Burgener, I.A.; et al. Genome-wide based model predicting recovery from portosystemic shunting after liver shunt attenuation in dogs. J. Vet. Intern. Med. 2018, 32, 1343–1352. [Google Scholar] [CrossRef]
- Van den Bossche, L.; Schoonenberg, V.A.C.; Burgener, I.A.; Penning, L.C.; Schrall, I.M.; Kruitwagen, H.S.; van Wolferen, M.E.; Grinwis, G.C.M.; Kummeling, A.; Rothuizen, J.; et al. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts. PLoS ONE 2017, 12, e0186491. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.A.; Serrano Creheut, T. Postattenuation neurologic signs after surgical correction of congenital portosystemic shunts in cats: A narrative review. Vet. Surg. 2023, 52, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.S.; Jaffey, J.A.; Evans, J. Flumazenil Treatment for Diazepam-Associated Neurological Signs in a Cat with a Portosystemic Shunt. Top. Companion Anim. Med. 2023, 56–57, 100806. [Google Scholar] [CrossRef] [PubMed]
- Niemann, L.; Beckmann, K.; Iannucci, C.; Wang Leandro, A.; Vigani, A. Diagnosis of post-attenuation neurological signs syndrome in a cat with refractory status epilepticus and clinical response to therapeutic plasma exchange. JFMS Open Rep. 2022, 8, 20551169221121919. [Google Scholar] [CrossRef] [PubMed]
- Valiente, P.; Trehy, M.; White, R.; Nelissen, P.; Demetriou, J.; Stanzani, G.; de la Puerta, B. Complications and outcome of cats with congenital extrahepatic portosystemic shunts treated with thin film: Thirty-four cases (2008–2017). J. Vet. Intern. Med. 2020, 34, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Cabassu, J.; Seim, H.B., 3rd; MacPhail, C.M.; Monnet, E. Outcomes of cats undergoing surgical attenuation of congenital extrahepatic portosystemic shunts through cellophane banding: 9 cases (2000–2007). J. Am. Vet. Med. Assoc. 2011, 238, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Strickland, R.; Tivers, M.S.; Fowkes, R.C.; Lipscomb, V.J. Incidence and risk factors for neurological signs after attenuation of a single congenital portosystemic shunt in 50 cats. Vet. Surg. 2021, 50, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Scudder, C.J.; Mirczuk, S.M.; Richardson, K.M.; Crossley, V.J.; Regan, J.T.C.; Gostelow, R.; Forcada, Y.; Hazuchova, K.; Harrington, N.; McGonnell, I.M.; et al. Pituitary Pathology and Gene Expression in Acromegalic Cats. J. Endocr. Soc. 2019, 3, 181–200. [Google Scholar] [CrossRef]
- Swinbourne, F.; Smith, K.C.; Lipscomb, V.J.; Tivers, M.S. Histopathological findings in the livers of cats with a congenital portosystemic shunt before and after surgical attenuation. Vet. Rec. 2013, 172, 362. [Google Scholar] [CrossRef]
- van Straten, G.; van Steenbeek, F.G.; Grinwis, G.C.; Favier, R.P.; Kummeling, A.; van Gils, I.H.; Fieten, H.; Koerkamp, M.J.A.G.; Holstege, F.C.P.; Rothuizen, J.; et al. Aberrant expression and distribution of enzymes of the urea cycle and other ammonia metabolizing pathways in dogs with congenital portosystemic shunts. PLoS ONE 2014, 9, e100077. [Google Scholar] [CrossRef]
- Kruitwagen, H.S.; Arends, B.; Spee, B.; Brinkhof, B.; van den Ingh, T.S.; Rutten, V.P.; Penning, L.C.; Roskams, T.; Rothuizen, J. Recombinant hepatocyte growth factor treatment in a canine model of congenital liver hypoplasia. Liver Int. 2011, 31, 940–949. [Google Scholar] [CrossRef]
- Washizu, T.; Tanaka, A.; Sako, T.; Washizu, M.; Arai, T. Comparison of the activities of enzymes related to glycolysis and gluconeogenesis in the liver of dogs and cats. Res. Vet. Sci. 1999, 67, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H. Feline drug metabolism and disposition: Pharmacokinetic evidence for species differences and molecular mechanisms. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1039–1054. [Google Scholar] [CrossRef]
- Lee, K.C.; Lipscomb, V.J.; Lamb, C.R.; Gregory, S.P.; Guitian, J.; Brockman, D.J. Association of portovenographic findings with outcome in dogs receiving surgical treatment for single congenital portosystemic shunts: 45 cases (2000–2004). J. Am. Vet. Med. Assoc. 2006, 229, 1122–1129. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Tivers, M.S.; Lipscomb, V.J.; Scase, T.J.; Priestnall, S.L.; House, A.K.; Gates, H.; Wheeler-Jones, C.P.D.; Smith, K.C. Vascular endothelial growth factor (VEGF) and VEGF receptor expression in biopsy samples of liver from dogs with congenital portosystemic shunts. J. Comp. Pathol. 2012, 147, 55–61. [Google Scholar] [CrossRef]
- Nascimento, C.; Gameiro, A.; Ferreira, J.; Correia, J.; Ferreira, F. Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers 2021, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Brinker, E.J.; Towns, T.J.; Watanabe, R.; Ma, X.; Bashir, A.; Cole, R.C.; Wang, X.; Graff, E.C. Direct activation of the fibroblast growth factor-21 pathway in overweight and obese cats. Front. Vet. Sci. 2023, 10, 1072680. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lu, W.; Lin, T.; You, P.; Ye, M.; Huang, Y.; Jiang, X.; Wang, C.; Wang, F.; Lee, M.H.; et al. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol. 2013, 13, 67. [Google Scholar] [CrossRef]
- Flippo, K.H.; Potthoff, M.J. Metabolic Messengers: FGF21. Nat. Metab. 2021, 3, 309–317. [Google Scholar] [CrossRef]
- Ma, S.L.; Li, A.J.; Hu, Z.Y.; Shang, F.S.; Wu, M.C. Co-expression of the carbamoyl-phosphate synthase 1 gene and its long non-coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol. Med. Rep. 2015, 12, 7915–7926. [Google Scholar] [CrossRef]
- Carter, W.G.; Vigneswara, V.; Newlaczyl, A.; Wayne, D.; Ahmed, B.; Saddington, S.; Brewer, C.; Raut, N.; Gerdes, H.K.; Erdozain, A.M.; et al. Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury. Biochem. Biophys. Res. Commun. 2015, 458, 626–631. [Google Scholar] [CrossRef]
- Nitzahn, M.; Lipshutz, G.S. CPS1: Looking at an ancient enzyme in a modern light. Mol. Genet. Metab. 2020, 131, 289–298. [Google Scholar] [CrossRef]
- Khoja, S.; Nitzahn, M.; Hermann, K.; Truong, B.; Borzone, R.; Willis, B.; Rudd, M.; Palmer, D.J.; Ng, P.; Brunetti-Pierri, N.; et al. Conditional disruption of hepatic carbamoyl phosphate synthetase 1 in mice results in hyperammonemia without orotic aciduria and can be corrected by liver-directed gene therapy. Mol. Genet. Metab. 2018, 124, 243–253. [Google Scholar] [CrossRef]
- Zoran, D.L. The carnivore connection to nutrition in cats. J. Am. Vet. Med. Assoc. 2002, 221, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Dor, C.; Adamany, J.L.; Kisielewicz, C.; de Brot, S.; Erles, K.; Dhumeaux, M.P. Acquired urea cycle amino acid deficiency and hyperammonaemic encephalopathy in a cat with inflammatory bowel disease and chronic kidney disease. JFMS Open Rep. 2018, 4, 2055116918786750. [Google Scholar] [CrossRef] [PubMed]
- Torriglia, A.; Martin, E.; Jaadane, I. The hidden side of SERPINB1/Leukocyte Elastase Inhibitor. Semin. Cell Dev. Biol. 2017, 62, 178–186. [Google Scholar] [CrossRef]
- Cui, X.; Liu, Y.; Wan, C.; Lu, C.; Cai, J.; He, S.; Ni, T.; Zhu, J.; Wei, L.; Zhang, Y.; et al. Decreased expression of SERPINB1 correlates with tumor invasion and poor prognosis in hepatocellular carcinoma. J. Mol. Histol. 2014, 45, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation, and immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef]
- Day, A.; Jameson, Z.; Hyde, C.; Simbi, B.; Fowkes, R.; Lawson, C. C-Type Natriuretic Peptide (CNP) Inhibition of Interferon-γ-Mediated Gene Expression in Human Endothelial Cells In Vitro. Biosensors 2018, 8, 86. [Google Scholar] [CrossRef]
- Read, J.E.; Cabrera-Sharp, V.; Offord, V.; Mirczuk, S.M.; Allen, S.P.; Fowkes, R.C.; de Mestre, A.M. Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 2018, 156, 313–330. [Google Scholar] [CrossRef]
- Thomas, R.P.; Guigneaux, M.; Wood, T.; Evers, B.M. Age-associated changes in gene expression patterns in the liver. J. Gastrointest. Surg. 2002, 6, 445–453; discussion 454. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession Number | Product Position (5′—3′) (bp) | Primer Sequences (5′—3′) (Forward and Reverse) | Product Size (including Universal Tag) (bp) |
---|---|---|---|---|
HIF1A | XM_003987716.1 | 576—675 | AGGTGACACTATAGAATATCACTGCACAGGCCATATTC CGAACCACGACTAAACACTTAGGGATATCACTCAGCATG | 137 |
ILβ | NM_001077414 | 354—461 | AGGTGACACTATAGAATAATCTGTGACACGTGGGATGA ACCACGACAGACCGAGTATGAGGGATATCACTCAGCATG | 145 |
IL6 | NM_001009211 | 446—575 | AGGTGACACTATAGAATAAGATGCTGAAGCGTAAGGGA TTGTTAGTGGAGTGGGAAGCAGGGATATCACTCAGCATG | 167 |
SERPINB1 | XM_003985852 | 199—343 | AGGTGACACTATAGAATAAGCATTGGCCATGATCTTTC TTGCGCCTCGGAGGATATAAAGGGATATCACTCAGCATG | 182 |
RPS7 | NM_001009832 | 100—222 | AGGTGACACTATAGAATATGGAGATGAACTCCGACCTC AGGGCAAGGAGTTGACTTCAAGGGATATCACTCAGCATG | 160 |
TGFβ | XM_003997774 | 1537—1683 | AGGTGACACTATAGAATAATCAACGGGTTCAGTTCCAG CTCGGGACCTGTGGTTGATGAGGGATATCACTCAGCATG | 184 |
VEGFR2 | XM_011281879 | 2739—2839 | AGGTGACACTATAGAATAGCCTTATGATGCCAGCAAGT TCACTAGCTTCGTCTACGGAAGGGATATCACTCAGCATG | 138 |
CPS1 | XM_003991105 | 1306—1457 | AGGTGACACTATAGAATACCACAATCACATCGGTTCTG GGCATTTTCGGTACTTCCTTAGGGATATCACTCAGCATG | 189 |
NPPA | XM_003989498 | 217—324 | AGGTGACACTATAGAATAGTCAGCTCTTGTGGCAAACA AAACCTCCTGTTCTACGGAAAGGGATATCACTCAGCATG | 145 |
NPPC | XM_003991256 | 101—231 | AGGTGACACTATAGAATATGCTCACGCTACTCTCGCT CAGTCTTCTTCCCGCTGTTTAGGGATATCACTCAGCATG | 168 |
NPR1 | XM_003999769 | 2366—2481 | AGGTGACACTATAGAATATCCAGGATGGAGTCTAACGG GCTCCCCTGCATCTTTACTTAGGGATATCACTCAGCATG | 153 |
NPR2 | XM_003995612 | 1559—1696 | AGGTGACACTATAGAATACTTTGACTTGGACGACCCAT TTCGACTACGACCTCTTCCTAGGGATATCACTCAGCATG | 175 |
FGF21 | XM_003997528 | 134—294 | AGGTGACACTATAGAATATTCGACAGCGGTTCCTCTAC AAGTTTAGAACCCCCAGTTTAGGGATATCACTCAGCATG | 198 |
HGF | NM_001009830 | 1835—2004 | AGGTGACACTATAGAATACCTGCTGTCCTGGATGATTT TACCCCTTACTCTTTACGTCAGGGATATCACTCAGCATG | 207 |
NAGS | XM_0112389272.1 | 805—992 | AGGTGACACTATAGAATACTCTTCAGCAACAAGGGGTC AGGCAGATGCAGAGACTCCCAGGGATATCACTCAGCATG | 225 |
Cat | Shunt Type | Age (days) | Sex | Breed | Attenuation | Interval between Surgeries (Days) |
1 | Extrahepatic | 180 | ME | Maine Coon | Partial | |
2 | Extrahepatic | 347 | ME | DSH | Complete | |
3 | Extrahepatic | 186 | ME | DLH | Partial | |
4 | Intrahepatic | 275 | MN | DSH | Partial | |
5 | Extrahepatic | 336 | MN | Birman | Complete | |
6 | Extrahepatic | 572 | MN | DSH | Complete | |
7 | Extrahepatic | 191 | MN | DSH | Complete | |
8 | Extrahepatic | 180 | ME | DSH | Complete | |
9 | Extrahepatic | 752 | MN | DLH | Partial * | 102 |
10 | Extrahepatic | 198 | FE | DSH | Partial * | 91 |
11 | Intrahepatic | 239 | ME | BSH | Partial | |
12 | Extrahepatic | 184 | MN | DSH | Partial | |
13 | Extrahepatic | 155 | ME | Ragdoll | Partial | |
14 | Intrahepatic | 307 | FE | DSH | Partial * | 110 |
15 | Extrahepatic | 284 | FN | Ragdoll | Partial * | 87 |
16 | Extrahepatic | 228 | ME | DSH | Partial | |
17 | Extrahepatic | 247 | FN | Maine Coon | Partial | |
18 | Intrahepatic | 1309 | FN | Oriental | Partial | |
Control | Timing of Sample Collection | Age (days) | Sex | Breed | Liver Histopathology | |
1 | Surgical | 3061 | FN | DSH | Liver mass (haematoma | |
2 | Post-mortem | 2881 | FN | DLH | Hepatocyte vacuolation | |
3 | Surgical | 5353 | FN | DLH | Biliary cysts | |
4 | Post-mortem | 120 | n/a | DSH | Normal | |
5 | Post-mortem | 2191 | MN | DSH | Normal | |
6 | Post-mortem | n/a | FE | DSH | Normal | |
7 | Post-mortem | 2161 | MN | DSH | Normal | |
8 | Post-mortem | 550 | MN | DLH | Normal | |
9 | Post-mortem | 143 | MN | Ragdoll x | Normal | |
10 | Post-mortem | 303 | MN | DSH | Normal |
Gene | d.f. | r | p |
---|---|---|---|
TGFb | 8 | −0.03 | 0.92 |
VEGFR2 | 8 | 0.18 | 0.62 |
IL1B | 5 | 0.48 | 0.27 |
IL6 | 8 | −0.12 | 0.73 |
NPR1 | 7 | −0.09 | 0.81 |
NPR2 | 8 | 0.36 | 0.35 |
SERPINB1 | 8 | 0.17 | 0.64 |
NAGS | 8 | 0.14 | 0.71 |
NPPA | 8 | 0.27 | 0.46 |
NPPC | nc | nc | nc |
HIF1A | 8 | 0.14 | 0.71 |
HGF | 7 | −0.08 | 0.84 |
CPS1 | 8 | −0.47 | 0.17 |
FGF21 | 7 | −0.41 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tivers, M.S.; Mirczuk, S.M.; Charlesworth, A.; Wood, L.; Barker, E.N.; Lipscomb, V.J.; Fowkes, R.C. Hepatic Gene Expression of Angiogenic and Regeneration Markers in Cats with Congenital Portosystemic Shunts (CPSS). Vet. Sci. 2024, 11, 100. https://doi.org/10.3390/vetsci11030100
Tivers MS, Mirczuk SM, Charlesworth A, Wood L, Barker EN, Lipscomb VJ, Fowkes RC. Hepatic Gene Expression of Angiogenic and Regeneration Markers in Cats with Congenital Portosystemic Shunts (CPSS). Veterinary Sciences. 2024; 11(3):100. https://doi.org/10.3390/vetsci11030100
Chicago/Turabian StyleTivers, Michael S., Samantha M. Mirczuk, Abigail Charlesworth, Lauren Wood, Emi N. Barker, Victoria J. Lipscomb, and Robert C. Fowkes. 2024. "Hepatic Gene Expression of Angiogenic and Regeneration Markers in Cats with Congenital Portosystemic Shunts (CPSS)" Veterinary Sciences 11, no. 3: 100. https://doi.org/10.3390/vetsci11030100
APA StyleTivers, M. S., Mirczuk, S. M., Charlesworth, A., Wood, L., Barker, E. N., Lipscomb, V. J., & Fowkes, R. C. (2024). Hepatic Gene Expression of Angiogenic and Regeneration Markers in Cats with Congenital Portosystemic Shunts (CPSS). Veterinary Sciences, 11(3), 100. https://doi.org/10.3390/vetsci11030100