Postpartum Body Condition Score (BCS) and Lactation Stage (30 and 60 Days) Affecting Essential Fatty Acids (EFA) and Milk Quality of Najdi Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Management of Animals
2.2. Treatments and Design
2.3. Body Condition Measurements
2.4. Collection and Analysis of Milk Samples
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Selmi, H.; Bahri, A.; Rouissi, H. Physiological Basis, Nutritional Requirements, Modelization. In Nutrition for Lactation of Dairy Sheep; IntechOpen: London, UK, 2019; pp. 1–12. [Google Scholar]
- Kumar, V. Genetic and Breeding Aspects of Lactation. In Trends and Advances in Veterinary Genetics; IntechOpen: London, UK, 2017. [Google Scholar]
- Hynes, E.; Ogier, J.-C.; Delacroix-Buchet, A. Protocol for the manufacture of miniature washed-curd cheeses under controlled microbiological conditions. Int. Dairy J. 2000, 10, 733–737. [Google Scholar] [CrossRef]
- Jaeggi, J.J.; Wendorff, W.L.; Romero, J.; Berger, Y.M.; Johnson, M.E. Impact of seasonal changes in ovine milk on composition and yield of a hard-pressed cheese. J. Dairy Sci. 2005, 88, 1358–1363. [Google Scholar] [CrossRef]
- Park, Y.; Juárez, M.; Ramos, M.; Haenlein, G. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef]
- Martínez, M.; Pérez, H.; Pérez Alba, L.; Carrión-Pardo, D.; Gómez-Castro, A. Metabolismo de los lípidos en los rumiantes. REDVET Rev. Electrón. Vet. 2010, 11, 1–21. [Google Scholar]
- Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B. Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput. Electron. Agric. 2008, 60, 226–238. [Google Scholar] [CrossRef]
- Goff, J.; Horst, R. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 1997, 80, 1260–1268. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Small Ruminants. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; China Legal Publishing House: Beijing, China, 2007. [Google Scholar]
- Jefferies, B. Body condition scoring and its use in management. Tasman. J. Agric. 1961, 32, 19–21. [Google Scholar]
- Luna, P.; Juárez, M.; De la Fuente, M. Validation of a rapid milk fat separation method to determine the fatty acid profile by gas chromatography. J. Dairy Res. Sci. 2005, 88, 3377–3381. [Google Scholar] [CrossRef]
- Sbihi, H.; Nehdi, I.; Tan, C.; Al-Resayes, S.J. Characteristics and fatty acid composition of milk fat from Saudi Aradi goat. Grasas Y Aceites 2015, 66, 101. [Google Scholar] [CrossRef]
- Matar, A.; Ayadi, M.; Aljumaah, R.; Nehdi, I.; Sbihi, H.; Souli, A.; Abouheif, M.J. Changes in the composition and fatty acid profile of Najdi ewes’ milk before and after weaning. S. Afr. J. Anim. Sci. 2017, 47, 320–326. [Google Scholar] [CrossRef]
- Addinsoft. XLSAT Statistical and Data Solution. Paris, France. Available online: https://www.xlstat.com (accessed on 23 March 2020).
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef]
- Husted, S.; Nielsen, M.; Blache, D.; Ingvartsen, K. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life. Domest. Anim. Endocrinol. 2008, 34, 419–431. [Google Scholar] [CrossRef]
- Pulina, G.; Nudda, A.; Battacone, G.; Dimauro, C.; Mazzette, A.; Bomboi, G.; Floris, B. Effects of short-term feed restriction on milk yield and composition, and hormone and metabolite profiles in mid-lactation Sarda dairy sheep with different body condition score. Ital. J. Anim. Sci. 2016, 11, e28. [Google Scholar] [CrossRef]
- Gráff, M.; Mikó, E.; Zádori, B.; Csanádi, J. The Relationship between Body Condition and Milk Composition in Dairy Goats. Adv. Res. Life Sci. 2018, 2, 26–29. [Google Scholar] [CrossRef]
- Fiore, E.; Lisuzzo, A.; Tessari, R.; Spissu, N.; Moscati, L.; Morgante, M.; Gianesella, M.; Badon, T.; Mazzotta, E.; Berlanda, M.; et al. Milk Fatty Acids Composition Changes According to beta-Hydroxybutyrate Concentrations in Ewes during Early Lactation. Animals 2021, 11, 1371. [Google Scholar] [CrossRef]
- Nudda, A.; Castanares, N.; Mazzette, A.; Canu, G.; Carboni, G.; Pulina, G. Maternal and fetal fatty acid composition in ovine muscle tissues. Ital. J. Anim. Sci. 2007, 6, 573. [Google Scholar] [CrossRef]
- Loften, J.; Linn, J.; Drackley, J.; Jenkins, T.; Soderholm, C.; Kertz, A.J. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J. Dairy Sci. 2014, 97, 4661–4674. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and Nutritional Regulation of Stearoyl-CoA Desaturase Genes in the Ruminant Mammary Gland: Relationship with Milk Fatty Acid Composition; Springer: Berlin/Heidelberg, Germany, 2013; pp. 161–193. [Google Scholar] [CrossRef]
- Marutsova, V.; Marutsov, P. Subclinical and clinical ketosis in sheep–relationships between body condition scores and blood β-hydroxybutyrate and non-esterified fatty acids concentrations. Tradit. Mod. Vet. Med. 2018, 3, 30–36. [Google Scholar]
- Dimitar, G.; Silviya, I.; Ljubomir, A. Influence of lactation stage on the physicochemical characteristic and fatty acid composition of ewe’s milk of Hoopoe Tsigay breed. In Proceedings of the Scientific Conference with International Participation, Sofia, Bulgaria, 1–3 November 2017. [Google Scholar]
- Inostroza, K.; Bravo, S.; Larama, G.; Saenz, C.; Sepulveda, N. Variation in Milk Composition and Fatty Acid Profile during the Lactation of Araucana Creole Ewes in a Pasture-Based System. Animals 2020, 10, 92. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Koutsouli, P.; Fotakis, C.; Sotiropoulou, G.; Cavouras, D.; Bizelis, I. Assessment of lactation stage and breed effect on sheep milk fatty acid profile and lipid quality indices. Dairy Sci. Technol. 2015, 95, 509–531. [Google Scholar] [CrossRef]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. Rep. 2009, 27, 311–320. [Google Scholar]
- Wilson, G.; Mackenzie, D.; Brookes, I.; Lyon, G. Importance of body tissues as sources of nutrients for milk synthesis in the cow, using 13C as a marker. Br. J. Nutr. 1988, 60, 605–617. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant Factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Baumann, E.; Chouinard, P.Y.; Lebeuf, Y.; Rico, D.E.; Gervais, R. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2016, 99, 6311–6323. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Boaventura Neto, O.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.S.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef]
Nutrition’s | TMR |
---|---|
Chemical composition | |
Dry matter% | 89.96 |
Crude protein% | 13.02 |
ME, Mcal/kg | 2.87 |
NDF% | 37.3 |
ADF% | 24.1 |
Ash% | 12.06 |
Fat% | 2.43 |
Fatty acids profile (g/100g) | |
C6:0 | - |
C8:0 | 0.12 |
C12:0 | - |
C14:0 | 0.12 |
C16:0 | 15.04 |
C16:1 cis 9 | 0.18 |
C17:0 | 0.12 |
C18:0 | 2.29 |
C18:1 trans 11 | 1.29 |
C18:1 cis 9 | 23.70 |
C18:2 cis 9, 12 | 51.43 |
C20:0 | 0.39 |
C18:3 cis 9, 12, 15 | 4.93 |
C22:0 | 0.29 |
C20:4 cis 7, 10, 13, 16 | 0.10 |
Components | Lactation Stage at Day 30 | SEM | p Value | |||
---|---|---|---|---|---|---|
BCS-2.5 | BCS-3 | BCS-3.5 | BCS-4 | |||
Fat | 3.41 | 3.43 | 3.52 | 3.86 | 0.38 | 0.75 |
Protein | 4.05 c | 4.26 ab | 4.37 a | 4.10 b | 0.12 | 0.051 |
Lactose | 4.86 | 5.04 | 4.84 | 4.62 | 0.16 | 0.14 |
TS | 13.08 | 13.03 | 13.21 | 13.38 | 0.44 | 0.89 |
Lactation Stage at day 60 | ||||||
Fat | 3.41 | 3.25 | 3.52 | 3.33 | 0.27 | 0.74 |
Protein | 4.60 b | 4.79 ab | 4.86 a | 4.14 c | 0.17 | 0.01 |
Lactose | 5.27 | 4.65 | 4.95 | 4.50 | 0.36 | 0.23 |
TS | 13.97 | 13.31 | 13.98 | 12.36 | 0.54 | 0.11 |
Fatty Acids | Lactation Stage at Day 30 | SEM | p Value | |||
---|---|---|---|---|---|---|
BCS-2.5 | BCS-3 | BCS-3.5 | BCS-4 | |||
C6:0 | 1.25 | 1.19 | 1.24 | 1.31 | 0.06 | 0.39 |
C8:0 | 1.62 | 1.63 | 1.67 | 1.71 | 0.10 | 0.87 |
C10:0 | 5.79 | 5.58 | 5.59 | 5.76 | 0.25 | 0.92 |
C12:0 | 3.68 | 3.81 | 3.71 | 3.76 | 0.37 | 0.95 |
C14:0 iso | 0.10 | 0.11 | 0.11 | 0.12 | 0.01 | 0.31 |
C14:0 | 8.32 | 9.42 | 9.17 | 9.62 | 0.39 | 0.06 |
C15:0 iso | 0.27 | 0.30 | 0.31 | 0.32 | 0.02 | 0.35 |
C15:0 antiso | 0.47 | 0.48 | 0.49 | 0.53 | 0.03 | 0.43 |
C15:0 | 0.94 c | 1.00 b | 1.02 ab | 1.11 a | 0.05 | 0.04 |
C16:0 iso | 0.33 | 0.32 | 0.34 | 0.33 | 0.02 | 0.90 |
C16:0 | 24.32 c | 26.60 b | 26.95 ab | 27.31 a | 0.69 | 0.03 |
C16:1 cis 7 | 0.31 | 0.29 | 0.28 | 0.29 | 0.01 | 0.26 |
C16:1 cis 9 | 0.62 c | 0.67 b | 0.66 b | 0.77 a | 0.03 | 0.006 |
C17:0 iso | 0.51 | 0.52 | 0.53 | 0.54 | 0.02 | 0.86 |
C17:0 antiso | 0.71 | 0.69 | 0.71 | 0.70 | 0.02 | 0.95 |
C17:0 | 1.04 | 1.04 | 1.08 | 1.06 | 0.04 | 0.78 |
C17:1 cis 7 | 0.30 | 0.30 | 0.29 | 0.32 | 0.02 | 0.76 |
C18:0 | 14.31 a | 12.83 b | 13.01 b | 12.31 c | 0.51 | 0.03 |
C18:1 cis 9 | 26.71 | 24.83 | 24.39 | 24.34 | 1.09 | 0.28 |
C18:1 cis 11 | 0.50 | 0.45 | 0.46 | 0.47 | 0.02 | 0.21 |
C18:1 cis 13 | 0.36 a | 0.30 b | 0.30 b | 0.28 c | 0.02 | 0.02 |
C18:1 cis 14 | 0.35 a | 0.30 b | 0.29 b | 0.26 c | 0.02 | 0.003 |
C19:0 | 0.16 | 0.16 | 0.15 | 0.15 | 0.01 | 0.58 |
C18:2 (LA) | 4.52 a | 3.91 b | 3.82 ab | 3.63 c | 0.19 | 0.003 |
C18:3 (ALA) | 0.90 c | 0.95 b | 1.05 a | 0.91 c | 0.06 | 0.04 |
C18:3 (CLA) | 071 | 0.76 | 0.71 | 0.73 | 0.04 | 0.59 |
C20:0 | 0.29 | 0.31 | 0.29 | 0.31 | 0.02 | 0.54 |
C21:0 | 0.07 c | 0.10 b | 0.10 b | 0.11 a | 0.01 | 0.03 |
C22:0 | 0.15 | 0.15 | 0.19 | 0.15 | 0.03 | 0.32 |
C20:4 | 0.31 | 0.36 | 0.31 | 0.31 | 0.04 | 0.36 |
C22:4 | 0.04 | 0.05 | 0.05 | 0.05 | 0.01 | 0.37 |
C22:5 | 0.15 | 0.19 | 0.18 | 0.17 | 0.02 | 0.44 |
Fatty Acids | Lactation Stage at Day 60 | SEM | p Value | |||
---|---|---|---|---|---|---|
BCS-2.5 | BCS-3 | BCS-3.5 | BCS-4 | |||
C6:0 | 0.81 c | 1.04 a | 0.97 b | 0.98 b | 0.05 | 0.001 |
C8:0 | 0.95 c | 1.34 a | 1.23 ab | 1.20 b | 0.07 | 0.003 |
C10:0 | 3.22 c | 4.64 a | 4.29 ab | 4.07 b | 0.30 | 0.002 |
C12:0 | 2.24 c | 3.07 a | 2.93 ab | 2.67 b | 0.19 | 0.003 |
C14:0 iso | 0.12 | 0.13 | 0.13 | 0.12 | 0.01 | 0.74 |
C14:0 | 8.21 c | 8.93 ab | 9.14 a | 8.24 b | 0.30 | 0.02 |
C15:0 iso | 0.24 c | 0.29 b | 0.29 b | 0.32 a | 0.01 | 0.01 |
C15:0 antiso | 0.42 c | 0.51 b | 0.50 b | 0.52 a | 0.03 | 0.02 |
C15:0 | 0.84 | 0.94 | 0.93 | 0.99 | 0.04 | 0.08 |
C16:0 iso | 0.33 | 0.35 | 0.36 | 0.34 | 0.02 | 0.25 |
C16:0 | 26.15 | 26.95 | 27.02 | 26.55 | 0.60 | 0.46 |
C16:1 cis 7 | 0.32 b | 0.32 b | 0.30 c | 0.34 a | 0.01 | 0.03 |
C16:1 cis 9 | 0.78 | 0.75 | 0.76 | 0.75 | 0.03 | 0.91 |
C17:0 iso | 0.53 b | 0.51 c | 0.52 b | 0.57 a | 0.01 | 0.01 |
C17:0 antiso | 0.70 | 0.69 | 0.70 | 0.75 | 0.02 | 0.06 |
C17:0 | 1.08 a | 0.95 c | 0.98 b | 1.05 a | 0.03 | 0.01 |
C17:1 cis 7 | 0.37 a | 0.30 c | 0.31 b | 0.31 b | 0.01 | 0.02 |
C18:0 | 14.32 ab | 14.02 b | 13.56 c | 15.05 a | 0.42 | 0.050 |
C18:1 cis 9 | 30.33 a | 26.45 c | 27.17 b | 27.27 b | 0.95 | 0.001 |
C18:1 cis 11 | 0.57 a | 0.52 b | 0.52 b | 0.50 c | 0.02 | 0.02 |
C18:1 cis 13 | 0.32 | 0.29 | 0.31 | 0.31 | 0.01 | 0.29 |
C18:1 cis 14 | 0.28 c | 0.30 b | 0.29 b | 0.34 a | 0.01 | 0.03 |
C19:0 | 0.14 b | 0.13 c | 0.13 c | 0.16 a | 0.01 | 0.02 |
C18:2 (LA) | 4.09 a | 3.73 c | 3.93 b | 3.75 c | 0.14 | 0.04 |
C18:3 (ALA) | 0.66 | 0.64 | 0.68 | 0.64 | 0.02 | 0.17 |
C18:3 (CLA) | 0.77 | 0.79 | 0.80 | 0.73 | 0.03 | 0.32 |
C20:0 | 0.27 c | 0.32 ab | 0.31 b | 0.33 a | 0.01 | 0.04 |
C21:0 | 0.05 c | 0.07 a | 0.06 b | 0.07 a | 0.01 | 0.02 |
C22:0 | 0.09 c | 0.12 a | 0.11 b | 0.13 a | 0.01 | 0.02 |
C20:4 | 0.30 c | 0.39 a | 0.33 b | 0.38 a | 0.02 | 0.02 |
C22:4 | 0.03 c | 0.05 ab | 0.04 b | 0.07 a | 0.01 | 0.001 |
C22:5 | 0.15 | 0.19 | 0.17 | 0.18 | 0.01 | 0.10 |
Total FA% | Lactation Stage at Day 30 | SEM | p Value | |||
---|---|---|---|---|---|---|
BCS-2.5 | BCS-3 | BCS-3.5 | BCS-4 | |||
SFA | 63.87 | 66.25 | 66.58 | 67.18 | 1.19 | 0.16 |
UFA | 36.13 | 33.75 | 33.42 | 32.82 | 1.19 | 0.16 |
MUFA | 29.23 | 27.25 | 26.78 | 26.82 | 1.13 | 0.28 |
PUFA | 6.82 | 6.44 | 6.59 | 6.01 | 0.26 | 0.06 |
OCFA | 4.15 | 4.30 | 4.36 | 4.50 | 0.14 | 0.26 |
Lactation Stage at day 60 | ||||||
SFA | 60.71 c | 65.01 a | 64.12 b | 64.11 b | 1.02 | 0.001 |
UFA | 39.29 a | 34.99 c | 35.88 b | 35.89 b | 1.02 | 0.001 |
MUFA | 33.05 a | 28.98 c | 29.70 b | 29.90 b | 0.81 | 0.001 |
PUFA | 6.24 | 6.01 | 6.18 | 5.98 | 0.15 | 0.43 |
OCFA | 4.01 c | 4.10 b | 4.11 b | 4.44 a | 0.12 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, A.M.; Aljummah, R.S. Postpartum Body Condition Score (BCS) and Lactation Stage (30 and 60 Days) Affecting Essential Fatty Acids (EFA) and Milk Quality of Najdi Sheep. Vet. Sci. 2023, 10, 552. https://doi.org/10.3390/vetsci10090552
Matar AM, Aljummah RS. Postpartum Body Condition Score (BCS) and Lactation Stage (30 and 60 Days) Affecting Essential Fatty Acids (EFA) and Milk Quality of Najdi Sheep. Veterinary Sciences. 2023; 10(9):552. https://doi.org/10.3390/vetsci10090552
Chicago/Turabian StyleMatar, Abdulkareem M., and Riyadh S. Aljummah. 2023. "Postpartum Body Condition Score (BCS) and Lactation Stage (30 and 60 Days) Affecting Essential Fatty Acids (EFA) and Milk Quality of Najdi Sheep" Veterinary Sciences 10, no. 9: 552. https://doi.org/10.3390/vetsci10090552