The Effect of a New Generation of Ankle Foot Orthoses on Sloped Walking in Children with Hemiplegia Using the Gait Real Time Analysis Interactive Lab (GRAIL)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Data Collection
2.3. Orthosis Description
- Solid Ankle Foot Orthosis (sAFO) (Figure 1A): sAFO consists of a single, rigid element, typically made of thermoplastic material, which completely blocks plantar-flexion and dorsiflexion of the ankle.
- Nancy Hylton dynamic brace (NHT3/T4) (Figure 1B): NH3/T4 is a type of orthosis designed to restore the foot to its correct anatomical position. There are various models of this brace with different containment heights; and specifically the T3 orthosis, used when containment of the tibiotarsal joint is required, includes the malleoli but remains open on the instep, while the T4 orthosis also wraps around the instep to block the entire malleolar joint complex.
- Posterior Leaf Spring (PLS) (Figure 1C): PLS is a different type of AFO in which the trimline of the calf creates a posterior spring-like element that allows a slight plantar-flexion and dorsiflexion movement of the ankle, it prevents the development of ankle contractures; it allows initial contact with the heel, and in some cases also a slight plantar-flexion which partially restores the first rocker; it also normalizes the dorsiflexion of the ankle in the stance phase, thus also improving the movement of the ankle in the stance phase.
- Pull Up (Figure 1D): The pull up is a dynamic equine foot support made of fabric with Velcro closures, with elastic tie-rod quick release.
- Ca.M.O. (Figure 1E): Ca.M.O. consists of three main components: a custom-made polypropylene shell for the calf and one for the foot, constructed from thermoplastic material, and a prefabricated carbon posterior leaf spring with interface link elements connecting these two elements [10]. This design aims to achieve greater deformation under the same applied load, facilitating adaptation to activities like running.
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. New Generation AFO vs. Commonly Used AFO
3.3. Uphill vs. Downhill vs. Ground-Level Walking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koman, L.A.; Smith, B.P.; Shilt, J.S. Cerebral Palsy. Lancet 2004, 363, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait Analysis: Clinical Facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560–574. [Google Scholar] [PubMed]
- Giannoni, P.; Zerbino, L. Fuori Schema Manuale per Il Trattamento Delle Paralisi Cerebrali Infantili; Springer: Milan, Italy, 2020. [Google Scholar]
- Kimel-Naor, S.; Gottlieb, A.; Plotnik, M. The Effect of Uphill and Downhill Walking on Gait Parameters: A Self-Paced Treadmill Study. J. Biomech. 2017, 60, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.M.; Ferreira, G.B.; Maia Moreira, R.C.; Kirkwood, R.N.; Fetters, L. Efficacy of Ankle-Foot Orthoses on Gait of Children with Cerebral Palsy: Systematic Review of Literature. Pediatr. Phys. Ther. 2008, 20, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Daryabor, A.; Arazpour, M.; Aminian, G. Effect of Different Designs of Ankle-Foot Orthoses on Gait in Patients with Stroke: A Systematic Review. Gait Posture 2018, 62, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Surmen, H.K.; Akalan, N.E.; Arslan, Y.Z. Design, Manufacture, and Selection of Ankle-Foot-Orthoses. In Encyclopedia of Information Science and Technology, 4th ed.; IGI Global: Hershey, PA, USA, 2017; pp. 298–313. [Google Scholar] [CrossRef]
- Bishop, D.; Moore, A.; Chandrashekar, N. A New Ankle Foot Orthosis for Running. Prosthet. Orthot. Int. 2009, 33, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Bayón, C.; van Hoorn, M.; Barrientos, A.; Rocon, E.; Trost, J.P.; Asseldonk, E.H.V. Perspectives on Ankle-Foot Technology for Improving Gait Performance of Children with Cerebral Palsy in Daily-Life: Requirements, Needs and Wishes. J. Neuroeng. Rehabil. 2023, 20, 44. [Google Scholar] [CrossRef]
- Tavernese, E.; Petrarca, M.; Rosellini, G.; Di Stanislao, E.; Pisano, A.; Di Rosa, G.; Castelli, E. Carbon Modular Orthosis (Ca.M.O.): An Innovative Hybrid Modular Ankle-Foot Orthosis to Tune the Variable Rehabilitation Needs in Hemiplegic Cerebral Palsy. NeuroRehabilitation 2017, 40, 447–457. [Google Scholar] [CrossRef]
- Patzkowski, J.C.; Blanck, R.V.; Owens, J.G.; Wilken, J.M.; Kirk, K.L.; Wenke, J.C.; Hsu, J.R. Comparative Effect of Orthosis Design on Functional Performance. J. Bone Jt. Surg. 2012, 94, 507–515. [Google Scholar] [CrossRef]
- Camuncoli, F.; Barbonetti, A.; Piccinini, L.; Di Stanislao, E.; Corbetta, C.; Dell’Orto, G.; Bertozzi, F.; Galli, M. Analysis of Running Gait in Children with Cerebral Palsy: Barefoot vs. a New Ankle Foot Orthosis. Int. J. Environ. Res. Public Health 2022, 19, 14203. [Google Scholar] [CrossRef]
- Borghi, C.; Sassi, S.; Pandarese, D.; Messori, S.; Faccioli, S. Effect of Ankle-Foot Orthoses in Pediatric Patients with Hereditary Motor-Sensory Neuropathy: A Case Series Study. Children 2023, 10, 1529. [Google Scholar] [CrossRef]
- Biffi, E.; Beretta, E.; Cesareo, A.; Maghini, C.; Turconi, A.C.; Reni, G.; Strazzer, S. An Immersive Virtual Reality Platform to Enhance Walking Ability of Children with Acquired Brain Injuries. Methods Inf. Med. 2017, 56, 119–126. [Google Scholar] [CrossRef]
- Gagliardi, C.; Turconi, A.C.; Biffi, E.; Maghini, C.; Marelli, A.; Cesareo, A.; Diella, E.; Panzeri, D. Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study. Ann. Biomed. Eng. 2018, 46, 1376–1384. [Google Scholar] [CrossRef]
- Choi, T.Y.; Park, D.; Shim, D.; Choi, J.O.; Hong, J.; Ahn, Y.; Park, E.S.; Rha, D.W. Gait Adaptation Is Different between the Affected and Unaffected Legs in Children with Spastic Hemiplegic Cerebral Palsy While Walking on a Changing Slope. Children 2022, 9, 593. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, Y.; Kang, X.; Shao, M.; Siemelink, L.; Zhang, Y. Gait Characteristics of Children with Spastic Cerebral Palsy during Inclined Treadmill Walking under a Virtual Reality Environment. Appl. Bionics Biomech. 2019, 2019, 8049156. [Google Scholar] [CrossRef]
- Van der Krogt, M.M.; Sloot, L.H.; Harlaar, J. Overground versus Self-Paced Treadmill Walking in a Virtual Environment in Children with Cerebral Palsy. Gait Posture 2014, 40, 587–593. [Google Scholar] [CrossRef]
- Van der Wilk, D. Patient Centered Development and Clinical Evaluation of an Ankle Foot Orthosis. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2017. [Google Scholar]
- Lewallen, J.; Miedaner, J.; Amyx, S.; Sherman, J. Effect of Three Styles of Custom Ankle Foot Orthoses on the Gait of Stroke Patients While Walking on Level and Inclined Surfaces. J. Prosthetics Orthot. 2010, 22, 78–83. [Google Scholar] [CrossRef]
- Van der Krogt, M.M.; Sloot, L.H.; Buizer, A.I.; Harlaar, J. Kinetic Comparison of Walking on a Treadmill versus over Ground in Children with Cerebral Palsy. J. Biomech. 2015, 48, 3577–3583. [Google Scholar] [CrossRef] [PubMed]
- Harb, A.; Kishner, S. Modified Ashworth Scale. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Senden, R.; Marcellis, R.; Meijer, K.; Willems, P.; Lenssen, T.; Staal, H.; Janssen, Y.; Groen, V.; Vermeulen, R.J.; Witlox, M. Dataset of 3D Gait Analysis in Typically Developing Children Walking at Three Different Speeds on an Instrumented Treadmill in Virtual Reality. Data Br. 2023, 48, 109142. [Google Scholar] [CrossRef] [PubMed]
- Harrington, M.E.; Zavatsky, A.B.; Lawson, S.E.M.; Yuan, Z.; Theologis, T.N. Prediction of the Hip Joint Centre in Adults, Children, and Patients with Cerebral Palsy Based on Magnetic Resonance Imaging. J. Biomech. 2007, 40, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Region-of-Interest Analyses of Onedimensional Biomechanical Trajectories: Bridging 0D and 1D Theory, Augmenting Statistical Power. PeerJ 2016, 4, e2652. [Google Scholar] [CrossRef]
- Bhatt, T.; Wening, J.D.; Pai, Y.C. Influence of Gait Speed on Stability: Recovery from Anterior Slips and Compensatory Stepping. Gait Posture 2005, 21, 146–156. [Google Scholar] [CrossRef]
- Moyer, B.E.; Chambers, A.J.; Redfern, M.S.; Cham, R. Gait Parameters as Predictors of Slip Severity in Younger and Older Adults. Ergonomics 2006, 49, 329–343. [Google Scholar] [CrossRef]
- Espy, D.D.; Yang, F.; Bhatt, T.; Pai, Y.C. Independent Influence of Gait Speed and Step Length on Stability and Fall Risk. Gait Posture 2010, 32, 378–382. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Beek, P.J.; Van Dieë, J.H. Steps to Take to Enhance Gait Stability: The Effect of Stride Frequency, Stride Length, and Walking Speed on Local Dynamic Stability and Margins of Stability. PLoS ONE 2013, 8, e82842. [Google Scholar] [CrossRef]
- Hak, L.; Van Dieën, J.H.; Van Der Wurff, P.; Prins, M.R.; Mert, A.; Beek, P.J.; Houdijk, H. Walking in an Unstable Environment: Strategies Used by Transtibial Amputees to Prevent Falling during Gait. Arch. Phys. Med. Rehabil. 2013, 94, 2186–2193. [Google Scholar] [CrossRef]
- Madehkhaksar, F.; Klenk, J.; Sczuka, K.; Gordt, K.; Melzer, I.; Schwenk, M. The Effects of Unexpected Mechanical Perturbations during Treadmill Walking on Spatiotemporal Gait Parameters, and the Dynamic Stability Measures by Which to Quantify Postural Response. PLoS ONE 2018, 13, e0195902. [Google Scholar] [CrossRef]
- Lay, A.N.; Hass, C.J.; Gregor, R.J. The Effects of Sloped Surfaces on Locomotion: A Kinematic and Kinetic Analysis. J. Biomech. 2006, 39, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Leroux, A.; Fung, J.; Barbeau, H. Postural Adaptation to Walking on Inclined Surfaces: I. Normal Strategies. Gait Posture 2002, 15, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Full, R.J.; Kubow, T.; Schmitt, J.; Holmes, P.; Koditschek, D. Quantifying Dynamic Stability and Maneuverability in Legged Locomotion. Integr. Comp. Biol. 2002, 42, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Prentice, S.D.; Hasler, E.N.; Groves, J.J.; Frank, J.S. Locomotor Adaptations for Changes in the Slope of the Walking Surface. Gait Posture 2004, 20, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Stott, N.S.; Reynolds, N.; McNair, P. Level versus Inclined Walking: Ambulatory Compensations in Children with Cerebral Palsy under Outdoor Conditions. Pediatr. Phys. Ther. 2014, 26, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Hösl, M.; Böhm, H.; Arampatzis, A.; Keymer, A.; Döderlein, L. Contractile Behavior of the Medial Gastrocnemius in Children with Bilateral Spastic Cerebral Palsy during Forward, Uphill and Backward-Downhill Gait. Clin. Biomech. 2016, 36, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Mélo, T.R.; Guimarães, A.T.B.; Israel, V.L. Spastic Diparetic Does Not Directly Affect the Capacity to Ascend and Descend Access Ramps: Three-Dimensional Analysis. Fisioter. Mov. 2017, 30, 537–547. [Google Scholar] [CrossRef]
- Yılmaz Topçuoğlu, M.S.; Krautwurst, B.K.; Klotz, M.; Dreher, T.; Wolf, S.I. How Do Children with Bilateral Spastic Cerebral Palsy Manage Walking on Inclines? Gait Posture 2018, 66, 172–180. [Google Scholar] [CrossRef]
- Plotnik, M.; Giladi, N.; Hausdorff, J.M. A New Measure for Quantifying the Bilateral Coordination of Human Gait: Effects of Aging and Parkinson’s Disease. Exp. Brain Res. 2007, 181, 561–570. [Google Scholar] [CrossRef]
ID | Gender | Age (years) | Body Mass (kg) | Height (cm) | Diagnosis | AFO | GMFCS |
---|---|---|---|---|---|---|---|
1 | M | 9 | 27.5 | 137.5 | Hemi R | sAFO | II |
2 | F | 10 | 39 | 143 | Hemi L | NHT3 | I |
3 | M | 10 | 23 | 130 | Hemi R | Pull up | II |
4 | M | 6 | 23 | 119 | Hemi R | sAFO | II |
5 | M | 10 | 32.5 | 140 | Hemi R | NHT4 | I |
6 | M | 10 | 33 | 129 | Hemi R | sAFO | I |
7 | F | 7 | 23 | 116.5 | Hemi R | sAFO | II |
8 | M | 7 | 27 | 135.5 | Hemi R | sAFO | II |
9 | F | 8 | 31 | 136.5 | Hemi L | sAFO | I |
10 | M | 8 | 24 | 129 | Hemi L | PLS | II |
11 | F | 7 | 29 | 129 | Hemi R | sAFO | I |
12 | M | 10 | 21.5 | 130 | Hemi L | NTH4 | II |
13 | M | 8 | 23 | 124.5 | Hemi L | sAFO | I |
14 | F | 8 | 37.5 | 132 | Hemi R | sAFO | II |
15 | M | 7 | 25 | 126 | Hemi R | sAFO | I |
16 | M | 7 | 28 | 125 | Hemi L | Pull up | II |
17 | F | 5 | 24 | 125 | Hemi L | sAFO | I |
18 | F | 7 | 22 | 120 | Hemi L | sAFO | II |
MEAN (SD) | [M: F] 11: 7 | 8.0 (1.5) | 27.4 (5.3) | 129.3 (7.3) | [R: L] 10: 8 | [I: II] 8: 10 |
Spatio-Temporal Parameters | Side | Median (iqr) | p-Value Wilcoxon Test | ||
---|---|---|---|---|---|
Commonly Used AFOs | New Generation AFO | ||||
Downhill (−5°) | Stance phase (%GC) | Less affected | 68.84 (2.31) | 67.84 (3.02) | 0.5862 |
Affected | 66.64 (3.92) | 65.72 (3.86) | 0.1930 | ||
Stride time (s) | Less affected | 1.21 (0.14) | 1.22 (0.15) | 0.6192 | |
Affected | 1.20 (0.14) | 1.20 (0.14) | 0.3812 | ||
Step length (m) | Less affected | 0.39 (0.06) | 0.36 (0.08) | 0.1024 | |
Affected | 0.32 (0.09) | 0.33 (0.09) | 0.0497 | ||
Step width (m) | Less affected | 0.18 (0.09) | 0.18 (0.07) | 0.2097 | |
Affected | 0.18 0.09) | 0.18 (0.07) | 0.6192 | ||
Stride length (m) | Less affected | 0.72 (0.10) | 0.73 (0.13) | 0.8313 | |
Affected | 0.72 (0.12) | 0.74 (0.14) | 0.7946 | ||
Level-ground (0°) | Stance phase (%GC) | Less affected | 69.29 (3.09) | 69.52 (1.71) | 0.7946 |
Affected | 66.62 (2.50) | 66.52 (2.65) | 0.3560 | ||
Stride time (s) | Less affected | 1.20 (0.17) | 1.21 (0.10) | 0.5862 | |
Affected | 1.20 (0.17) | 1.22 (0.13) | 0.5228 | ||
Step length (m) | Less affected | 0.38 (0.07) | 0.38 (0.08) | 0.5862 | |
Affected | 0.34 (0.10) | 0.36 (0.08) | 0.3560 | ||
Step width (m) | Less affected | 0.17 (0.11) | 0.16 (0.06) | 0.3318 | |
Affected | 0.16 (0.11) | 0.16 (0.06) | 0.3318 | ||
Stride length (m) | Less affected | 0.73 (0.16) | 0.77 (0.20) | 0.5228 | |
Affected | 0.73 (0.16) | 0.78 (0.20) | 0.5862 | ||
Uphill (+10°) | Stance phase (%GC) | Less affected | 70.95 (6.06) | 70.73 (4.60) | 0.0684 |
Affected | 66.59 (2.87) | 67.18 (3.36) | 0.0239 | ||
Stride time (s) | Less affected | 1.19 (0.15) | 1.20 (0.19) | 0.1773 | |
Affected | 1.19 (0.14) | 1.20 (0.20) | 0.0495 | ||
Step length (m) | Less affected | 0.34 (0.07) | 0.34 (0.10) | 0.2097 | |
Affected | 0.37 0.07) | 0.36 (0.07) | 0.3088 | ||
Step width (m) | Less affected | 0.18 (0.10) | 0.19 (0.09) | 0.4348 | |
Affected | 0.19 (0.10) | 0.19 (0.09) | 0.5540 | ||
Stride length (m) | Less affected | 0.71 (0.15) | 0.71 (0.13) | 0.1626 | |
Affected | 0.70 (0.14) | 0.72 (0.14) | 0.0395 |
Spatio-Temporal Parameters | Side | Median (iqr) | p-Value Friedman Test | p-Value (Bonferroni Correction) | |||||
---|---|---|---|---|---|---|---|---|---|
Downhill (−5°) | Level-Ground (0°) | Uphill (+10°) | Downhill vs. Level-Ground | Downhill vs. Uphill | Level-Ground vs. Uphill | ||||
Commonly used AFOs | Stance phase (%GC) | Less affected | 68.84 (2.31) | 69.29 (3.09) | 70.95 (6.06) | 0.0028 | 0.0352 | <0.001 | 0.0113 |
Affected | 66.64 (3.92) | 66.62 (2.50) | 66.59 (2.87) | 0.1134 | - | - | - | ||
Stride time (s) | Less affected | 1.21 (0.14) | 1.20 (0.17) | 1.19 (0.15) | 0.8382 | - | - | - | |
Affected | 1.20 (0.14) | 1.20 (0.17) | 1.19 (0.14) | 0.3902 | - | - | - | ||
Step length (m) | Less affected | 0.39 (0.06) | 0.38 (0.07) | 0.34 (0.07) | 0.0276 | 0.4631 | 0.0245 | 0.0352 | |
Affected | 0.32 (0.09) | 0.34 (0.10) | 0.37 (0.07) | 0.0071 | 0.0352 | 0.0042 | 0.0929 | ||
Step width (m) | Less affected | 0.18 (0.09) | 0.17 (0.11) | 0.18 (0.10) | 0.1134 | - | - | - | |
Affected | 0.18 0.09) | 0.16 (0.11) | 0.19 (0.10) | 0.0560 | - | - | - | ||
Stride length (m) | Less affected | 0.72 (0.10) | 0.73 (0.16) | 0.71 (0.15) | 0.4937 | - | - | - | |
Affected | 0.72 (0.12) | 0.73 (0.16) | 0.70 (0.14) | 0.4655 | - | - | - | ||
New Generation AFO | Stance phase (%GC) | Less affected | 67.84 (3.02) | 69.52 (1.71) | 70.73 (4.60) | <0.001 | 0.0036 | 0.0010 | 0.0277 |
Affected | 65.72 (3.86) | 66.52 (2.65) | 67.18 (3.36) | 0.0136 | 0.0840 | 0.0113 | 0.0277 | ||
Stride time (s) | Less affected | 1.22 (0.15) | 1.21 (0.10) | 1.20 (0.19) | 0.0246 | 0.0759 | 0.3812 | 0.2659 | |
Affected | 1.20 (0.14) | 1.22 (0.13) | 1.20 (0.20) | 0.0469 | 0.1024 | 0.3088 | 0.2461 | ||
Step length (m) | Less affected | 0.36 (0.08) | 0.38 (0.08) | 0.34 (0.10) | 0.2043 | - | - | - | |
Affected | 0.33 (0.09) | 0.36 (0.08) | 0.36 (0.07) | 0.0114 | 0.1128 | 0.0031 | 0.3560 | ||
Step width (m) | Less affected | 0.18 (0.07) | 0.16 (0.06) | 0.19 (0.09) | 0.1615 | - | - | - | |
Affected | 0.18 (0.07) | 0.16 (0.06) | 0.19 (0.09) | 0.1009 | - | - | - | ||
Stride length (m) | Less affected | 0.73 (0.13) | 0.77 (0.20) | 0.71 (0.13) | 0.0560 | - | - | - | |
Affected | 0.74 (0.14) | 0.78 (0.20) | 0.72 (0.14) | 0.2298 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camuncoli, F.; Malerba, G.; Biffi, E.; Diella, E.; Di Stanislao, E.; Rosellini, G.; Panzeri, D.; Piccinini, L.; Galli, M. The Effect of a New Generation of Ankle Foot Orthoses on Sloped Walking in Children with Hemiplegia Using the Gait Real Time Analysis Interactive Lab (GRAIL). Bioengineering 2024, 11, 280. https://doi.org/10.3390/bioengineering11030280
Camuncoli F, Malerba G, Biffi E, Diella E, Di Stanislao E, Rosellini G, Panzeri D, Piccinini L, Galli M. The Effect of a New Generation of Ankle Foot Orthoses on Sloped Walking in Children with Hemiplegia Using the Gait Real Time Analysis Interactive Lab (GRAIL). Bioengineering. 2024; 11(3):280. https://doi.org/10.3390/bioengineering11030280
Chicago/Turabian StyleCamuncoli, Federica, Giorgia Malerba, Emilia Biffi, Eleonora Diella, Eugenio Di Stanislao, Guerrino Rosellini, Daniele Panzeri, Luigi Piccinini, and Manuela Galli. 2024. "The Effect of a New Generation of Ankle Foot Orthoses on Sloped Walking in Children with Hemiplegia Using the Gait Real Time Analysis Interactive Lab (GRAIL)" Bioengineering 11, no. 3: 280. https://doi.org/10.3390/bioengineering11030280
APA StyleCamuncoli, F., Malerba, G., Biffi, E., Diella, E., Di Stanislao, E., Rosellini, G., Panzeri, D., Piccinini, L., & Galli, M. (2024). The Effect of a New Generation of Ankle Foot Orthoses on Sloped Walking in Children with Hemiplegia Using the Gait Real Time Analysis Interactive Lab (GRAIL). Bioengineering, 11(3), 280. https://doi.org/10.3390/bioengineering11030280