Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Microbiological Examination
2.3. Determination of the Susceptibility of Isolates to Antibiotics
2.4. Combination Disk Test
2.5. PCR Screening of Isolates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015. Available online: https://apps.who.int/iris/rest/bitstreams/864486/retrieve (accessed on 1 June 2023).
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef]
- Iredell, J.; Brown, J.; Tagg, K. Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ 2016, 352, h6420. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-AMR 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 1 June 2023).
- Lee, S.; Mir, R.A.; Park, S.H.; Kim, D.; Kim, H.; Boughton, R.K.; Morris, J.G.; Jeong, K.C. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: Challenges to mitigate antimicrobial resistance. Crit. Rev. Microbiol. 2020, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Van Boeckel, T.; Frost, I.; Kariuki, S.; Khan, E.A.; Limmathurotsakul, D.; Larsson, D.G.J.; Levy-Hara, G.; Mendelson, M.; Outterson, K.; et al. The Lancet infectious diseases commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 2020, 20, e51–e60. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.; Projahn, M.; Burow, E.; Käsbohrer, A. Are there effective intervention measures in broiler production against the ESBL/AmpC producer Escherichia coli? Pathogens 2021, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Saliu, E.M.; Ren, H.; Boroojeni, F.G.; Zentek, J.; Vahjen, W. The impact of direct-fed microbials and phytogenic feed additives on prevalence and transfer of extended-spectrum beta-lactamase genes in broiler chicken. Microorganisms 2020, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- van Hoek, A.H.A.M.; Dierikx, C.; Bosch, T.; Schouls, L.; van Duijkeren, E.; Visser, M. Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms. J. Antimicrob. Chemother. 2020, 75, 543–549. [Google Scholar] [CrossRef]
- Agersø, Y.; Aarestrup, F.M.; Pedersen, K.; Seyfarth, A.M.; Struve, T.; Hasman, H. Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage. J. Antimicrob. Chemother. 2012, 67, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Egervärn, M.; Börjesson, S.; Byfors, S.; Finn, M.; Kaipe, C.; Englund, S.; Lindblad, M. Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. Int. J. Food Microbiol. 2014, 171, 8–14. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, M02, 13th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 1-56238-835-5. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 1 June 2023).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. Version 2.0. 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 1 June 2023).
- Fang, H.; Ataker, F.; Hedin, G.; Dornbusch, K. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J. Clin. Microbiol. 2008, 46, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Tsiouris, V.; Economou, V.; Lazou, T.; Georgopoulou, I.; Sossidou, E. The role of whey on the performance and campylobacteriosis in broiler chicks. Poult. Sci. 2019, 98, 236–243. [Google Scholar] [CrossRef]
- Alonso, C.A.; Zarazaga, M.; Ben Sallen, R.; Jouini, A.; Ben Slama, K.; Torres, C. Antibiotic resistance in Escherichia coli in husbandry animals: The African perspective. Lett. Appl. Microbiol. 2017, 64, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Grande, H.; Weaver, B.; Papp, K.; Horwinski, J.; Koch, B.; Hungate, B.A.; Liu, C.M.; et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 2018, 18, 174. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, Y.A.; Seo, Y.H.; Lee, H.; Lee, K. Prevalence and molecular epidemiology of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli from multiple sectors of poultry industry in Korea. Antibiotics 2021, 10, 1050. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Jansen, W.; Grabowski, N.T.; Monecke, S.; Ehricht, R.; Kehrenberg, C. ESBL- and AmpC-producing Escherichia coli from legally and illegally imported meat: Characterization of isolates brought into the EU from third countries. Int. J. Food Microbiol. 2018, 283, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Jiménez, D.; García-Meniño, I.; Fernández, J.; García, V.; Mora, A. Chicken and turkey meat: Consumer exposure to multidrug-resistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and high-risk lineages such as ST131. Int. J. Food Microbiol. 2020, 331, 108750. [Google Scholar] [CrossRef] [PubMed]
- Casella, T.; Nogueira, M.C.L.; Saras, E.; Haenni, M.; Madec, J.-Y. High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int. J. Food Microbiol. 2017, 257, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Nüesch-Inderbinen, M.; Treier, A.; Zurfluh, K.; Stephan, R. Raw met-based diets for companion animals: A potential source of transmission of pathogenic and antimicrobial-resistant Enterobacteriaceae. R. Soc. Open Sci. 2019, 6, 191170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.; Laidlaw, A.; Li, L.; Young, K.; Tamber, S. Isolation of third generation cephalosporin resistant Enterobacteriaceae from retail meats and detection of extended spectrum beta-lactamase activity. J. Microbiol. Methods 2021, 189, 106314. [Google Scholar] [CrossRef]
- Egea, P.; López-Cerero, L.; Torres, E.; del Carmen Gómez-Sánchez, M.; Serrano, L.; Sánchez-Ortiz, M.D.N.; Rodriguez-Baño, J.; Pascual, A. Increased raw poultry meat colonization by extended spectrum beta-lactamase-producing Escherichia coli in the south of Spain. Int. J. Food Microbiol. 2012, 159, 69–73. [Google Scholar] [CrossRef]
- Moawad, A.A.; Htzel, H.; Awad, O.; Tomaso, H.; Neubauer, H.; Hafez, H.M.; El-Adawy, H. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathol. 2017, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irrgang, A.; Zhao, G.; Juraschek, K.; Kaesbohrer, A.; Hammerl, J.A. Characterization of E. coli isolates producing extended spectrum beta-lactamase SHV-variants from the food chain in Germany. Microorganisms 2021, 9, 1926. [Google Scholar] [CrossRef]
- Wei, B.; Shang, K.; Cha, S.-Y.; Zhang, J.-F.; Jang, H.-K.; Kang, M. Conjugative plasmid-mediated extended spectrum cephalosporin resistance in genetically diverse Escherichia coli from a chicken slaughterhouse. Animals 2021, 11, 2491. [Google Scholar] [CrossRef] [PubMed]
- Xexaki, A.; Papadopoulos, D.K.; Alvanou, M.V.; Giantsis, I.A.; Papageorgiou, K.V.; Delis, G.A.; Economou, V.; Kritas, S.K.; Sossidou, E.N.; Petridou, E. Prevalence of antibiotic resistant E. coli strains isolated from farmed broilers and hens in greece, based on phenotypic and molecular analyses. Sustainability 2023, 15, 9421. [Google Scholar] [CrossRef]
- Randall, L.P.; Horton, R.H.; Chanter, J.J.; Lemma, F.; Evans, S.J. A decline in the occurrence to extended-spectrum β-lactamase-producing Escherichia coli in retail chicken meat in the UK between 2013 and 2018. J. Appl. Microbiol. 2021, 130, 247–527. [Google Scholar] [CrossRef]
- Huizinga, P.; Kluytmans-van den Bergh, M.; Rossen, J.W.; Willemsen, I.; Verhulst, C.; Savelkoul, P.H.M.; Friedrich, A.W.; García-Cobos, S.; Kluytmans, J. Decreasing prevalence of contamination with extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) in retail chicken meat in the Netherlands. PLoS ONE 2019, 14, e0226828. [Google Scholar] [CrossRef]
- Hadžić-Hasanović, V.; Jerkocić-Mujkić, A.; Hasanović, E.; Bačić, A.; Hukić, M. Phenotypic and genotypic detection of ESBL-producing E. coli isolates from chicken skin in Bosnia and Herzegovina. Med. Glas. 2020, 17, 308–315. [Google Scholar] [CrossRef]
- Kaesbohrer, A.; Bakran-Lebl, K.; Irrgang, A.; Fischer, J.; Kämpf, P.; Schiffmann, A.; Werckenthin, C.; Busch, M.; Kreienbrock, L.; Hille, K. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet. Microbiol. 2019, 233, 52–60. [Google Scholar] [CrossRef] [PubMed]
- EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; et al. Scientific Opinion on the assessment of animal diseases caused by bacteria resistant to antimicrobials: Poultry. EFSA J. 2021, 19, 47. [Google Scholar] [CrossRef]
- European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021. Trends from 2010 to 2021. Twelfth ESVAC Report. 18 November 2022. Available online: https://www.ema.europa.eu/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf (accessed on 1 July 2023).
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 26, e00047-19. [Google Scholar] [CrossRef] [PubMed]
Target | Primer Sequence (5′ to 3′) | Size (bp) |
---|---|---|
blaTEM genes | CGC CGC ATA CAC TAT TCT CAG AAT GA | 445 |
ACG CTC ACC GGC TCC AGA TTT AT | ||
blaSHV genes | CTT TAT CGG CCC TCA CTC AA | 237 |
AGG TGC TCA TCA TGG GAA AG | ||
blaCTX-M genes | ATG TGC AGY ACC AGT AAR GTK ATG GC | 593 |
TGG GTR AAR TAR GTS ACC AGA AYC AGC GG | ||
blaOXA genes | ACA CAA TAC ATA TCA ACT TCG C | 813 |
AGT GTG TTT AGA ATG GTG ATC |
No. of Antibiotics against Which Resistance Was Detected | No. of Isolates | Resistance Phenotype | β-Lactam Resistance Phenotype | ESBL Gene Class | ||||
---|---|---|---|---|---|---|---|---|
ESBL | AmpC | Unknown | blaTEM | blaCTX-M | blaTEM/blaCTX-M | |||
9 | 18 | AMP, CTX, CAZ, CIP, TOB, CN, SXT, AMK, AMC | 12 | 4 | 2 | 3 | 3 | 9 |
8 | 12 | AMP, CTX, CAZ, CIP, TOB, CN, AMK, AMC | 8 | 2 | 2 | 3 | - | 6 |
10 | 11 | AMP, CTX, CAZ, CIP, TOB, CN, SXT, CAF, AMK, AMC | 8 | 2 | 1 | 3 | 2 | 6 |
8 | 11 | AMP, CTX, CAZ, CIP, TOB, CN, SXT, AMC | 9 | 2 | - | 5 | 2 | 3 |
9 | 9 | AMP, CTX, CAZ, CIP, TOB, CN, CAF, AMK, AMC | 7 | 2 | - | 2 | 3 | 2 |
8 | 9 | AMP, CTX, CAZ, CIP, TOB, CN, CAF, AMC | 5 | 2 | 2 | 3 | - | - |
7 | 9 | AMP, CTX, CAZ, TOB, CN, AMK, AMC | 7 | - | 2 | - | 5 | 2 |
8 | 8 | AMP, CTX, CAZ, TOB, CN, CAF, AMK, AMC | 6 | 2 | - | - | 3 | 2 |
6 | 6 | AMP, CTX, CAZ, TOB, CN, AMC | 3 | 3 | - | - | 2 | - |
8 | 3 | AMP, CAZ, CIP, TOB, CN, SXT, AMK, AMC | 2 | 1 | - | 2 | - | - |
9 | 2 | AMP, CTX, CAZ, MEM, CIP, TOB, SXT, AMK, AMC | 2 | - | - | - | - | 2 |
7 | 2 | AMP, CTX, CAZ, CN, CAF, AMK, AMC | 2 | - | - | - | - | - |
8 | 2 | AMP, CTX, CAZ, CIP, TOB, SXT, CAF, AMC | 2 | - | - | - | 2 | - |
8 | 2 | CTX, CAZ, CIP, TOB, SXT, CAF, AMK, AMC | 2 | - | - | - | - | 2 |
9 | 1 | AMP, CTX, CAZ, CIP, TOB, CN, SXT, CAF, AMC | - | 1 | - | - | - | - |
7 | 2 | AMP, CTX, CAZ, CIP, CN, AMK, AMC | 2 | - | - | - | - | 2 |
7 | 1 | AMP, CTX, CAZ, CIP, CN, CAF, AMC | - | 1 | - | - | - | - |
6 | 2 | AMP, CAZ, TOB, CN, CAF, AMC | 2 | - | - | - | - | - |
6 | 1 | AMP, CTX, CAZ, CIP, CN, AMC | - | 1 | - | 1 | - | - |
6 | 2 | AMP, CTX, CAZ, CIP, SXT, AMC | 2 | - | - | 2 | - | - |
6 | 2 | AMP, CTX, CAZ, TOB, SXT, AMC | 2 | - | - | 2 | - | - |
7 | 2 | AMP, CAZ, CIP, TOB, CN, CAF, AMC | 2 | - | - | - | - | - |
7 | 1 | AMP, CTX, CAZ, CIP, TOB, CN, AMC | - | 1 | - | - | - | - |
7 | 1 | AMP, CTX, CAZ, TOB, CN, CAF, AMC | - | - | 1 | - | - | - |
4 | 1 | AMP, CAF, AMK, AMC | 1 | - | - | - | 1 | - |
120 | 86 | 24 | 10 | 26 | 23 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Economou, V.; Delis, G.; Stavrou, D.; Gousia, P.; Tsitsos, A.; Mantzios, T.; Chouliara, E.; Kolovos, N.; Soultos, N. Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece. Vet. Sci. 2023, 10, 487. https://doi.org/10.3390/vetsci10080487
Economou V, Delis G, Stavrou D, Gousia P, Tsitsos A, Mantzios T, Chouliara E, Kolovos N, Soultos N. Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece. Veterinary Sciences. 2023; 10(8):487. https://doi.org/10.3390/vetsci10080487
Chicago/Turabian StyleEconomou, Vangelis, Georgios Delis, Dimitra Stavrou, Panagiota Gousia, Anestis Tsitsos, Tilemachos Mantzios, Eirini Chouliara, Nikolaos Kolovos, and Nikolaos Soultos. 2023. "Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece" Veterinary Sciences 10, no. 8: 487. https://doi.org/10.3390/vetsci10080487