A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population and Clinical Findings
2.3. Virus Sampling and Preparation
2.4. Virus Propagation and Cytopathic Effect Monitoring
2.5. Whole Genomic RNA Extraction and Molecular FMDV Genomic Detection
2.6. FMDV Serotyping Using A-, O-, and SAT2-Specific Primers Targeting the 1D Gene
2.7. Nucleotide Sequencing, Alignment, and Phylogenetic Analysis
2.8. Statistical Analysis
3. Results
3.1. Propagation of FMDV and Characterization of the CPE on BHK-21 Cells
3.2. Molecular Detection and Serotyping of FMDV
3.3. Nucleotide Sequences of FMDV, Serotype A
3.4. Phylogenetic Analysis
3.5. Amino Acid Sequences of the Immunogenic (G-H) Loop of the VP1 Region in the Obtained Strain Compared to FMD Vaccinal Strains Used in Egypt
3.6. The Epidemiological Patterns and Clinical Findings Related to the FMD Outbreak in One Infected Farm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J.M. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, N.J.; Samuel, A.R. Molecular epidemiology of foot-and-mouth disease virus. Virus Res. 2003, 91, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Barasa, M.; Catley, A.; Machuchu, D.; Laqua, H.; Puot, E.; Tap Kot, D.; Ikiror, D. Foot-and-Mouth Disease Vaccination in South Sudan: Benefit–Cost Analysis and Livelihoods Impact. Transbound. Emerg. Dis. 2008, 55, 339–351. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.D.; Rushton, J. The economic impacts of foot and mouth disease–What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Nampanya, S.; Khounsy, S.; Abila, R.; Young, J.R.; Bush, R.D.; Windsor, P.A. Financial impacts of foot-and-mouth disease at village and national levels in Lao PDR. Transbound. Emerg. Dis. 2016, 63, e403–e411. [Google Scholar] [CrossRef]
- Rufael, T.; Catley, A.; Bogale, A.; Sahle, M.; Shiferaw, Y. Foot and mouth disease in the Borana pastoral system, southern Ethiopia and implications for livelihoods and international trade. Trop. Anim. Health Prod. 2008, 40, 29–38. [Google Scholar] [CrossRef]
- Sobhy, N.M.; Bayoumi, Y.H.; Mor, S.K.; El-Zahar, H.I.; Goyal, S.M. Outbreaks of foot and mouth disease in Egypt: Molecular epidemiology, evolution and cardiac biomarkers prognostic significance. Int. J. Vet. Sci. Med. 2018, 6, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hefnawy, A.; Helal, M.; Marawan, M.; Abo-sakaya, R.; El Bahgy, H. Molecular study of FMD infected Egyptian buffalo calves with reference to electrocardiography and cardiac biomarkers as prognostic tools. Assiut Vet. Med. J. 2018, 64, 134–143. [Google Scholar]
- Aktas, M.S.; Ozkanlar, Y.; Oruc, E.; Sozdutmaz, I.; Kirbas, A. Myocarditis associated with foot-and-mouth disease in suckling calves. Vet. Arh. 2015, 85, 273–282. [Google Scholar]
- Mohapatra, J.K.; Subramaniam, S.; Pandey, L.K.; Pawar, S.S.; De, A.; Das, B.; Sanyal, A.; Pattnaik, B. Phylogenetic structure of serotype A foot-and-mouth disease virus: Global diversity and the Indian perspective. J. Gen. Virol. 2011, 92, 873–879. [Google Scholar] [CrossRef]
- Brito, B.P.; Rodriguez, L.L.; Hammond, J.M.; Pinto, J.; Perez, A.M. Review of the global distribution of foot-and-mouth disease virus from 2007 to 2014. Transbound. Emerg. Dis. 2017, 64, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Soltan, M.A.; Abd-Eldiam, M.M.; Mahmoud, M.M.; Hegazy, Y.; Amal, A.M.; Shafek, N.G. Emergence of Foot and mouth disease virus, serotype O, Europe-South America topotype in Egypt, 2022. Transbound. Emerg. Dis 2022, 69, 2409–2411. [Google Scholar] [CrossRef] [PubMed]
- Hagag, N.M.; Hassan, A.M.; Zaher, M.R.; Elnomrosy, S.M.; Shemies, O.A.; Hussein, H.A.; Ahmed, E.S.; Ali, M.H.; Ateay, M.; Abdel-Hakim, M.A. Molecular Detection and Phylogenetic analysis of Newly Emerging Foot-and-mouth disease virus Type A, Lineage EURO-SA in Egypt in 2022. Virus Res. 2022, 323, 198960. [Google Scholar] [CrossRef] [PubMed]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [Green Version]
- Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Biol. 1993, 60, 241–260. [Google Scholar] [CrossRef]
- Acharya, R.; Fry, E.; Stuart, D.; Fox, G.; Rowlands, D.; Brown, F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 1989, 337, 709–716. [Google Scholar] [CrossRef]
- Rweyemamu, M.; Roeder, P.; Mackay, D.; Sumption, K.; Brownlie, J.; Leforban, Y.; Valarcher, J.; Knowles, N.J.; Saraiva, V. Epidemiological patterns of foot-and-mouth disease worldwide. Transbound. Emerg. Dis. 2008, 55, 57–72. [Google Scholar] [CrossRef]
- Paton, D.J.; Sumption, K.J.; Charleston, B. Options for control of foot-and-mouth disease: Knowledge, capability and policy. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2657–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Refaei, O.H.M.; Yousif, A.A.A.; Hegazy, Y.M.; Soliman, S.M.; Salem, S.A.H.; Fayed, A.A.-A.M. Epidemiological investigation of foot-and-mouth disease outbreak in a vaccinated Egyptian dairy herd with analysis of associated risk factors. Jpn. J. Vet. Res. 2020, 68, 237–247. [Google Scholar]
- Hassan, A.M.; El-Mayet, F.S.; El-Habbaa, A.S.; Shahein, M.A.; El Zowalaty, M.E.; Hagag, N.M.; Sharawi, S.S.A. Molecular Characterization of Newly Emerging Foot-and-Mouth Disease Virus Serotype SAT 2 of Lib-12 Lineage Isolated from Egypt. Virus Res. 2022, 311, 198651. [Google Scholar] [CrossRef] [PubMed]
- Vosloo, W.; Bastos, A.D.S.; Sangare, O.; Hargreaves, S.K.; Thomson, G.R. Review of the status and control of foot and mouth disease in sub-Saharan Africa. Rev. Sci. Tech. Int. Des Épizooties 2002, 21, 437–445. [Google Scholar] [CrossRef]
- Knowles, N.J.; Wadsworth, J.; Reid, S.M.; Swabey, K.G.; El-Kholy, A.A.; Abd El-Rahman, A.O.; Soliman, H.M.; Ebert, K.; Ferris, N.P.; Hutchings, G.H. Foot-and-mouth disease virus serotype A in Egypt. Emerg. Infect. Dis. 2007, 13, 1593. [Google Scholar] [CrossRef]
- Kandeil, A.; El-Shesheny, R.; Kayali, G.; Moatasim, Y.; Bagato, O.; Darwish, M.; Gaffar, A.; Younes, A.; Farag, T.; Kutkat, M.A. Characterization of the recent outbreak of foot-and-mouth disease virus serotype SAT2 in Egypt. Arch. Virol. 2013, 158, 619–627. [Google Scholar] [CrossRef]
- Soltan, M.A.; Dohreig, R.M.A.; Abbas, H.; Ellawa, M.; Yousif, I.; Aly, A.E.; Wasfy, M.; El-Sayed, M.M. Emergence of foot and mouth disease virus, Lib-12 lineage of topotype VII, serotype SAT 2 in Egypt, 2018. Transbound. Emerg. Dis. 2019, 66, 1105–1106. [Google Scholar] [CrossRef] [PubMed]
- Al-Hosary, A.A.; Kandeil, A.; El-Taweel, A.N.; Nordengrahn, A.; Merza, M.; Badra, R.; Kayali, G.; Ali, M.A. Co-infection with different serotypes of FMDV in vaccinated cattle in Southern Egypt. Virus Genes 2019, 55, 304–313. [Google Scholar] [CrossRef]
- Jamal, S.M.; Ferrari, G.; Hussain, M.; Nawroz, A.H.; Aslami, A.A.; Khan, E.; Murvatulloev, S.; Ahmed, S.; Belsham, G.J. Detection and genetic characterization of foot-and-mouth disease viruses in samples from clinically healthy animals in endemic settings. Transbound. Emerg. Dis. 2012, 59, 429–440. [Google Scholar] [CrossRef]
- Cabezas, A.; Mapitse, N.; Tizzani, P.; Sanchez-Vazquez, M.; Stone, M.; Park, M. Analysis of suspensions and recoveries of official foot and mouth disease free status of WOAH Members between 1996 and 2020. Front. Vet. Sci. 2022, 9, 1013768. [Google Scholar] [CrossRef] [PubMed]
- Kitching, R.P.; Donaldson, A.I. Collecte et transport des prélèvements pour la recherche d’une infection vésiculeuse virale. Rev. Sci. Tech. 1987, 6, 251–283. [Google Scholar] [CrossRef]
- Reid, S.M.; Ferris, N.P.; Hutchings, G.H.; Samuel, A.R.; Knowles, N.J. Primary diagnosis of foot-and-mouth disease by reverse transcription polymerase chain reaction. J. Virol. Methods 2000, 89, 167–176. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [PubMed] [Green Version]
- Food and Agriculture Organization (FAO). Agency, U.S., Development, I. Livestock Production Systems Spotlight Cattle and Buffaloes and Poultry Sectors Livestock Production Systems Spotlight Cattle and Buffaloes, and Poultry Sectors in Egypt. Available online: http://www.fao.org/ag/againfo/programmes/en/ASL2050.html (accessed on 25 December 2022).
- Abdi, A.; Roushdy, S.; Beillard, M.J. Egypt Livestock and Products Annual 2019 Egyptian Beef Prices Stable, US Beef Imports Challenged; USDA Foreign Agricultural Service: Washington, DC, USA, 2020; pp. 1–12.
- Salem, S.A.; Bazid, A.-H.I.; Abo El-Hassan, D.J. Molecular and serological typing of foot-and-mouth disease virus serotypes currently circulating in Egypt. Iraqi J. Vet. Sci. 2021, 35, 581–588. [Google Scholar]
- Diab, E.; Bazid, A.-H.I.; Fawzy, M.; El-Ashmawy, W.R.; Fayed, A.A.; El-Sayed, M.M. Foot-and-mouth disease outbreaks in Egypt during 2013-2014: Molecular characterization of serotypes A, O, and SAT2. Vet. World 2019, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Mossad, G.; Rizk, S.A.; Abu-Elnaga, H.; Mohamed, A.A.; Abd El-kreem, A.; Farouk, E.M. Isolation and molecular characterization of foot and mouth disease SAT2 virus during outbreak 2012 in Egypt. J. Vet. Adv. 2013, 3, 60–68. [Google Scholar]
- El Damaty, H.M.; Fawzi, E.M.; Neamat-Allah, A.N.F.; Elsohaby, I.; Abdallah, A.; Farag, G.K.; El-Shazly, Y.A.; Mahmmod, Y.S. Characterization of foot and mouth disease virus serotype SAT-2 in swamp water buffaloes (Bubalus bubalis) under the Egyptian smallholder production system. Animals 2021, 11, 1697. [Google Scholar] [CrossRef] [PubMed]
- El-Khabaz, K.A.S.; Al-Hosary, A.A.T. Detection and identification of Foot and Mouth disease virus serotypes in Assiut governorate, Egypt. J. Adv. Vet. Anim. Res. 2017, 4, 32–38. [Google Scholar]
- Knowles, N.J.; Bachanek-Bankowska, K.; Wadsworth, J.; Mioulet, V.; Valdazo-González, B.; Eldaghayes, I.M.; Dayhum, A.S.; Kammon, A.M.; Sharif, M.A.; Waight, S. Outbreaks of foot-and-mouth disease in Libya and Saudi Arabia during 2013 due to an exotic O/ME-SA/Ind-2001 lineage virus. Transbound. Emerg. Dis. 2016, 63, e431–e435. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative genomics of foot-and-mouth disease virus. J. Virol. 2005, 79, 6487–6504. [Google Scholar] [CrossRef] [Green Version]
- Freimanis, G.L.; Di Nardo, A.; Bankowska, K.; King, D.J.; Wadsworth, J.; Knowles, N.J.; King, D.P. Genomics and outbreaks: Foot and mouth disease. Rev. Sci. Tech. 2016, 35, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Salam, H.M.; Mahmoud, A.A.; Khadr, A.M.; Salem, S.A.; Elshemey, T.M.; Abdelrahman, A.H.; Mahmoud, M.A. Isolation, sequencing and phylogenetic analysis of FMD strains during 2011–2012 outbreaks in Egypt. Int. J. Agric. Innov. Res. 2014, 3, 2319–2473. [Google Scholar]
- Soltan, M.A.; Negmaldin, A.H.; El-Diasty, M.M.; Mansour, S.M.G.; Elbadry, M.A.; Wilkes, R.P. Molecular characterization of circulating Foot and mouth disease virus (FMDV) serotype O topotype EA-3 and serotype A (African topotype) genotype IV in Egypt, 2016. Vet. Microbiol. 2017, 208, 89–93. [Google Scholar] [CrossRef]
- Di Nardo, A.; Knowles, N.J.; Paton, D.J. Combining livestock trade patterns with phylogenetics to help understand the spread of foot and mouth disease in sub-Saharan Africa, the Middle East and Southeast Asia. Rev. Sci. Tech. 2011, 30, 63. [Google Scholar] [CrossRef] [PubMed]
- Malirat, V.; Bergmann, I.E.; de Mendonça Campos, R.; Conde, F.; Quiroga, J.L.; Villamil, M.; Salgado, G.; Ortiz, S. Molecular epidemiology of foot-and-mouth disease virus type A in South America. Vet. Microbiol. 2012, 158, 82–94. [Google Scholar] [CrossRef]
- Machín Pire, C.C.; Medina Gutierrez, G.M.; Perez, C.G.; López Ramón, J.A. Genetic diversity of Foot-and-Mouth Disease Virus serotype A in Venezuela (2001–2013). Zootec. Trop. 2016, 34, 191–200. [Google Scholar]
- Naranjo, J.; Cosivi, O. Elimination of foot-and-mouth disease in South America: Lessons and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120381. [Google Scholar] [CrossRef]
- Sundberg, P. Emerging viral diseases and health risks for global markets. Rev. Acad. Cienc. Anim. 2019, 17, 39–42. [Google Scholar]
- Abdul-Hamid, N.F.; Hussein, N.M.; Wadsworth, J.; Radford, A.D.; Knowles, N.J.; King, D.P. Phylogeography of foot-and-mouth disease virus types O and A in Malaysia and surrounding countries. Infect. Genet. Evol. 2011, 11, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Fry, E.E.; Newman, J.W.I.; Curry, S.; Najjam, S.; Jackson, T.; Blakemore, W.; Lea, S.M.; Miller, L.; Burman, A.; King, A.M.Q. Structure of Foot-and-mouth disease virus serotype A1061 alone and complexed with oligosaccharide receptor: Receptor conservation in the face of antigenic variation. J. Gen. Virol. 2005, 86, 1909–1920. [Google Scholar] [CrossRef]
- Lawrence, P.; Pacheco, J.M.; Uddowla, S.; Hollister, J.; Kotecha, A.; Fry, E.; Rieder, E. Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 GH loop as a new tool for studying FMDV pathogenesis. Virology 2013, 436, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Mittal, M.; Tosh, C.; Hemadri, D.; Sanyal, A.; Bandyopadhyay, S.K. Phylogeny, genome evolution, and antigenic variability among endemic foot-and-mouth disease virus type A isolates from India. Arch. Virol. 2005, 150, 911–928. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.A.; Neamat-allah, A.N.F. Hemato-Biochemical Studies on Egyptian Buffaloes and Calves Naturally Infected with Foot and Mouth Disease Virus Serotype SAT2. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Vet. Med. 2016, 73, 230–237. [Google Scholar]
- Abd El Moneim, A.A.; Hafez, M.H.; Ahmed, B.; Hasanin, S.A.; Algabri, N.; Sheire, H.A.; Dhamar, Y. Pathological and Molecular Investigations on Foot and Mouth Virus Outbreaks Among Cattle Herds in Dakahlia Governorate, Egypt. Zagazig Vet. J. 2016, 44, 128–137. [Google Scholar]
- Pega, J.; Bucafusco, D.; Di Giacomo, S.; Schammas, J.M.; Malacari, D.; Capozzo, A.V.; Arzt, J.; Pérez-Beascoechea, C.; Maradei, E.; Rodríguez, L.L. Early adaptive immune responses in the respiratory tract of foot-and-mouth disease virus-infected cattle. J. Virol. 2013, 87, 2489–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenfeldt, C.; Eschbaumer, M.; Rekant, S.I.; Pacheco, J.M.; Smoliga, G.R.; Hartwig, E.J.; Rodriguez, L.L.; Arzt, J. The foot-and-mouth disease carrier state divergence in cattle. J. Virol. 2016, 90, 6344–6364. [Google Scholar] [CrossRef] [Green Version]
Location | Damanhour | Abu Hommus | Abu Almatamer | Kafr El-Dawar | Total | |
---|---|---|---|---|---|---|
Population | ||||||
No. of tested farms | 1 | 2 | 1 * | 1 | 5 | |
No. of samples per farm | 4 | 8 | 8 | 4 | 20 | |
No. of cattle/buffalo samples | 2:2 | 4:4 | 2:2 | 2:2 | 10:10 | |
History of FMD vaccination | No | No | No | Yes | 1 | |
Study of clinical and epidemiological parameters in farms | No | No | Yes | No | 2 |
Topotype | Accession No. | Country | Nucleotides Identity (%) * | Amino Acids Identity (%) ** | Origin | Isolation Year |
---|---|---|---|---|---|---|
Euro-SA | ||||||
OP823161 | Egypt | Study isolate | - | Buffalo | 2022 | |
OP823164 | Egypt | Study isolate | - | Cattle | 2022 | |
OP093730 | Egypt | 100 | 100 | Cattle | 2022 | |
OP131711 | Egypt | 100 | 100 | Cattle | 2022 | |
KX150534 | Venezuela | 87.5 | 87.6 | Bovine | 2011 | |
KX150532 | Venezuela | 86.9 | 86.9 | Bovine | 2006 | |
KX150522 | Venezuela | 86.4 | 89.5 | Bovine | 2006 | |
MT412356 | Brazil | 78.9 | 82.4 | Bovine | 2020 | |
AY593773 | Peru | 73.2 | 85.7 | N. host *** | 1969 | |
AY593774 | Spain | 72.7 | 80.1 | N. host *** | 1969 | |
AY593769 | Argentina | 72.2 | 79.5 | N. host *** | 1959 | |
AY593777 | Germany | 72.1 | 80.1 | N. host *** | 1969 | |
AY593751 | Netherland | 70.7 | 80.1 | N. host *** | 1942 | |
AY593771 | Colombia | 70.2 | 82.9 | N. host *** | 1967 | |
AY593792 | Italy | 70 | 80.1 | N. host *** | 1962 | |
Asia | ||||||
OM455481 | Pakistan | 66.8 | 77.3 | Buffalo | 2012 | |
MT981292 | Iran | 66 | 78.8 | Cattle | 2005 | |
HM854023 | India | 65.3 | 78.8 | Cattle | 1999 | |
MT340197 | Vietnam | 64.6 | 78.5 | Cattle | 2017 | |
Africa | ||||||
AY593761 | Kenya | 70.3 | 79.5 | N. host *** | 1964 | |
MH053305 | Egypt | 67.5 | 80.2 | Cattle | 1972 | |
MG725874 | Nigeria | 65 | 75 | Cattle | 2015 | |
MH053307 | Zambia | 64.6 | 77.3 | Cattle | 1990 | |
MT863268 | Egypt | 63.2 | 74.2 | Buffalo | 2016 | |
MT602078 | Ethiopia | 62.3 | 76.5 | Cattle | 2019 | |
MW413351 | Egypt | 62.2 | 73.4 | Cattle | 2020 | |
MT602079 | Sudan | 61.4 | 73.4 | Cattle | 2018 | |
MW413350 | Egypt | 59.8 | 70.1 | Cattle | 2020 | |
MG913340 | Algeria | 59.7 | 72.6 | Cattle | 2017 | |
KP940474 | Egypt | 58.6 | 72.6 | Cattle | 2014 | |
KY825726 | Egypt | 58.6 | 72.6 | N. host *** | 2011 | |
KC440881 | Egypt | 58.6 | 72.6 | Bovine | 2011 |
Epidemiological & Clinical Findings | Infected Buffalo Calves (%; 95% CI) | Infected Cattle Calves (%; 95% CI) | p-Value * | Total (%) |
---|---|---|---|---|
No. of tested calves | 35 | 35 | 70 | |
Epidemiological parameters | ||||
Morbidity rate | 35/35 (100.0) | 35/35 (100.0) | 70/70 (100.0) | |
Mortality rate | 9/35 (25.7; 13–43) | 3/35 (8.6; 2–24) | 0.11 | 12/70 (17.1) |
Case-fatality rate | 9/35 (25.7; 13–43) | 3/35 (8.6; 2–24) | 0.11 | 12/70 (17.1) |
Course of disease in fatal cases | 2–3 days | 6–8 days | 2–8 days | |
Course of disease in recovered cases | 2–3 weeks | 2–4 weeks | 2–4 weeks | |
Clinical findings | ||||
Inappetence to anorexia | 35/35 (100.0) | 27/35 (77.1) | 0.004 | 62/70 (88.6) |
Dull and depressed | 30/35 (85.7; 69–95) | 22/35 (62.9; 45–78) | 0.054 | 52/70 (74.3) |
Recumbent or prefer recumbence | 25/35 (71.4; 53–85) | 9/35 (25.7; 13–43) | 0.0002 | 34/70 (48.6) |
Vesicles on mouth and foot | 23/35 (65.7; 51–84) | 31/35 (88.6; 72–96) | 0.04 | 54/70 (77.1) |
Salivation | 14/35 (40.0; 24–58) | 25/35 (71.4; 53–85) | 0.01 | 39/70 (55.7) |
Lameness | 9/35 (25.7; 13–43) | 12/35 (34.3; 20–52) | 0.6 | 21/70 (30.0) |
Clinical parameters | ||||
Body temperature | ||||
Rectal temperature range (°C) b | 36.2–41.5 a | 36.5–41.7 a | - | |
Abnormal temperature | 35/35 (100.0) | 35/35 (100.0) | 70/70 (100.0) | |
Hyperthermia | 23/35 (65.7; 51–84) | 31/35 (88.6; 72–96) | 0.04 | 54/70 (77.1) |
Hypothermia | 12/35 (34.3; 20–52) | 4/35 (11.4; 4–28) | 0.04 | 16/70 (22.9) |
Heart auscultation | ||||
Heart rate range (Beat/minute) c | 38–160 a | 39–155 a | - | |
Tachycardia | 23/35 (65.7; 51–84) | 31/35 (88.6; 72–96) | 0.04 | 54/70 (77.1) |
Bradycardia | 12/35 (34.3; 20–52) | 4/35 (11.4; 4–28) | 0.04 | 16/70 (22.9) |
Cardiac arrhythmia | 14/35 (40.0; 24–58) | 6/35 (17.1; 7–34) | 0.06 | 20/70 (28.6) |
Respiratory parameters | ||||
Respiratory rate (Resp. cycles/minute) d | 11–62 a | 12–66 a | - | |
Abnormal lung sound | 16/35 (45.7; 29–63) | 28/35 (80.0; 63–91) | 0.005 | 44/70 (62.9) |
Nasal discharge | 8/35 (22.9; 11–41) | 20/35 (57.1; 40–73) | 0.006 | 28/70 (40.0) |
Chronic signs in recovered calves | ||||
Respiratory signs | 2/26 (7.7; 1–26) | 4/32 (12.5; 4–30) | 0.6 | 6/70 (8.6) |
Diarrhea | 2/26 (7.7, 1–26) | 0 | 0.19 | 2/70 (2.9) |
Animal | Buffalo Calves | Cattle Calves | |
---|---|---|---|
Item | |||
Causative agent | FMD, Serotype A, Euro-SA | FMD, Serotype A, Euro-SA | |
Cytopathic effect | Observed on 1st day | Observed on 1st day | |
VP1 gene similarity | Identical to OP093730 | Identical to OP093730 | |
Morbidity | High | High | |
Acute clinical signs | More severe | Severe | |
Chronic signs | Yes | No | |
Fatality | Rapid and high | Slow and less |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwally, S.; Bkear, N.; Badr, Y.; Elshafey, B.; Alhag, S.K.; Al-Shuraym, L.A.; Batiha, G.; Fakhry, B.; Hamada, R. A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt. Vet. Sci. 2023, 10, 488. https://doi.org/10.3390/vetsci10080488
Metwally S, Bkear N, Badr Y, Elshafey B, Alhag SK, Al-Shuraym LA, Batiha G, Fakhry B, Hamada R. A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt. Veterinary Sciences. 2023; 10(8):488. https://doi.org/10.3390/vetsci10080488
Chicago/Turabian StyleMetwally, Samy, Nabil Bkear, Yassien Badr, Besheer Elshafey, Sadeq K. Alhag, Laila A. Al-Shuraym, Gaber Batiha, Bassant Fakhry, and Rania Hamada. 2023. "A Newly Emerging Serotype A Strain in Foot-and-Mouth Disease Virus with Higher Severity and Mortality in Buffalo than in Cattle Calves in North Egypt" Veterinary Sciences 10, no. 8: 488. https://doi.org/10.3390/vetsci10080488