Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation and Nutritional Composition of the Experimental Diets
2.2. Feeding Trial
2.3. Sample Collection
2.4. Fecal DNA Extraction and Sequencing
2.5. Data Analysis
3. Results
3.1. Beta and Alpha Diversity
3.2. Phyla Relative Abundance
3.3. Genera Relative Abundance
4. Discussion
4.1. Beta and Alpha Diversity
4.2. Phyla Relative Abundance
4.3. Genera Relative Abundance
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, C.; Liu, P.; Li, D.; Li, Y.; Ma, X. Dietary fiber gap and host gut microbiota. Protein Pept. Lett. 2017, 24, 388–396. [Google Scholar] [CrossRef]
- Panasevich, M.R.; Kerr, K.R.; Dilger, R.N.; Fahey, G.C.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Suchodolski, J.S.; Steer, J.M.; Dowd, S.E.; et al. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. Br. J. Nutr. 2015, 113, 125–133. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Vester Boler, B.M.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE 2010, 5, e9768. [Google Scholar] [CrossRef]
- Panasevich, M.R.; Rossoni Serao, M.C.; de Godoy, M.R.C.; Swanson, K.S.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Fahey, G.C.; Dilger, R.N. Potato fiber as a dietary fiber source in dog foods. J. Anim. Sci. 2013, 91, 5344–5352. [Google Scholar] [CrossRef]
- Silvio, J.; Harmon, D.L.; Gross, K.L.; McLeod, K.R. Influence of fiber fermentability on nutrient digestion in the dog. Nutrition 2000, 16, 289–295. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef]
- Spiehs, M.J.; Whitney, H.M.; Shurson, G.C. Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 2002, 80, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.M.; Kruk, Z.A.; Lee, B.D. Nutritive value of corn distillers dried grains with solubles as an ingredient of poultry diets: A review. Worlds Poult. Sci. J. 2010, 66, 411–432. [Google Scholar] [CrossRef]
- Silva, J.R.; Sabchuk, T.T.; Lima, T.T.; Félix, A.P.; Maiorka, A.; Oliveira, S.G. Use of distillers dried grains with solubles (DDGS), with and without xilanase. Anim. Feed Sci. Technol. 2016, 220, 136–142. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Healy, H.P.; Dawson, K.A.; Merchen, N.R.; Fahey, G.C. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 2002, 132, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Pawar, M.M.; Pattanaik, A.K.; Sinha, D.K.; Goswami, T.K.; Sharma, K. Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs. J. Anim. Sci. Technol. 2017, 59, 11. [Google Scholar] [CrossRef]
- Tramontano, M.; Andrejev, S.; Pruteanu, M.; Klunemann, M.; Kuhn, M.; Galardini, M.; Jouhten, P.; Zelezniak, A.; Zeller, G.; Bork, P.; et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 2018, 3, 514–522. [Google Scholar] [CrossRef]
- Risolia, L.W.; Sabchuk, T.T.; Murakami, F.Y.; Félix, A.P.; Maiorka, A.; Oliveira, S.G. Effects of adding dried distillers grains with solubles (DDGS) to dog diets supplemented with xylanase and protease. Rev. Bras. Zootec. 2019, 48, e20190112. [Google Scholar] [CrossRef]
- Kilburn-Kappeler, L.R.; Almeida Lema, K.A.; Paulk, C.B.; Aldrich, C.G. Comparing the effects of corn fermented protein with traditional distillers dried grains fed to healthy adult dogs on stool quality, nutrient digestibility, and palatability. Front. Anim. Sci. 2023, 4, 1210144. [Google Scholar] [CrossRef]
- Kaelle, G.C.B.; Bastos, T.S.; Fernandes, E.L.; de Souza, R.B.M.D.S.; de Oliveira, S.G.; Félix, A.P. High-protein dried distillers grains in dog diets: Diet digestibility and palatability, intestinal fermentation products, and fecal microbiota. J. Anim. Sci. 2023, 101, skad128. [Google Scholar] [CrossRef]
- Smith, S.C.; Aldrich, C.G. Evaluation of corn fermented protein as a dietary ingredient in extruded dog and cat diets. Trans. Anim. Sci. 2023, 7, txad032. [Google Scholar] [CrossRef] [PubMed]
- Kilburn-Kappeler, L.R.; Aldrich, C.G. Evaluation of graded levels of corn fermented protein on extrusion processing and diet utilization in healthy adult dogs. Front. Anim. Sci. 2023, 4, 1202270. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dogs and Cats, Rev. ed.; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 2016, e2584. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Ziese, A.L.; Suchodolski, J.S. Impact of changes in gastrointestinal microbiota in canine and feline digestive diseases. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 155–169. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachoroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef]
- Isaiah, A.; Parambeth, J.C.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S. The fecal microbiome of dogs with exocrine pancreatic insufficiency. Anaerobe 2017, 45, 50–58. [Google Scholar] [CrossRef]
- Félix, A.P.; Souza, C.M.M.; Oliveira, S.G. Biomarkers of gastrointestinal functionality in dogs: A systematic review and meta-analysis. Anim. Feed Sci. Technol. 2022, 283, 115183. [Google Scholar] [CrossRef]
- Díaz-Regañón, D.; García-Sancho, M.; Villaescusa, A.; Sainz, Á.; Agulla, B.; Reyes-Prieto, M.; Rodríguez-Bertos, A.; Rodríguez-Franco, F. Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals 2023, 13, 326. [Google Scholar] [CrossRef]
- Honneffer, J.B.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S. Variation of the microbiota and metabolome along the canine gastrointestinal tract. Metabolomics 2017, 13, 26. [Google Scholar] [CrossRef]
- Pilla, R.; Suchodolski, J.S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [PubMed]
- Minamoto, Y.; Otoni, C.C.; Steelman, S.M.; Büyükleblebici, O.; Steiner, J.M.; Jergens, A.E.; Suchodolski, J.S. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 2015, 6, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Baeza, Y.; Hyde, E.R.; Suchodolski, J.S.; Knight, R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat. Microbiol. 2016, 1, 16177. [Google Scholar] [CrossRef]
- Minamoto, Y.; Minamoto, T.; Isaiah, A.; Sattasathuchana, P.; Buono, A.; Rangachari, V.R.; Mcneely, H.I.; Lidbury, J.; Steiner, J.M.; Suchodolski, J.S. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J. Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef]
- Nery, J.; Goudez, R.; Biourge, V.; Tournier, C.; Leray, V.; Martin, L.; Thorin, C.; Nguyen, P.; Dumon, H. Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance. J. Anim. Sci. 2012, 90, 2570–2580. [Google Scholar] [CrossRef]
- Liu, C.; Finegold, S.M.; Song, Y.; Lawson, P.A. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus, and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydroge. Int. J. Syst. Evol. Microbiol. 2008, 58, 1896–1902. [Google Scholar] [CrossRef]
- Alshawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 2017, 93, 136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 2012, 7, e42529. [Google Scholar] [CrossRef]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F.; Dowd, S.E.; Poulsen, J.; Steiner, J.M.; Suchodolski, J.S. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 2012, 1, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Hullar, M.A.J.; Lampe, J.W.; Torok-Storb, B.J.; Harkey, M.A. The canine gut microbiome is associated with higher risk of gastric dilatation-volvulus and high risk genetic variants of the immune system. PLoS ONE 2018, 13, e0197686. [Google Scholar] [CrossRef]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Cocconi, D.; van Sinderen, D.; Ventura, M. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol. Ecol. 2017, 93, fix153. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.L. Species diversity of fecal microbial flora in Canis lupus familiaris infected with canine parvovirus. Vet. Microbiol. 2019, 237, 108390. [Google Scholar] [CrossRef]
- Soonthornsit, J.; Ngamwongsatit, N.; Sangsuriya, P.; Arya, N. The alterations of fecal microbiota in dogs with acute diarrhea, Thailand. Thai J. Vet. Med. 2021, 51, 683–690. [Google Scholar] [CrossRef]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef]
- Leung, J.; Burke, B.; Ford, D.; Garvin, G.; Korn, C.; Sulis, C.; Bhadelia, N. Possible association between obesity and clostridium difficile infection. Emerg. Infect. Dis. 2013, 19, 1791–1798. [Google Scholar] [CrossRef]
- Woting, A.; Pfeiffer, N.; Loh, G.; Klaus, S.; Blaut, M. Clostridium ramosum promotes high-fat diet induced obesity in gnotobiotic mouse models. mBio 2014, 5, e01530-14. [Google Scholar] [CrossRef]
- Guard, B.C.; Barr, J.W.; Reddivari, L.; Klemashevich, C.; Jayaraman, A.; Steiner, J.M.; Vanamala, J.; Suchodolski, J.S. Characterization of microbial dysbiosis and metabolomic changes in dogs with acute diarrhea. PLoS ONE 2015, 10, e0127259. [Google Scholar] [CrossRef] [PubMed]
- Thomson, P.; Santibáñez, R.; Rodríguez-Salas, C.; Flores-Yañez, C.; Garrido, D. Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ 2022, 10, e12695. [Google Scholar] [CrossRef] [PubMed]
- Mackei, M.; Talabér, R.; Müller, L.; Sterczer, Á.; Fébel, H.; Neogrády, Z.; Mátis, G. Altered Intestinal Production of Volatile Fatty Acids in Dogs Triggered by Lactulose and Psyllium Treatment. Vet. Sci. 2022, 9, 206. [Google Scholar] [CrossRef]
- Ephraim, E.; Cochrane, C.Y.; Jewell, D.E. Varying protein levels influence metabolomics and the gut microbiome in healthy adult dogs. Toxins 2020, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, J.; Fuentes, S.; Grievink, W.; van Niftrik, L.; Tindall, B.J.; Timmerman, H.M.; Rijkers, G.T.; Smidt, H. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov., and Asaccharospora gen. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 1600–1616. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Becker, A.A.M.J.; Luo, Y.; Zhang, W.; Ge, B.; Leng, C.; Wang, G.; Ding, L.; Wang, J.; Fu, X.; et al. The Fecal Microbiota of Dogs Switching to a Raw Diet Only Partially Converges to That of Wolves. Front. Microbiol. 2021, 12, 701439. [Google Scholar] [CrossRef]
- Liu, J.; Yue, S.; Yang, Z.; Feng, W.; Meng, X.; Wang, A.; Peng, C.; Wang, C.; Yan, D. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol. Res. 2018, 134, 40–50. [Google Scholar] [CrossRef]
- Markel, M.; Berghoff, N.; Unterer, S.; Oliveira-Barros, L.; Grellet, A.; Allenspach, K.; Toresson, L.; Barr, J.; Heilmann, R.; Garcia-Mazcorro, J.F.; et al. Characterization of fecal dysbiosis in dogs with chronic enteropathies and acute hemorrhagic diarrhea. J. Vet. Intern. Med. 2012, 26, 765–766. [Google Scholar]
- White, R.; Atherly, T.; Guard, B.; Rossi, G.; Wang, C.; Mosher, C.; Webb, C.; Hill, S.; Ackermann, M.; Sciabarra, P.; et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes 2017, 8, 451–466. [Google Scholar] [CrossRef]
- Ho, J.; Nicolucci, A.C.; Virtanen, H.; Schick, A.; Meddings, J.; Reimer, R.A.; Huang, C. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes. J. Clin. Endocrinol. Metabol. 2019, 104, 4427–4440. [Google Scholar] [CrossRef]
- Lee, S.H.; You, H.S.; Kang, H.G.; Kang, S.S.; Hyun, S.H. Association between altered blood parameters and gut microbiota after synbiotic intake in healthy, elderly Korean women. Nutrients 2020, 12, 3112. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, Z.; Liu, X.; Qiao, Y.; Wang, K.; Qiao, J. Clostridium butyricum Alleviates Enterotoxigenic Escherichia coli K88-Induced Oxidative Damage Through Regulating the p62-Keap1-Nrf2 Signaling Pathway and Remodeling the Cecal Microbial Community. Front. Immunol. 2021, 12, 771826. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wu, Y.; Liu, Y.; Wang, Z.; Xu, G.; Wang, X.; Liang, F.; Lai, W.; Xiao, X.; Zhu, Q.; et al. Exploring the causal effects of the gut microbiome on serum lipid levels: A two-sample Mendelian randomization analysis. Front. Microbiol. 2023, 14, 1113334. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhang, Z.; Morales, M.; Wang, Y.; Khafipour, E.; Friel, J. Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: A prospective cohort study. Free Radic. Biol. Med. 2019, 142, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Sutera, A.M.; Arfuso, F.; Tardiolo, G.; Riggio, V.; Fazio, F.; Aiese Cigliano, R.; Paytuví, A.; Piccione, G.; Zumbo, A. Effect of a co-feed liquid whey-integrated diet on crossbred pigs’ fecal microbiota. Animals 2023, 13, 1750. [Google Scholar] [CrossRef]
- Lin, C.Y.; Jha, A.R.; Oba, P.M.; Yotis, S.M.; Shmalberg, J.; Honaker, R.W.; Swanson, K.S. Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs. Anim. Microbiome 2022, 4, 46. [Google Scholar] [CrossRef]
Treatment 1 | ||||
---|---|---|---|---|
Ingredient, % | T1 | T2 | T3 | T4 |
Corn | 34.6 | 30.0 | 30.0 | 34.6 |
Chicken meal | 30.0 | 35.0 | 35.0 | 30.0 |
Soybean meal | 15.0 | 8.0 | - | - |
Distiller’s dried grains with solubles | - | - | 17.5 | - |
Corn-fermented protein | - | - | - | 17.5 |
Brewer’s dried yeast | - | 3.5 | 2.5 | - |
Corn starch | - | 6.5 | - | 2.5 |
Corn gluten meal | 5.0 | 2.0 | - | - |
Chicken fat | 6.0 | 5.6 | 5.6 | 6.0 |
Other 2 | 9.4 | 9.4 | 9.4 | 9.4 |
Treatment 1 | ||||
---|---|---|---|---|
Nutrient | T1 | T2 | T3 | T4 |
Dry matter, % | 95.61 | 95.92 | 94.78 | 95.38 |
Organic matter, % | 90.54 | 90.44 | 90.62 | 91.78 |
Ash, % | 9.46 | 9.56 | 9.38 | 8.22 |
Crude protein, % | 41.13 | 40.82 | 38.18 | 37.55 |
Fat, % | 13.15 | 13.07 | 14.82 | 13.70 |
Total dietary fiber, % | 13.58 | 13.16 | 18.39 | 15.07 |
Insoluble dietary fiber, % | 10.03 | 10.02 | 14.28 | 12.41 |
Soluble dietary fiber, % | 3.65 | 3.14 | 4.10 | 2.64 |
Gross energy, kcal/kg | 5008.71 | 4988.17 | 5073.11 | 5054.00 |
Treatment 1 | ||||||
---|---|---|---|---|---|---|
Phylum, % | T1 | T2 | T3 | T4 | SEM | p-Value |
Firmicutes | 74.59 | 74.12 | 69.01 | 72.40 | 3.278 | 0.3310 |
Bacteroidetes | 13.12 | 14.05 | 15.78 | 15.98 | 2.615 | 0.6459 |
Fusobacteria | 7.34 | 7.67 | 10.60 | 8.34 | 1.379 | 0.1003 |
Actinobacteria | 4.96 | 4.17 | 4.61 | 3.28 | 0.861 | 0.2563 |
Treatment 1 | ||||||
---|---|---|---|---|---|---|
Genus, % | T1 | T2 | T3 | T4 | SEM | p-Value |
Allobaculum | 3.35 | 2.54 | 1.63 | 2.76 | 0.791 | 0.2032 |
Alloprevotella | 1.18 | 1.73 | 1.35 | 1.33 | 0.496 | 0.7216 |
Anaerovoracaceae ge | 0.57 | 0.36 | 0.55 | 0.65 | 0.176 | 0.4185 |
Bacteroides | 9.30 | 9.78 | 11.65 | 11.06 | 1.974 | 0.6110 |
Bifidobacterium | 1.15 | 0.54 | 1.38 | 0.87 | 0.729 | 0.6881 |
Blautia | 12.42 a | 10.44 a,b | 8.88 b | 9.35 b | 0.984 | 0.0056 |
Candidatus Stoquefichus | 0.42 b | 1.04 a,b | 1.75 a | 1.58 a | 0.355 | 0.0032 |
Catenibacterium | 0.66 | 0.36 | 0.50 | 0.48 | 0.200 | 0.5220 |
Clostridium sensu stricto 1 | 0.87 | 1.04 | 1.37 | 1.25 | 0.324 | 0.4392 |
Collinsella | 3.81 a | 3.62 a | 3.23 a,b | 2.41 b | 0.407 | 0.0086 |
Dubosiella | 1.38 | 0.37 | 1.89 | 1.62 | 1.443 | 0.7407 |
Erysipelatoclostridium | 1.15 c | 3.80 b | 4.72 a,b | 5.40 a | 0.533 | <0.0001 |
Erysipelotrichaceae UCG-003 | 1.95 | 1.58 | 1.15 | 2.08 | 0.666 | 0.5151 |
Faecalibacterium | 2.56 | 2.55 | 2.50 | 3.14 | 0.524 | 0.5708 |
Faecalibaculum | 0.56 | 0.61 | 1.83 | 2.40 | 0.824 | 0.0807 |
Fusobacterium | 7.34 | 7.67 | 10.60 | 8.34 | 1.379 | 0.1003 |
Holdemanella | 3.85 | 3.39 | 3.65 | 2.72 | 0.648 | 0.3384 |
Lachnospiraceae ge | 0.95 | 1.35 | 1.12 | 0.94 | 0.221 | 0.2223 |
Lachnospiraceae unclassified | 8.17 | 7.92 | 7.26 | 8.14 | 0.677 | 0.5131 |
Lactobacillus | 0.86 | 0.94 | 0.02 | 2.09 | 1.355 | 0.5092 |
Peptoclostridium | 12.53 b | 16.62 a | 15.32 a,b | 15.09 a,b | 1.388 | 0.0425 |
Peptococcus | 0.57 | 0.57 | 0.35 | 0.30 | 0.157 | 0.2022 |
Peptostreptococcus | 1.23 | 0.00 | 0.20 | 0.00 | 0.768 | 0.3394 |
Phascolarctobacterium | 0.36 b | 0.59 a,b | 0.59 a,b | 0.76 a | 0.141 | 0.0662 |
Prevotella 9 | 2.05 | 2.03 | 2.15 | 3.17 | 0.920 | 0.5496 |
Prevotellaceae Ga6A1 group | 0.59 | 0.51 | 0.63 | 0.42 | 0.284 | 0.8883 |
Romboutsia | 4.60 b | 6.16 a,b | 8.28 a | 7.12 a,b | 1.096 | 0.0160 |
Streptococcus | 9.69 a | 5.47 a,b | 0.13 b | 0.70 b | 2.200 | 0.0002 |
Terrisporobacter | 0.44 a,b | 0.39 b | 1.35 a | 1.32 a,b | 0.345 | 0.0077 |
Turicibacter | 5.44 | 6.02 | 3.98 | 2.51 | 1.320 | 0.0499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilburn-Kappeler, L.R.; Doerksen, T.; Lu, A.; Palinski, R.M.; Lu, N.; Aldrich, C.G. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Vet. Sci. 2023, 10, 553. https://doi.org/10.3390/vetsci10090553
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Veterinary Sciences. 2023; 10(9):553. https://doi.org/10.3390/vetsci10090553
Chicago/Turabian StyleKilburn-Kappeler, Logan R., Tyler Doerksen, Andrea Lu, Rachel M. Palinski, Nanyan Lu, and Charles G. Aldrich. 2023. "Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs" Veterinary Sciences 10, no. 9: 553. https://doi.org/10.3390/vetsci10090553
APA StyleKilburn-Kappeler, L. R., Doerksen, T., Lu, A., Palinski, R. M., Lu, N., & Aldrich, C. G. (2023). Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Veterinary Sciences, 10(9), 553. https://doi.org/10.3390/vetsci10090553