Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context
Abstract
1. Introduction
2. Description of Conventional Methods for Wastewater Treatment
3. Emerging Trends
3.1. Advanced Oxidation Processes
3.2. Electrochemical Methods
3.3. Bioelectrochemical Remediation
Conducting Materials—Electron Sinks/Redox Shuttlers
3.4. Integrated Bioelectrochemical Remediation
4. Sustainable Intervention
4.1. Resource Recovery
4.2. Circular Economy and Low-Carbon Footprints
5. Way Forward
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASP | Activated sludge process |
AOPs | Advanced oxidation processes |
BET | Bioelectrochemical treatment |
ClO2 | Chlorine dioxide |
COD | Chemical oxygen demand |
CWs | Constructed wetlands |
DIET | Direct interspecies electron transfer |
DAO | Direct anodic oxidation |
EES | Ecologically engineered systems |
EO | Electrochemical oxidation |
EABs | Electrochemically active bacteria |
EET | Extracellular electron transfer |
HRT | Hydraulic retention time |
H2O2 | Hydrogen peroxide |
OH * | Hydroxyl radicals |
OCl− | Hypochlorite |
IAO | Indirect anodic oxidation |
IET | Interspecies electron transfer |
O * | Nascent oxygen |
O3 | Ozone |
POPs | Persistent organic pollutants |
SBR | Sequential batch process |
SDGs | Sustainable development goals |
References
- Sathya, R.; Arasu, M.V.; Al-Dhabi, N.A.; Vijayaraghavan, P.; Ilavenil, S.; Rejiniemon, T.S. Towards Sustainable Wastewater Treatment by Biological Methods—A Challenges and Advantages of Recent Technologies. Urban Clim. 2023, 47, 101378. [Google Scholar] [CrossRef]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm Mediated Wastewater Treatment: A Comprehensive Review. Mater. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- González, J.; Sánchez, M.E.; Gómez, X. Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C J. Carbon Res. 2018, 4, 59. [Google Scholar] [CrossRef]
- Moscoviz, R.; Toledo-Alarcón, J.; Trably, E.; Bernet, N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016, 34, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, S.; Liang, D.; Li, N. Conductive Materials in Anaerobic Digestion: From Mechanism to Application. Bioresour. Technol. 2020, 298, 122403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D.R. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. Iscience 2020, 23, 101794. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Tharak, A.; Modestra, J.A.; Chang, I.S.; Mohan, S.V. Emerging Trends in Microbial Fuel Cell Diversification-Critical Analysis. Bioresour. Technol. 2021, 326, 124676. [Google Scholar]
- Gong, Z.; Yu, H.; Zhang, J.; Li, F.; Song, H. Microbial Electro-Fermentation for Synthesis of Chemicals and Biofuels Driven by Bi-Directional Extracellular Electron Transfer. Synth. Syst. Biotechnol. 2020, 5, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Prévoteau, A.; Carvajal-Arroyo, J.M.; Ganigué, R.; Rabaey, K. Microbial Electrosynthesis from CO2: Forever a Promise? Curr. Opin. Biotechnol. 2020, 62, 48–57. [Google Scholar] [CrossRef]
- Sharma, M.; Alvarez-Gallego, Y.; Achouak, W.; Pant, D.; Sarma, P.M.; Dominguez-Benetton, X. Electrode Material Properties for Designing Effective Microbial Electrosynthesis Systems. J. Mater. Chem. A 2019, 7, 24420–24436. [Google Scholar] [CrossRef]
- Vassilev, I.; Hernandez, P.A.; Batlle-Vilanova, P.; Freguia, S.; Krömer, J.O.; Keller, J.J.; Ledezma, P.; Virdis, B.; Krömer, J.O.; Keller, J.J.; et al. Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. ACS Sustain. Chem. Eng. 2018, 6, 8485–8493. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Wang, H.; Yan, J.; Zhou, X.; Ren, N.; Lee, D.-J.; Chen, C. Biological Treatment of Refractory Pollutants in Industrial Wastewaters under Aerobic or Anaerobic Condition: Batch Tests and Associated Microbial Community Analysis. Bioresour. Technol. Rep. 2022, 17, 100927. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- Sravan, J.S.; Hemalatha, M.; Mohan, S.V. Cascading Integration of Electrofermentation and Photosynthesis—Low-Carbon Biorefinery in Closed Loop Approach. Adv. Sustain. Syst. 2023, 7, 2300142. [Google Scholar] [CrossRef]
- Hemalatha, M.; Sravan, J.S.; Yeruva, D.K.; Mohan, S.V. Integrated Ecotechnology Approach towards Treatment of Complex Wastewater with Simultaneous Bioenergy Production. Bioresour. Technol. 2017, 242, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J. Various Additives for Improving Dark Fermentative Hydrogen Production: A Review. Renew. Sustain. Energy Rev. 2018, 95, 130–146. [Google Scholar] [CrossRef]
- Chen, H.; Dong, F.; Minteer, S.D. The Progress and Outlook of Bioelectrocatalysis for the Production of Chemicals, Fuels and Materials. Nat. Catal. 2020, 3, 225–244. [Google Scholar] [CrossRef]
- Velvizhi, G.; Modestra, J.A.; Yeruva, D.K.; Sravan, J.S.; Mohan, S.V. Bioelectrochemical Treatment: Present Trends and Prospective. In Microbial Electrochemical Technologies; CRC Press: Boca Raton, FL, USA, 2020; pp. 402–421. [Google Scholar]
- Burboa-Charis, V.A.; Alvarez, L.H. Methane Production from Antibiotic Bearing Swine Wastewater Using Carbon-based Materials as Electrons’ Conduits during Anaerobic Digestion. Int. J. Energy Res. 2020, 44, 10996–11005. [Google Scholar] [CrossRef]
- Sravan, J.S.; Sarkar, O.; Mohan, S.V. Electron-Regulated Flux towards Biogas Upgradation—Triggering Catabolism for an Augmented Methanogenic Activity. Sustain. Energy Fuels 2020, 4, 700–712. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Quan, X.; Zhang, Y. Towards Engineering Application: Potential Mechanism for Enhancing Anaerobic Digestion of Complex Organic Waste with Different Types of Conductive Materials. Water Res. 2017, 115, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Madondo, N.I.; Tetteh, E.K.; Rathilal, S.; Bakare, B.F. Synergistic Effect of Magnetite and Bioelectrochemical Systems on Anaerobic Digestion. Bioengineering 2021, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Mishra, P.K.; Kausar, M.A.; Saeed, M.; Gupta, V.K.; Singh, R.; Ramteke, P.W. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass. Bioresour. Technol. 2020, 307, 123094. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; King, P.W. Coupling Biology to Synthetic Nanomaterials for Semi-Artificial Photosynthesis. Photosynth. Res. 2020, 143, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Baniamerian, H.; Isfahani, P.G.; Tsapekos, P.; Alvarado-Morales, M.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Application of Nano-Structured Materials in Anaerobic Digestion: Current Status and Perspectives. Chemosphere 2019, 229, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Effects of Co and Ni Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Slurry. Energy Convers. Manag. 2017, 141, 108–119. [Google Scholar] [CrossRef]
- Johnson, M.B.; Mehrvar, M. Waste Activated Sludge-High Rate (WASHR) Treatment Process: A Novel, Economically Viable, and Environmentally Sustainable Method to Co-Treat High-Strength Wastewaters at Municipal Wastewater Treatment Plants. Bioengineering 2023, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Kumar, A.N.; Mohan, S.V. Multi-Pollutant Treatment of Crystalline Cellulosic Effluent: Function of Dissolved Oxygen on Process Control. Bioresour. Technol. 2016, 217, 245–251. [Google Scholar] [CrossRef]
- Sarkar, O.; Venkata Mohan, S. Synergy of Anoxic Microenvironment and Facultative Anaerobes on Acidogenic Metabolism in a Self-Induced Electrofermentation System. Bioresour. Technol. 2020, 313, 123604. [Google Scholar] [CrossRef] [PubMed]
- Nabgan, W.; Saeed, M.; Jalil, A.A.; Nabgan, B.; Gambo, Y.; Ali, M.W.; Ikram, M.; Fauzi, A.A.; Owgi, A.H.K.; Hussain, I. A State of the Art Review on Electrochemical Technique for the Remediation of Pharmaceuticals Containing Wastewater. Environ. Res. 2022, 210, 112975. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Sheob, M.; Saeed, B.; Khan, S.U.; Shirinkar, M.; Frontistis, Z.; Basheer, F.; Farooqi, I.H. Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. Water 2021, 13, 2105. [Google Scholar] [CrossRef]
- Martins, R.A.; Salgado, E.M.; Gonçalves, A.L.; Esteves, A.F.; Pires, J.C.M. Microalgae-Based Remediation of Real Textile Wastewater: Assessing Pollutant Removal and Biomass Valorisation. Bioengineering 2024, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, D.; Wu, Y.; Zhang, H.; Zhang, X. Operation Mode of a Step-Feed Anoxic/Oxic Process with Distribution of Carbon Source from Anaerobic Zone on Nutrient Removal and Microbial Properties. Sci. Rep. 2019, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, D.K.; Ranadheer, P.; Venkata Mohan, S. Eco-Electrogenic Engineered Flow through Wetland System for Tertiary Treatment of Acidogenic Effluents from Biohydrogen Production. J. Hazard. Toxic Radioact. Waste 2020, 24, 4020020. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Enhanced Antibiotic Degradation and Hydrogen Production of Deacetoxycephalosporin C Fermentation Residue by Gamma Radiation Coupled with Nano Zero-Valent Iron. J. Hazard. Mater. 2022, 424, 127439. [Google Scholar] [CrossRef]
- Wu, G.; Yin, Q. Microbial Niche Nexus Sustaining Biological Wastewater Treatment. npj Clean Water 2020, 3, 33. [Google Scholar] [CrossRef]
- Frontistis, Z. Current and Future Trends in Environmental Electrochemistry for Wastewater Treatment. Water 2022, 14, 1817. [Google Scholar] [CrossRef]
- Yang, K.; Ji, M.; Liang, B.; Zhao, Y.; Zhai, S.; Ma, Z.; Yang, Z. Bioelectrochemical Degradation of Monoaromatic Compounds: Current Advances and Challenges. J. Hazard. Mater. 2020, 398, 122892. [Google Scholar] [CrossRef]
- Yadav, R.K.; Das, S.; Patil, S.A. Are Integrated Bioelectrochemical Technologies Feasible for Wastewater Management? Trends Biotechnol. 2023, 41, 484–496. [Google Scholar] [CrossRef]
- Xu, L.; Yu, W.; Graham, N.; Zhao, Y.; Qu, J. Application of Integrated Bioelectrochemical-Wetland Systems for Future Sustainable Wastewater Treatment. Environ. Sci. Technol. 2019, 53, 1741–1743. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Kokkinos, P.; Hasa, B.; Frontistis, Z.; Katsaounis, A.; Mantzavinos, D. Electrochemical Oxidation of Pharmaceuticals on a Pt–SnO2/Ti Electrode. Electrocatalysis 2022, 13, 363–377. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, F.; Tang, Y.; Wen, Y.; Wu, Z.; Fang, Z.; Tian, X. Rapid Degradation of Rhodamine B through Visible-Photocatalytic Advanced Oxidation Using Self-Degradable Natural Perylene Quinone Derivatives—Hypocrellins. Bioengineering 2022, 9, 307. [Google Scholar] [CrossRef]
- Pueyo, N.; Ormad, M.P.; Miguel, N.; Kokkinos, P.; Ioannidi, A.; Mantzavinos, D.; Frontistis, Z. Electrochemical Oxidation of Butyl Paraben on Boron Doped Diamond in Environmental Matrices and Comparison with Sulfate Radical-AOP. J. Environ. Manag. 2020, 269, 110783. [Google Scholar] [CrossRef]
- Petala, A.; Bampos, G.; Frontistis, Z. Using Sawdust Derived Biochar as a Novel 3D Particle Electrode for Micropollutants Degradation. Water 2022, 14, 357. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Alizadeh, S.M.; Frontistis, Z.; Kabdaşlı, I.; Karamati Niaragh, E.; Al Qodah, Z.; Naghdali, Z.; Mahmoud, A.E.D.; Sandoval, M.A.; Butler, E. Electrocoagulation as a Promising Defluoridation Technology from Water: A Review of State of the Art of Removal Mechanisms and Performance Trends. Water 2021, 13, 656. [Google Scholar] [CrossRef]
- Zou, H.; Wang, Y. Azo Dyes Wastewater Treatment and Simultaneous Electricity Generation in a Novel Process of Electrolysis Cell Combined with Microbial Fuel Cell. Bioresour. Technol. 2017, 235, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bampos, G.; Petala, A.; Frontistis, Z. Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. Environments 2021, 8, 85. [Google Scholar] [CrossRef]
- Naderi, A.; Hasham Firooz, M.; Gharibzadeh, F.; Giannakis, S.; Ahmadi, M.; Rezaei Kalantary, R.; Kakavandi, B. Anchoring ZnO on Spinel Cobalt Ferrite for Highly Synergic Sono-Photo-Catalytic, Surfactant-Assisted PAH Degradation from Soil Washing Solutions. J. Environ. Manag. 2023, 326, 116584. [Google Scholar] [CrossRef]
- Pareek, A.; Sravan, J.S.; Mohan, S.V. Fabrication of Three-Dimensional Graphene Anode for Augmenting Performance in Microbial Fuel Cells. Carbon Resour. Convers. 2019, 2, 134–140. [Google Scholar] [CrossRef]
- Pareek, A.; Sravan, J.S.; Mohan, S.V. Exploring Chemically Reduced Graphene Oxide Electrode for Power Generation in Microbial Fuel Cell. Mater. Sci. Energy Technol. 2019, 2, 600–606. [Google Scholar] [CrossRef]
- Yeruva, D.K.; Sravan, J.S.; Butti, S.K.; Modestra, J.A.; Mohan, S.V. Spatial Variation of Electrode Position in Bioelectrochemical Treatment System: Design Consideration for Azo Dye Remediation. Bioresour. Technol. 2018, 256, 374–383. [Google Scholar] [CrossRef]
- Jain, P.; Sharma, M.; Dureja, P.; Sarma, P.M.; Lal, B. Bioelectrochemical Approaches for Removal of Sulfate, Hydrocarbon and Salinity from Produced Water. Chemosphere 2017, 166, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Molognoni, D.; Chiarolla, S.; Cecconet, D.; Callegari, A.; Capodaglio, A.G. Industrial Wastewater Treatment with a Bioelectrochemical Process: Assessment of Depuration Efficiency and Energy Production. Water Sci. Technol. 2018, 77, 134–144. [Google Scholar] [CrossRef]
- Sravan, J.S.; Venkata Mohan, S. Bioelectrocatalytic Reduction of Tellurium Oxyanions toward Their Cathodic Recovery: Concentration Dependence and Anodic Electrogenic Activity. ACS ES&T Water 2021, 2, 40–51. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review. J. Hazard. Toxic Radioact. Waste 2020, 24, 4020010. [Google Scholar] [CrossRef]
- Xu, C.; Lu, J.; Zhao, Z.; Lu, X.; Zhang, Y.; Cheng, M.; Zhang, J. Simultaneous Bioelectricity Generation, Desalination, Organics Degradation, and Nitrogen Removal in Air—Cathode Microbial Desalination Cells. SN Appl. Sci. 2020, 2, 212. [Google Scholar] [CrossRef]
- Yao, H.; Xiao, J.; Tang, X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering 2023, 10, 886. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Rezk, H.; Abdelkareem, M.A. Recent Progress of Graphene Based Nanomaterials in Bioelectrochemical Systems. Sci. Total Environ. 2020, 749, 141225. [Google Scholar] [CrossRef] [PubMed]
- Wilberforce, T.; Sayed, E.T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G. Value Added Products from Wastewater Using Bioelectrochemical Systems: Current Trends and Perspectives. J. Water Process Eng. 2021, 39, 101737. [Google Scholar] [CrossRef]
- Sravan, J.S.S.; Mohan, S.V.V. Hybrid Electrosynthesis as Non-Genetic Approach for Regulating Microbial Metabolism towards Waste Valorization in Circular Framework. Microb. Biotechnol. 2022, 16, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Leicester, D.; Amezaga, J.; Heidrich, E. Is Bioelectrochemical Energy Production from Wastewater a Reality? Identifying and Standardising the Progress Made in Scaling up Microbial Electrolysis Cells. Renew. Sustain. Energy Rev. 2020, 133, 110279. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, Y.; Pan, Y.R.; Li, L.; Liu, J.; Butler, D. Stepwise PH Control to Promote Synergy of Chemical and Biological Processes for Augmenting Short-Chain Fatty Acid Production from Anaerobic Sludge Fermentation. Water Res. 2019, 155, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Tharak, A.; Mohan, S.V. Chapter 1—Status of Biogas Production and Biogas Upgrading: A Global Scenario. In Emerging Technologies and Biological Systems for Biogas Upgrading; Aryal, N., Mørck Ottosen, L.D., Wegener Kofoed, M.V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–26. ISBN 978-0-12-822808-1. [Google Scholar]
- Kaushik, A.; Singh, A. Metal Removal and Recovery Using Bioelectrochemical Technology: The Major Determinants and Opportunities for Synchronic Wastewater Treatment and Energy Production. J. Environ. Manag. 2020, 270, 110826. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; He, Z. Cathode-Enhanced Wastewater Treatment in Bioelectrochemical Systems. npj Clean Water 2018, 1, 23. [Google Scholar] [CrossRef]
- Naderi, A.; Kakavandi, B.; Giannakis, S.; Angelidaki, I.; Rezaei Kalantary, R. Putting the Electro-Bugs to Work: A Systematic Review of 22 Years of Advances in Bio-Electrochemical Systems and the Parameters Governing Their Performance. Environ. Res. 2023, 229, 115843. [Google Scholar] [CrossRef]
- Altamirano-Corona, M.F.; Anaya-Reza, O.; Durán-Moreno, A. Biostimulation of Food Waste Anaerobic Digestion Supplemented with Granular Activated Carbon, Biochar and Magnetite: A Comparative Analysis. Biomass Bioenergy 2021, 149, 106105. [Google Scholar] [CrossRef]
- Qiu, L.; Deng, Y.F.; Wang, F.; Davaritouchaee, M.; Yao, Y.Q. A Review on Biochar-Mediated Anaerobic Digestion with Enhanced Methane Recovery. Renew. Sustain. Energy Rev. 2019, 115, 109373. [Google Scholar] [CrossRef]
- Aryal, N.; Halder, A.; Tremblay, P.-L.; Chi, Q.; Zhang, T. Enhanced Microbial Electrosynthesis with Three-Dimensional Graphene Functionalized Cathodes Fabricated via Solvothermal Synthesis. Electrochim. Acta 2016, 217, 117–122. [Google Scholar] [CrossRef]
- Tian, N.; Giannakis, S.; Akbarzadeh, L.; Hasanvandian, F.; Dehghanifard, E.; Kakavandi, B. Improved Catalytic Performance of ZnO via Coupling with CoFe2O4 and Carbon Nanotubes: A New, Photocatalysis-Mediated Peroxymonosulfate Activation System, Applied towards Cefixime Degradation. J. Environ. Manag. 2023, 329, 117022. [Google Scholar] [CrossRef] [PubMed]
- Yellappa, M.; Sravan, J.S.; Sarkar, O.; Reddy, Y.V.R.; Mohan, S.V. Modified Conductive Polyaniline-Carbon Nanotube Composite Electrodes for Bioelectricity Generation and Waste Remediation. Bioresour. Technol. 2019, 284, 148–154. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Sang, B.-I. Extracellular Electron Transfer from Cathode to Microbes: Application for Biofuel Production. Biotechnol. Biofuels 2016, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef]
- Olfatmehr, N.; Kakavandi, B.; Khezri, S.M. Peroxydisulfate Activation by Enhanced Catalytic Activity of CoFe2O4 Anchored on Activated Carbon: A New Sulfate Radical-Based Oxidation Study on the Cefixime Degradation. Sep. Purif. Technol. 2022, 302, 121991. [Google Scholar] [CrossRef]
- Rathour, R.; Patel, D.; Shaikh, S.; Desai, C. Eco-Electrogenic Treatment of Dyestuff Wastewater Using Constructed Wetland-Microbial Fuel Cell System with an Evaluation of Electrode-Enriched Microbial Community Structures. Bioresour. Technol. 2019, 285, 121349. [Google Scholar] [CrossRef]
- Mohammadi, T.; Esmaeelifar, A. Wastewater Treatment Using Ultrafiltration at a Vegetable Oil Factory. Desalination 2004, 166, 329–337. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhang, J.; Yin, J.; Wang, H. Investigation of Microfiltration for Treatment of Emulsified Oily Wastewater from the Processing of Petroleum Products. Desalination 2009, 249, 1223–1227. [Google Scholar] [CrossRef]
- Yellappa, M.; Sarkar, O.; Reddy, Y.V.R.; Mohan, S.V. Municipal Landfill Leachate Remediation Coupling Acidogenesis and Bioelectrogenesis for Biohydrogen and Volatile Fatty Acids Production. Process Saf. Environ. Prot. 2023, 172, 716–726. [Google Scholar] [CrossRef]
- Petrinic, I.; Korenak, J.; Povodnik, D.; Hélix-Nielsen, C. A Feasibility Study of Ultrafiltration/Reverse Osmosis (UF/RO)-Based Wastewater Treatment and Reuse in the Metal Finishing Industry. J. Clean. Prod. 2015, 101, 292–300. [Google Scholar] [CrossRef]
- Salahi, A.; Badrnezhad, R.; Abbasi, M.; Mohammadi, T.; Rekabdar, F. Oily Wastewater Treatment Using a Hybrid UF/RO System. Desalination Water Treat. 2011, 28, 75–82. [Google Scholar] [CrossRef]
- Krishna, K.V.; Sarkar, O.; Venkata Mohan, S. Bioelectrochemical Treatment of Paper and Pulp Wastewater in Comparison with Anaerobic Process: Integrating Chemical Coagulation with Simultaneous Power Production. Bioresour. Technol. 2014, 174, 142–151. [Google Scholar] [CrossRef]
- Sarkar, O.; Matsakas, L.; Rova, U.; Christakopoulos, P. Ultrasound-Controlled Acidogenic Valorization of Wastewater for Biohydrogen and Volatile Fatty Acids Production: Microbial Community Profiling. iScience 2023, 26, 106519. [Google Scholar] [CrossRef]
- Mostafazadeh, A.K.; Drogui, P.; Brar, S.K.; Tyagi, R.D.; Le Bihan, Y.; Buelna, G. Microbial Electrosynthesis of Solvents and Alcoholic Biofuels from Nutrient Waste: A Review. J. Environ. Chem. Eng. 2017, 5, 940–954. [Google Scholar] [CrossRef]
- Rozmysłowicz, B.; Yeap, J.H.; Elkhaiary, A.M.I.; Amiri, M.T.; Shahab, R.L.; Questell-Santiago, Y.M.; Xiros, C.; Le Monnier, B.P.; Studer, M.H.; Luterbacher, J.S. Catalytic Valorization of the Acetate Fraction of Biomass to Aromatics and Its Integration into the Carboxylate Platform. Green Chem. 2019, 21, 2801–2809. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Luévano-Montaño, C.D.; García-González, A.; Olivo-Alanis, D.S.; Álvarez-Valencia, L.H.; García-Reyes, R.B. Evaluation of Dissolved and Immobilized Redox Mediators on Dark Fermentation: Driving to Hydrogen or Solventogenic Pathway. Bioresour. Technol. 2020, 317, 123981. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Mutrakulcharoen, P.; Chuetor, S.; Cheenkachorn, K.; Tantayotai, P.; Panakkal, E.J.; Sriariyanun, M. Recent Situation and Progress in Biorefining Process of Lignocellulosic Biomass: Toward Green Economy. Appl. Sci. Eng. Prog. 2020, 13, 299–311. [Google Scholar] [CrossRef]
- Sarkar, O.; Katakojwala, R.; Mohan, S.V.; Venkata Mohan, S. Low Carbon Hydrogen Production from a Waste-Based Biorefinery System and Environmental Sustainability Assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Reiner, J.E.; Geiger, K.; Hackbarth, M.; Fink, M.; Lapp, C.J.; Jung, T.; Dötsch, A.; Hügler, M.; Wagner, M.; Hille-Reichel, A. From an Extremophilic Community to an Electroautotrophic Production Strain: Identifying a Novel Knallgas Bacterium as Cathodic Biofilm Biocatalyst. ISME J. 2020, 14, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Muduli, M.; Chanchpara, A.; Choudhary, M.; Saravaia, H.; Haldar, S.; Ray, S. Critical Review on Sustainable Bioreactors for Wastewater Treatment and Water Reuse. Sustain. Water Resour. Manag. 2022, 8, 159. [Google Scholar] [CrossRef]
Wastewater | Treatment Process/Method | Treatment Efficiency | Reference |
---|---|---|---|
Vegetable oil factory | Ultrafiltration | COD removal: 91% TSS removal: 100% | [81] |
Synthetic emulsified oily wastewater | Microfiltration | Organic pollutant removal: 95% | [82] |
Landfill leachate | Integration of acidogenic and bioelectrochemical systems | COD removal: 71.21% | [83] |
Metal finishing industry | Ultrafiltration integrated with reverse osmosis | Contaminant removal: 90–99% | [84] |
Phenolic wastewater from paper mill industry | Ultrafiltration integrated with nanofiltration and reverse osmosis | COD removal: 95.5% Phenol removal: 94.9% | [85] |
Paper and pulp wastewater | Bioelectrochemical treatment system | COD removal: 95% Color removal: 100% | [86] |
Designed synthetic wastewater | Bioelectrochemical treatment system with PANi/CNT nanocomposite anode | COD removal: 80% | [75] |
Glucose-based synthetic wastewater | Sono-bioreactor with 20 kHz: 2 W and 4 W | COD removal: >90% | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sravan, J.S.; Matsakas, L.; Sarkar, O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering 2024, 11, 281. https://doi.org/10.3390/bioengineering11030281
Sravan JS, Matsakas L, Sarkar O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering. 2024; 11(3):281. https://doi.org/10.3390/bioengineering11030281
Chicago/Turabian StyleSravan, J. Shanthi, Leonidas Matsakas, and Omprakash Sarkar. 2024. "Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context" Bioengineering 11, no. 3: 281. https://doi.org/10.3390/bioengineering11030281
APA StyleSravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering, 11(3), 281. https://doi.org/10.3390/bioengineering11030281