Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability
Abstract
:1. Introduction
2. Challenges in Muscle Regeneration
2.1. Volumetric Muscle Loss (VML)
2.2. Fibrosis and Scar Formation
2.3. Immune Response and Inflammation
2.4. Cellular Senescence and Its Impact
3. Microenvironment and Extracellular Matrix (ECM)
3.1. ECM’s Role in Muscle Regeneration
3.2. Mechanical and Biochemical Cues in the ECM
3.3. Influence of ECM Stiffness and Structure
3.4. Challenges in ECM Restoration
Ref. | Key Proteins/Factors | Mechanistic Action | Cellular Response | Key Outcome |
---|---|---|---|---|
[66] | NUMB, Template DNA | Asymmetric division and cosegregation of template DNA | Maintenance of stem cell self-renewal | Preservation of stem cell pool |
[67] | Template DNA | Asymmetric division in cancer stem cells | Maintenance of self-renewal capacity | Stem cell self-renewal |
[68] | WNT7A | WNT signaling pathway activation | Expansion of self-renewing cells | Enhanced stem cell pool expansion |
[69] | WNT signaling | Regulation of self-renewal and cardiac stem cells | Maintenance and expansion of cardiac stem cells | Regeneration of infarcted myocardium |
[70] | JAK/STAT | Promotion of symmetric division | Expansion of self-renewing cell population | Increased stem cell pool |
[71] | JAK/STAT | Maintenance of stem cell quiescence | Promotion of self-renewal | Preservation of stem cell population |
[72] | RNAPII | Transcriptional regulation | Maintenance of quiescence | Prevention of premature activation |
[73] | ATR, Cyclin F-SCF | Regulation of genome integrity and cell cycle factors | Preservation of quiescence | Maintenance of stem cell longevity |
[74] | Cyclin F-SCF | Degradation of cell cycle proteins | Maintenance of quiescence | Stem cell preservation |
[75] | PI3K/AKT | Rescues quiescence defects | Rejuvenation of aged MuSCs | Restoration of stem cell balance |
[76] | Notch, miR-708, KLF7 | Delay of cell cycle reentry | Maintenance of stem cell pool | Prevention of premature depletion |
[77] | MuSK, BMP | Niche-specific signaling | Regulation of myofiber size | Maintenance of quiescence |
[78] | N-cadherin, M-cadherin | Niche adhesion | Transition from quiescence to activation | Stem cell activation |
[79] | Cadherins | Cadherin-dependent adhesion | Niche anchorage | Preservation of stem cell readiness |
[80] | Collagen, Laminin | Structural support through ECM components | Maintenance of homeostasis | Support for tissue regeneration |
[81] | ECM components | Structural support for tissue regeneration | Maintenance of tissue integrity | Enhanced regeneration capability |
[82] | H3K27me3 | Regulation of gene expression during myogenesis | Differentiation-dependent gene activation | Promotion of muscle differentiation |
[83] | H3K4me2, H3K4me3 | Marking of muscle-relevant genes during myogenesis | Promotion of gene expression | Enhanced muscle differentiation |
[84] | Smad2, LEF1 | Regulation of histone modifications during differentiation | Control of gene expression | Induction of differentiation |
[85] | eIF2α | Regulation of gene activation | Maintenance of quiescence | Prevention of premature differentiation |
[86] | H3K27me3 | Maintenance of repressive chromatin state | Preservation of quiescence | Prevention of premature activation |
[87] | Notch | Prevention of muscle atrophy | Maintenance of quiescence | Prevention of muscle atrophy |
4. Scaffold Design and Engineering
4.1. Scaffold Properties Mimicking ECM
4.2. Integration of Mechanical Cues in Scaffolds
4.3. Pharmacotherapy Interactions with Scaffolds
4.4. Advances in Scaffold Manufacturing
4.5. Novel Materials for Scaffold Design
Ref. | Scaffold Type | Physiological Properties | Physicochemical Properties | Composition |
---|---|---|---|---|
[88] | Poly(glycerol sebacate)-gelatin | Supports cell adhesion and proliferation; promotes muscle regeneration | Biodegradable; tunable mechanical strength and elasticity | Poly(glycerol sebacate), gelatin |
[117] | Collagen-based scaffold with endothelial cells | Enhances vascularization; supports muscle tissue formation | Biocompatible; mimics native ECM stiffness | Collagen type I, endothelial cells |
[98] | 3D bioprinted scaffold | Customizable shape for defect site; promotes cell viability | Controlled porosity; mechanical strength suitable for muscle tissue | Polycaprolactone (PCL), bioink with cells |
[105] | Synthetic polymer scaffold | Supports stem cell differentiation | Adjustable degradation rate; tunable mechanical properties | Polylactic acid (PLA), polyglycolic acid (PGA) |
[4] | Elastic substrate scaffold | Regulates stem cell self-renewal and differentiation | Elastic modulus matching muscle tissue; biodegradable | Hydrogel substrates of varying stiffness |
[55,89] | Injectable hydrogel scaffold | Facilitates cell delivery; supports tissue integration | Shear-thinning; self-healing properties | Hyaluronic acid, gelatin methacryloyl |
[94] | Matrix elasticity-modulated scaffold | Directs stem cell lineage specification | Variable stiffness; elastic properties | Polyacrylamide gel with tunable crosslinking |
[106] | Composite scaffold | Enhances mechanical strength; supports cell attachment | Biodegradable; controlled porosity | Collagen, hydroxyapatite |
[95] | Electrospun nanofiber scaffold | Mimics native ECM structure; supports cell infiltration | High surface area; adjustable fiber diameter | Polycaprolactone (PCL) nanofibers |
[118] | Decellularized ECM scaffold | Provides natural biochemical cues; supports regeneration | Preserved ECM architecture; natural mechanical properties | Decellularized muscle tissue ECM |
5. Emerging Therapies and Technologies
5.1. Pluripotent Stem Cells and Myogenic Progenitors
5.2. Three-Dimensional Printing and Custom Scaffolds
5.3. Nanotechnology and Biomimetic Materials
6. Cellular Mechanisms and Metabolic Pathways
6.1. Cytoskeletal Dynamics in Mechanotransduction
6.2. Metabolic Pathways in MuSC Function
6.3. Epigenetic Regulation in Muscle Regeneration
6.4. Mechanical Forces and Cellular Adaptation
7. Cellular-Based Strategies for Regeneration
7.1. Preloading Scaffolds with Multiple Cell Types
7.2. Pharmacological Interventions in Muscle Repair
7.3. Integration of Bioactive Molecules
7.4. Exosome and Immune Modulation
Ref. | Molecular Pathway | Signaling Mechanism | MuSC State Affected | Outcome |
---|---|---|---|---|
[153] | PRMT inhibition | Type I PRMT inhibition | Proliferation | Enhances MuSC proliferation and muscle regeneration in Duchenne muscular dystrophy model |
[154] | CXCL12/CXCR4 axis | MSC homing and early myogenesis | Early myogenesis | Enhances muscle repair through MSC homing, especially with intrarectal administration |
[155] | MSC-conditioned medium | Anti-inflammatory and anti-fibrotic | New muscle fiber formation | Reduces inflammation and fibrosis, promotes new muscle fiber formation |
[156] | Notch signaling | DLL1 bioprinting, MuSC maintenance | Maintenance and engraftment | Improves MuSC maintenance and engraftment in dystrophic muscles |
[157] | Smad/AKT pathways | Follistatin-enriched exosomes | Fibrosis reduction and muscle regeneration | Reduces fibrosis and enhances muscle regeneration |
[77] | Wnt signaling | ASC exosomes mediated macrophage phenotype modulation | Tissue repair | Enhances tissue repair through Wnt signaling and macrophage phenotype alteration |
[158] | KDR signaling | Dystrophin complex, asymmetric division | Progenitor generation | Promotes muscle regeneration by enhancing progenitor generation |
[159] | Histone demethylation | JMJD3-mediated H3K27 demethylation | Muscle repair | Activates MuSCs and enhances muscle repair through demethylation |
[160] | Dkk3 signaling | Baf60c regulation in myofibers | Paracrine signaling | Supports regulated muscle regeneration through paracrine signaling |
[8] | Mechanosensitive channels | Piezo1 activation | Morphology and regenerative capacity | Enhances regenerative capacity by influencing MuSC morphology in dystrophic conditions |
[161] | Dual-specificity phosphatases (DUSP13/27) | MyoD-mediated proliferation | Proliferation and differentiation transition | Regulates MyoD-mediated proliferation and transition to differentiation |
[162] | HIF2A inhibition | Satellite cell differentiation | Proliferation and differentiation | Boosts proliferation and enhances MuSC regeneration |
[163] | Setd7 inhibition | (R)-PFI-2-mediated MuSC expansion | Regenerative capabilities post-transplantation | Maintains regenerative capabilities and supports MuSC expansion post-transplantation |
[164] | Translational modulation | C10-mediated delay in differentiation | Stemness maintenance | Delays differentiation, improving yield of cultured MuSCs and maintaining stemness |
[165] | PAX7:GFP sorting | Fibrin microfiber bundles, myotube formation | Muscle regeneration | Enhances myotube formation and muscle regeneration from human pluripotent stem cell-derived myogenic progenitors |
[166] | Bioactive muscle patches | Concurrent administration with proteins and MuSCs | Muscle repair | Improves muscle repair in trauma scenarios |
[157] | Transcriptome reprogramming | Epigenome changes | Post-transplantation regenerative capacity | Enhances regenerative capacity through transcriptome reprogramming |
[167] | iPSC correction | Interspecies generation | Functional stem cell production | Produces functional stem cells, addressing therapeutic production and donor shortages |
[168] | MSC exosome-mediated immune modulation | Macrophage polarization | Inflammation reduction, tissue repair | Reduces inflammation and enhances muscle regeneration through macrophage polarization |
[169] | MSC exosome-mediated immune modulation | Macrophage polarization | Inflammation reduction, tissue repair | Enhances cartilage repair and reduces inflammation through macrophage polarization |
[170] | Glutamine metabolism | WDR5-linked network | Differentiation and self-renewal | Promotes differentiation and supports self-renewal by maintaining mitochondrial function |
[160] | Mitophagy | PINK1/Parkin pathway | Mitochondrial quality, ROS reduction | Improves mitochondrial quality, reduces ROS, and supports MuSC self-renewal |
[164] | Lipid metabolism | LD turnover | Balanced differentiation and self-renewal | Ensures balanced fate decisions between LDLow and LDHigh MuSC differentiation |
[161] | Pitx2 regulation | Myogenic precursors | Satellite cell proliferation and differentiation | Enhances satellite cell proliferation and differentiation in specific subpopulations |
[8] | Primary cilia | Talpid3 (TA3) regulation | Regeneration and self-renewal | Enhances MuSC regeneration and self-renewal via Hedgehog signaling |
[159] | Epigenetic regulation | SETDB1-mediated genome integrity | Genome integrity, aberrant activation prevention | Preserves genome integrity and prevents aberrant activation |
[171] | Metabolic regulation | SIRT1 activation and caloric restriction | MuSC activation and function | Enhances MuSC activation and function through histone modifications |
[172] | Nanotopographical cues | Engineered EVs, sequential administration | Proliferation, aged muscle repair | Enhances proliferation and aged muscle repair through engineered EVs |
8. Advanced Analytical Techniques
8.1. Single-Cell RNA Sequencing (scRNA-Seq)
8.2. Advanced Imaging Techniques
8.3. Combining Molecular Data with Histological Features
9. Scaffold Types and Properties
9.1. Decellularized ECM Scaffolds
9.2. Synthetic and Bioactive Muscle Patches
9.3. Composite Scaffolds and Their Functionalization
9.4. Three-Dimensional-Printed and Electrospun Scaffolds
Ref. | Scaffold Type | Signal Transduction | Cellular Response | Key Molecules/Proteins |
---|---|---|---|---|
[187] | Nanotopography | FAK activation | Stem cell differentiation, ECM production | FAK, Cytoskeletal proteins |
[188] | Meso-scale topological cues | Mechanotransduction | ECM production | FAK, ECM components |
[189] | Aligned fibrous scaffolds | Integrin–FAK pathway | Muscle progenitor maturation | Integrin, FAK |
[190] | Fibrous scaffolds | FAK activation | Skeletal regeneration, progenitor cell maturation | FAK |
[191] | Electrospun fibers | Rho GTPase, FAK pathways | Tenogenic differentiation | Rho GTPase, FAK |
[192] | Conductive nanofibers | MAPK/ERK pathway | Myotube formation | MAPK, ERK |
[193] | Conductive nanofibers | MAPK/ERK pathway | Mechanotransduction, myotube formation | MAPK, ERK |
[194] | Vitronectin, fibronectin, collagen | Integrin-FAK/Src pathway | Smooth muscle cell adhesion and proliferation | Integrin, FAK, Src |
[195] | Vitronectin, fibronectin | Integrin-mediated mechanotransduction | Vascular smooth muscle cell behavior | Integrin, ECM components |
[50] | Various ECM components | MAPK/ERK pathway | Myogenic differentiation | MAPK, ERK |
[196] | Stiff scaffolds | RhoA/ROCK pathway | Cell behavior modulation, differentiation | RhoA, ROCK |
[197] | Stiff scaffolds | RhoA/ROCK pathway | Response to mechanical cues, differentiation | RhoA, ROCK |
[157] | Growth factors | JAK/STAT pathway | Satellite cell activation, tissue repair | JAK, STAT |
[23] | Growth factors | JAK/STAT pathway | Satellite cell activation | JAK, STAT |
[171] | Biochemical cues | Notch pathway | Satellite cell activation and differentiation | Notch |
[77] | Biochemical cues | Notch pathway | Satellite cell quiescence, differentiation | Notch |
[172] | Curved nanofiber networks | Actomyosin filament pathway | Osteogenic differentiation | Actin, Myosin |
[198] | Graphene oxide substrates | Cytoskeletal protein reorganization | Cell migration, differentiation | Cytoskeletal proteins |
[199] | Grooved patterns, chiral nematics | Myogenin, MyoD activation | Myotube formation | Myogenin, MyoD |
[200] | Nanogratings | Extracellular vesicles (EVs) and myogenic proteins | Myogenic differentiation | EVs, Myogenic proteins |
[201] | 3D topographical features | PGE2, IL-6, MCP-1 | Anti-inflammatory response | PGE2, IL-6, MCP-1 |
[202] | Mesoporous silica nanoparticles | PI3K/Akt pathway | Vascularization, drug delivery | PI3K, Akt |
[203] | Shape memory polymers | MyoD, Myogenin signaling | Myogenic differentiation | MyoD, Myogenin |
[204] | Motor amphiphiles | Membrane potential, calcium signaling | Controlled differentiation | Membrane potential, Calcium signaling |
[160] | Electrospun PLCL scaffolds | Myogenic markers activation | Myogenesis | MyoD, Myogenin |
[205] | Drydux scaffolds | Fluid flow optimization | Enhanced viral vector transduction efficiency | Viral vectors |
[206] | Barium-doped calcium silicate | CaSR, AKT signaling | Osteogenic differentiation | CaSR, AKT |
[207] | Degradable scaffolds | Wnt/β-catenin pathway | Tissue regeneration | Wnt, β-catenin |
[97] | Shear stress applied scaffolds | Wnt signaling | Mesoderm differentiation | Wnt |
[158] | Mechanical stimulation | MAPK pathway | Muscle adaptation | MAPK |
[208] | Dynamic cellular projections | Rac-Rho GTPase pathway | Injury response, stem cell migration | Rac, Rho GTPase |
[170] | Glutamine metabolism | WDR5-APC/C interaction | Stem cell differentiation | WDR5, APC/C |
10. Integration of Emerging Technologies
10.1. Role of Biocompatible Materials in Scaffold Design
10.2. Functionalization for Enhanced Regeneration
10.3. Nanotechnology and 3D Topographical Cues
Ref. | Scaffold Material | Source | Fabrication Technique | Structural Features | Cell Type Supported | Biodegradability | Proangiogenic Properties | Electrical Properties | Sustainability |
---|---|---|---|---|---|---|---|---|---|
[216] | Polycaprolactone (PCL) | Synthetic | 3D Printing | Fluorescent features, NIR conjugation | Placental stem cells | Slow | Low | Low | Low |
[217] | Polycaprolactone (PCL) | Synthetic | 3D Printing | Structural stability | Placental stem cells | Slow | Low | Low | Low |
[218] | Decellularized ECM | Biological | Decellularization | Spheroid-derived structures | Endothelial cells | Moderate | High | Low | Moderate |
[219] | Decellularized ECM | Biological | 3D Bioprinting | Spheroid-derived structures | Endothelial cells | Moderate | High | Low | Moderate |
[220] | Cellulose | Plant | Decellularization | Grooved structural characteristics | C2C12, HSMCs cells | Slow | Low | Low | High |
[221] | Cellulose | Plant | Decellularization | Grooved structural characteristics | C2C12, HSMCs cells | Slow | Low | Low | High |
[222] | Collagen | Biological | Freeze-drying | Fibrillar structures | MSCs | Moderate | Low | Low | Moderate |
[223] | Collagen | Biological | Freeze-drying | Fibrillar structures | MSCs | Moderate | Low | Low | Moderate |
[224] | Polycaprolactone (PCL)/Gold | Synthetic | Melt Electrowriting | Hierarchical, anisotropic structure, Gold coating | H9c2 myoblasts | Slow | Moderate | High | Low |
[225] | Polycaprolactone (PCL)/Polypyrrole | Synthetic | Melt Electrowriting | Hierarchical, anisotropic structure, Gold coating | H9c2 myoblasts | Slow | Moderate | High | Low |
[226] | Gelatin/Chitooligosaccharide/DBM | Composite | Lyophilization | Porous structure | MSCs | Moderate | Moderate | Low | Moderate |
[227] | Gelatin/Chitosan | Composite | Salt-leaching/Lyophilization | Porous structure | MSCs | Moderate | Moderate | Low | Moderate |
[228] | Collagen/Polypyrrole | Composite | Freeze-drying | Aligned, conductive structural features | Myoblasts | Slow | Moderate | High | Moderate |
[221] | Plant-derived Cellulose | Plant | Decellularization | Striated structures | C2C12 cells | Slow | Low | Low | High |
[216] | Polycaprolactone (PCL) | Synthetic | 3D Printing | Artificial ECM functionalization | hASCs | Slow | High | Low | Low |
[229] | Alginate–Gelatin | Composite | 3D Bioprinting | Hierarchical structural features | hMSCs | Moderate | Low | Low | Moderate |
[230] | Alginate–Gelatin | Composite | 3D Bioprinting | Hierarchical structural features | hMSCs | Moderate | Low | Low | Moderate |
[179] | Decellularized ECM with IGF-1 | Biological | Decellularization | Muscle-specific structures, IGF-1 incorporation | Myoblasts | Moderate | High | Low | High |
[231] | Decellularized ECM with topographical cues | Biological | Wet Electrospinning | Composite ECM hydrogel structures | hMSCs | Moderate | High | Low | Moderate |
[11] | Decellularized ECM | Biological | Wet Electrospinning | Composite ECM hydrogel structures | hMSCs | Moderate | High | Low | Moderate |
[232] | Decellularized ECM | Biological | Decellularization | Fibrous, porous structures | hASCs | Moderate | Moderate | Low | High |
[233] | Decellularized ECM | Biological | Infusion Bioreactor | Fibrous, porous structures | hASCs | Moderate | Moderate | Low | High |
[150] | Bioactive Ceramics/Silk Fibroin | Composite | 3D Printing | Composite structures | hMSCs | Moderate | Moderate | Low | Moderate |
[228] | Bioactive Ceramics/Silk Fibroin | Composite | 3D Printing | Composite structures | hMSCs | Moderate | Moderate | Low | Moderate |
11. Future Directions
11.1. Hybrid Scaffold Systems
11.2. Mechanotransduction Optimization
11.3. Epigenetic Scaffold Integration
11.4. Scalable Differentiation Protocols
11.5. Exosome Engineering for Targeted Delivery
11.6. Targeted Immune Modulation
11.7. Real-Time Monitoring and Analysis
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madl, C.; Flaig, I.A.; Holbrook, C.; Wang, Y.X.; Blau, H. Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials 2021, 275, 120973. [Google Scholar] [CrossRef] [PubMed]
- Relaix, F.; Bencze, M.; Borok, M.; Der Vartanian, A.; Gattazzo, F.; Mademtzoglou, D.; Pérez-Díaz, S.; Prola, A.; Reyes-Fernandez, P.C.; Rotini, A.; et al. Perspectives on skeletal muscle stem cells. Nat. Commun. 2021, 12, 692. [Google Scholar] [CrossRef] [PubMed]
- Boukhatmi, H. Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021, 10, 2112. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.M.; Havenstrite, K.L.; Magnusson, K.E.; Sacco, A.; Leonardi, N.A.; Kraft, P.; Blau, H.M. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010, 329, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, C. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves skeletal muscle regeneration and functional recovery in a volumetric muscle loss model. Cell Death Dis. 2014, 5, e1499. [Google Scholar]
- Quarta, M. Bioengineered constructs combined with exercise enhance stem cell–mediated treatment of volumetric muscle loss. Nat. Commun. 2017, 8, 15613. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.S.; Fu, J. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 2012, 41, 519–542. [Google Scholar] [CrossRef]
- Ma, N.; Chen, D.; Lee, J.-H.; Kuri, P.; Hernandez, E.; Kocan, J.; Mahmood, H.; Tichy, E.; Rompolas, P.; Mourkioti, F. Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Sci. Adv. 2022, 8, eabn0485. [Google Scholar] [CrossRef]
- Engler, A.J.; Griffin, M.A.; Sen, S.; Bönnemann, C.G.; Sweeney, H.L.; Discher, D.E. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 2004, 166, 877–887. [Google Scholar] [CrossRef]
- Bach, A.D.; Arkudas, A.; Tjiawi, J.; Polykandriotis, E.; Kneser, U.; Horch, R.E. A new approach to tissue engineering of vascularized skeletal muscle. J. Cell. Mol. Med. 2006, 10, 716–726. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Rocheteau, P.; Vinet, M.; Chrétien, F. Dormancy and quiescence of skeletal muscle stem cells. Results Probl. Cell Differ. 2015, 56, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Cicciarello, D.; Schaeffer, L.; Scionti, I. Epigenetic Control of Muscle Stem Cells: Focus on Histone Lysine Demethylases. Front. Cell Dev. Biol. 2022, 10, 917771. [Google Scholar] [CrossRef] [PubMed]
- Boonsanay, V.; Zhang, T.; Georgieva, A.; Kostin, S.; Qi, H.; Yuan, X.; Zhou, Y.; Braun, T. Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation. Cell Stem Cell 2016, 18, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Gheller, B.J.; Blum, J.E.; Fong, E.H.H.; Malysheva, O.; Cosgrove, B.; Thalacker-Mercer, A. A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discov. 2020, 6, 95. [Google Scholar] [CrossRef]
- Jacques, E.; Kuang, Y.; Kann, A.P.; Le Grand, F.; Krauss, R.; Gilbert, P. The mini-IDLE 3D biomimetic culture assay enables interrogation of mechanisms governing muscle stem cell quiescence and niche repopulation. eLife 2022, 11, e81738. [Google Scholar] [CrossRef]
- Sato, T.; Yamamoto, T.; Sehara-Fujisawa, A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat. Commun. 2014, 5, 4597. [Google Scholar] [CrossRef]
- L’Honoré, A.; Drouin, J.; Buckingham, M.; Montarras, D. Pitx2 and Pitx3 transcription factors: Two key regulators of the redox state in adult skeletal muscle stem cells and muscle regeneration. Free Radic. Biol. Med. 2014, 75 (Suppl. S1), S37. [Google Scholar] [CrossRef]
- Mademtzoglou, D.; Asakura, Y.; Borok, M.; Alonso-Martín, S.; Mourikis, P.; Kodaka, Y.; Mohan, A.; Asakura, A.; Relaix, F. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. eLife 2018, 7, e33337. [Google Scholar] [CrossRef]
- Doria, E.; Buonocore, D.; Focarelli, A.; Marzatico, F. Relationship between human aging muscle and oxidative system pathway. Oxid. Med. Cell. Longev. 2012, 2012, 830257. [Google Scholar] [CrossRef]
- Chowdhury, A.; Ghosh, I.; Datta, K. Excessive reactive oxygen species induces apoptosis in fibroblasts: Role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp. Cell Res. 2008, 314, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, H.; Pal, S.; Sabnam, S.; Pal, A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci. 2019, 241, 117148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Noguchi, Y.-t.; Nakayama, H.; Kaji, T.; Tsujikawa, K.; Ikemoto-Uezumi, M.; Uezumi, A.; Okada, Y.; Doi, T.; Watanabe, S.; et al. The CalcR-PKA-Yap1 Axis Is Critical for Maintaining Quiescence in Muscle Stem Cells. Cell Rep. 2019, 29, 2154–2163.e2155. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, J.; Wang, Y.; Shen, S.; Xu, X.; Zhang, L.; Jiang, Q. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact. Mater. 2023, 24, 477–496. [Google Scholar] [CrossRef]
- Patel, K.D.; Keskin-Erdogan, Z.; Sawadkar, P.; Nik Sharifulden, N.S.A.; Shannon, M.R.; Patel, M.; Silva, L.B.; Patel, R.; Chau, D.Y.S.; Knowles, J.C.; et al. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 2024, 9, 1630–1682. [Google Scholar] [CrossRef]
- Shan, H.; Gao, X.; Zhang, M.; Huang, M.; Fang, X.; Chen, H.; Tian, B.; Wang, C.; Zhou, C.; Bai, J.; et al. Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. J. Tissue Eng. 2021, 12, 20417314211031378. [Google Scholar] [CrossRef]
- Seale, P.; Rudnicki, M.A. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev. Biol. 2000, 218, 115–124. [Google Scholar] [CrossRef]
- Buckingham, M.; Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu. Rev. Cell Dev. Biol. 2007, 23, 645–673. [Google Scholar] [CrossRef]
- Olguin, H.C.; Olwin, B.B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: A potential mechanism for self-renewal. Dev. Biol. 2004, 275, 375–388. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Xiao, M.; Balint, K.; Soma, A.; Pinnix, C.C.; Capobianco, A.; Velazquez, O.; Herlyn, M. Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J. 2006, 20, 1009–1011. [Google Scholar] [CrossRef]
- Wang, T.; Holt, C.; Xu, C.; Ridley, C.; Jones, R.P.O.; Baron, M.; Trump, D. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell. Signal. 2007, 19, 2458–2467. [Google Scholar] [CrossRef] [PubMed]
- Regad, T. Targeting RTK Signaling Pathways in Cancer. Cancers 2015, 7, 1758–1784. [Google Scholar] [CrossRef] [PubMed]
- Jones, F.K.; Phillips, A.M.; Jones, A.; Pisconti, A. SDC3 acts as a timekeeper of myogenic differentiation by regulating the insulin/AKT/mTOR axis in muscle stem cell progeny. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ma, J.; Meng, Y.; Kwiatkowski, D.; Chen, X.; Peng, H.; Sun, Q.; Zha, X.; Wang, F.; Wang, Y.; Jing, Y.; et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Investig. 2010, 120, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Gunther, S.; Kim, J.; Kostin, S.; Lepper, C.; Fan, C.M.; Braun, T. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 2013, 13, 590–601. [Google Scholar] [CrossRef]
- Westman, A.M.; Peirce, S.; Christ, G.; Blemker, S. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Comput. Biol. 2021, 17, e1008937. [Google Scholar] [CrossRef]
- San Emeterio, C.L.; Hymel, L.; Turner, T.; Ogle, M.; Pendleton, E.G.; York, W.Y.; Olingy, C.E.; Liu, A.Y.; Lim, H.S.; Sulchek, T.; et al. Nanofiber-Based Delivery of Bioactive Lipids Promotes Pro-regenerative Inflammation and Enhances Muscle Fiber Growth After Volumetric Muscle Loss. Front. Bioeng. Biotechnol. 2021, 9, 650289. [Google Scholar] [CrossRef]
- Patel, K.H.; Talovic, M.; Dunn, A.J.; Patel, A.; Vendrell, S.; Schwartz, M.A.; Garg, K. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2528–2537. [Google Scholar] [CrossRef]
- Greising, S.M.; Rivera, J.; Goldman, S.; Watts, A.; Aguilar, C.; Corona, B. Unwavering Pathobiology of Volumetric Muscle Loss Injury. Sci. Rep. 2018, 7, 13179. [Google Scholar] [CrossRef]
- Corona, B.; Rivera, J.; Greising, S.M. Inflammatory and Physiological Consequences of Debridement of Fibrous Tissue after Volumetric Muscle Loss Injury. Clin. Transl. Sci. 2017, 11, 208–217. [Google Scholar] [CrossRef]
- Morgan, N.; Zhang, H.; Anderson, S.E.; Jang, Y.C. Traumatic muscle injury promotes aberrant fibro-adipogenic progenitor cell population, leading to fibrosis and impaired muscle stem cell function. Physiology 2023, 38, 5734945. [Google Scholar] [CrossRef]
- Larouche, J.A.; Greising, S.M.; Corona, B.; Aguilar, C.A. Robust inflammatory and fibrotic signaling following volumetric muscle loss: A barrier to muscle regeneration. Cell Death Dis. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.; Greising, S.M.; Watts, A.; Goldman, S.; Peragallo, C.; Zook, C.; Larouche, J.A.; Corona, B. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 2018, 4, 1–11. [Google Scholar] [CrossRef]
- Lukjanenko, L.; Jung, M.J.; Hegde, N.; Perruisseau-Carrier, C.; Migliavacca, E.; Rozo, M.; Karaz, S.; Jacot, G.E.; Schmidt, M.; Li, L.; et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat. Med. 2016, 22, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Deprez, A.; Orfi, Z.; Rieger, L.; Dumont, N.A. Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci. Rep. 2022, 43, BSR20220284. [Google Scholar] [CrossRef]
- Lukjanenko, L.; Karaz, S.; Stuelsatz, P.; Gurriarán-Rodríguez, U.; Michaud, J.; Dammone, G.; Sizzano, F.; Mashinchian, O.; Ancel, S.; Migliavacca, E.; et al. Aging Disrupts Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic Progenitors. Cell Stem Cell 2019, 24, 433–446.e437. [Google Scholar] [CrossRef]
- Sherr, C.J.; Roberts, J.M. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13, 1501–1512. [Google Scholar] [CrossRef]
- Baker, S.J.; Poulikakos, P.I.; Irie, H.Y.; Parekh, S.; Reddy, E.P. CDK4: A Master Regulator of the Cell Cycle and Its Role in Cancer. Genes Cancer 2022, 13, 21–45. [Google Scholar] [CrossRef]
- Nakka, K.; Hachmer, S.; Mokhtari, Z.; Kovac, R.; Bandukwala, H.; Bernard, C.; Li, Y.; Xie, G.; Liu, C.; Fallahi, M.; et al. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 2022, 377, 666–669. [Google Scholar] [CrossRef]
- Neelakantan, H.; Brightwell, C.R.; Graber, T.G.; Maroto, R.; Wang, H.-Y.L.; McHardy, S.F.; Papaconstantinou, J.; Fry, C.; Watowich, S. Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle. Biochem. Pharmacol. 2019, 163, 481–492. [Google Scholar] [CrossRef]
- Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.A.; Lemischka, I.R. Stem cells and their niches. Science 2006, 311, 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Brazile, B.L.; Lin, S.; Copeland, K.; Butler, J.; Cooley, J.; Brinkman-Ferguson, E.L.; Guan, J.; Liao, J. Ultrastructure and Biomechanics of Skeletal Muscle ECM. In Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine; Academic Press: Cambridge, MA, USA, 2017; pp. 139–160. [Google Scholar] [CrossRef]
- Fuoco, C.; Petrilli, L.L.; Cannata, S.; Gargioli, C. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J. Orthop. Surg. Res. 2016, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Corona, B.; Wu, X.; Ward, C.; McDaniel, J.; Rathbone, C.; Walters, T. The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials 2013, 34, 3324–3335. [Google Scholar] [CrossRef]
- Grasman, J.; Zayas, M.; Page, R.; Pins, G. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater. 2015, 25, 2–15. [Google Scholar] [CrossRef]
- Sarrafian, T.L.; Bodine, S.; Murphy, B.; Grayson, J.K.; Stover, S. Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Vet. Surg. 2018, 47, 524–535. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. Role of matrix metalloproteinases in skeletal muscle. Cell Adhes. Migr. 2009, 3, 337–341. [Google Scholar] [CrossRef]
- Pauly, R.; Passaniti, A.; Bilato, C.; Monticone, R.; Cheng, L.; Papadopoulos, N.; Gluzband, Y.A.; Smith, L.; Weinstein, C.; Lakatta, E. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ. Res. 1994, 75, 41–54. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Qian, Y.; Tang, H.; Song, J.; Qu, X.; Yue, B.; Yuan, W. Melatonin-Based and Biomimetic Scaffold as Muscle–ECM Implant for Guiding Myogenic Differentiation of Volumetric Muscle Loss. Adv. Funct. Mater. 2020, 30, 2002378. [Google Scholar] [CrossRef]
- Kim, S.-H.; Turnbull, J.; Guimond, S. Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 2011, 209, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Farjaminejad, S.; Farjaminejad, R.; Hasani, M.; Garcia-Godoy, F.; Abdouss, M.; Marya, A.; Harsoputranto, A.; Jamilian, A. Advances and Challenges in Polymer-Based Scaffolds for Bone Tissue Engineering: A Path Towards Personalized Regenerative Medicine. Polymers 2024, 16, 3303. [Google Scholar] [CrossRef]
- Hu, L.-Y.; Mileti, C.; Loomis, T.; Brashear, S.E.; Ahmad, S.; Chellakudam, R.R.; Wohlgemuth, R.P.; Gionet-Gonzales, M.A.; Leach, J.K.; Smith, L.R. Skeletal Muscle progenitors are sensitive to collagen architectural features of fibril size and crosslinking. Am. J. Physiol. Cell Physiol. 2021, 321, C330–C342. [Google Scholar] [CrossRef] [PubMed]
- Stearns-Reider, K.M.; D’Amore, A.; Beezhold, K.; Rothrauff, B.B.; Cavalli, L.; Wagner, W.; Vorp, D.; Tsamis, A.; Shinde, S.; Zhang, C.; et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017, 16, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Shinin, V.; Gayraud-Morel, B.; Gomès, D.; Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat. Cell Biol. 2006, 8, 677–682. [Google Scholar] [CrossRef]
- Pine, S.R.; Liu, W. Asymmetric Cell Division and Template DNA Co-Segregation in Cancer Stem Cells. Front. Oncol. 2014, 4, 226. [Google Scholar] [CrossRef]
- Conboy, M.; Karasov, A.; Rando, T. High Incidence of Non-Random Template Strand Segregation and Asymmetric Fate Determination In Dividing Stem Cells and their Progeny. PLoS Biol. 2007, 5, e102. [Google Scholar] [CrossRef]
- Pahnke, A.; Conant, G.; Huyer, L.D.; Zhao, Y.; Feric, N.; Radisic, M. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochem. Biophys. Res. Commun. 2016, 473, 698–703. [Google Scholar] [CrossRef]
- Siddique, H.R.; Feldman, D.; Chen, C.L.; Punj, V.; Tokumitsu, H.; Machida, K. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer. Hepatology 2015, 62, 1466–1479. [Google Scholar] [CrossRef]
- Ting, S.; Chagraoui, J.; Sauvageau, G. Differential Expression and Re-Localization of Potential Cell Fate Determinants in Hematopoietic and Leukemia Stem Cells. Blood 2007, 110, 93. [Google Scholar] [CrossRef]
- Shimada, M.; Tsukada, K.; Kagawa, N.; Matsumoto, Y. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells. J. Radiat. Res. 2019, 60, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Will, B.; Todorova, T.I.; Verma, A.; Steidl, U.; Melnick, A. Regulation of hematopoietic stem cell fate by special at-rich sequence binding protein 1. Exp. Hematol. 2014, 42, S66. [Google Scholar] [CrossRef]
- Rabenhorst, U.; Thalheimer, F.; Gerlach, K.; Kijonka, M.; Böhm, S.; Krause, D.; Vauti, F.; Arnold, H.; Schroeder, T.; Schnütgen, F.; et al. Single-Stranded DNA-Binding Transcriptional Regulator FUBP1 Is Essential for Fetal and Adult Hematopoietic Stem Cell Self-Renewal. Cell Rep. 2015, 11, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Sardone, F.; Lauria, A.; Kleiner, C.; Stott, G.M.; Bosi, A.; Di Palma, S.; Vignoli, A.; Colombo, M.; Ceccherini, I.; Cagnoli, C.; et al. The PI3K/Akt/mTOR pathway regulates mitochondrial activity and bioenergetics of muscle stem cells in the context of a muscular dystrophy. PLoS ONE 2016, 11, e0145523. [Google Scholar] [CrossRef]
- Wu, C.; Gong, Y.; Yu, Z.; Deng, Y.; Wang, X.; Ling, Z. Notch signaling suppresses differentiation and induces stemness in skeletal muscle cells by regulating Wnt/β-catenin signaling. Mol. Cell. Biol. 2017, 37, 7389. [Google Scholar]
- Pawlikowski, J.S.; Morrison, C.D.; Vogel, A.M.; Long, K.M.; Ferrer-Lorente, R.; Braun, T. Mechanisms Regulating Niche Homeostasis in Muscle Stem Cells. Front. Cell Dev. Biol. 2019, 7, 84. [Google Scholar] [CrossRef]
- Goel, A.J.; Rieder, M.; Arnold, H.; Radice, G.; Krauss, R. Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Rep. 2017, 21, 2236–2250. [Google Scholar] [CrossRef]
- Hung, M.; Lo, H.F.; Beckmann, A.G.; Demircioglu, D.; Damle, G.; Hasson, D.; Radice, G.L.; Krauss, R.S. Cadherin-dependent adhesion is required for muscle stem cell niche anchorage and maintenance. Development 2024, 151, dev202387. [Google Scholar] [CrossRef]
- Volk, S.; Wang, Y.; Mauldin, E.; Liechty, K.; Adams, S. Diminished Type III Collagen Promotes Myofibroblast Differentiation and Increases Scar Deposition in Cutaneous Wound Healing. Cells Tissues Organs 2011, 194, 25–37. [Google Scholar] [CrossRef]
- Cutroneo, K. Gene therapy for tissue regeneration. J. Cell. Biochem. 2003, 88, 418–425. [Google Scholar] [CrossRef]
- Asp, P.; Blum, R.; Vethantham, V.; Parisi, F.; Micsinai, M.; Cheng, J.; Bowman, C.; Kluger, Y.; Dynlacht, B. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. USA 2011, 108, E149–E158. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Bansal, V.; Grunert, M.; Malecova, B.; Dall’Agnese, A.; Latella, L.; Gatto, S.; Ryan, T.; Schulz, K.; Chen, W.; et al. Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS ONE 2017, 12, e0179464. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, X.; Cao, Y.; Li, Z.; Cheng, H.; Zhu, G.; Duan, F.; Na, J.; Han, J.; Chen, Y.-G. Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. J. Biol. Chem. 2016, 292, 1339–1350. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.R.; Murdoch, F.; Fritsch, M. High Histone Acetylation and Decreased Polycomb Repressive Complex 2 Member Levels Regulate Gene Specific Transcriptional Changes During Early Embryonic Stem Cell Differentiation Induced by Retinoic Acid. Stem Cells 2007, 25, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Wang, Z.; Zaromytidou, A.; Zhang, X.; Chow-Tsang, L.-F.; Liu, J.-X.; Kim, H.; Barlas, A.; Manova-Todorova, K.; Kaartinen, V.; et al. A Poised Chromatin Platform for TGF-β Access to Master Regulators. Cell 2011, 147, 1511–1524. [Google Scholar] [CrossRef]
- Cui, K.; Zang, C.; Roh, T.-Y.; Schones, D.E.; Childs, R.; Peng, W.; Zhao, K. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009, 4, 80–93. [Google Scholar] [CrossRef]
- Jana, S.; Levengood, S.K.L. Fabrication and characterization of poly(glycerol sebacate)-gelatin scaffolds for tissue engineering applications. Biomaterials 2015, 67, 285–303. [Google Scholar]
- Mulbauer, G.D.; Matthew, H.W.T. Biomimetic Scaffolds in Skeletal Muscle Regeneration. Discoveries 2019, 7, e90. [Google Scholar] [CrossRef]
- Turner, N.; Adolph, J.Y.; Weber, D.; Irfan, R.Q.; Stolz, D.; Gilbert, T.; Badylak, S. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng. Part A 2010, 16, 3309–3317. [Google Scholar] [CrossRef]
- Robb, K.; Shridhar, A.; Flynn, L. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater. Sci. Eng. 2017, 4, 3627–3643. [Google Scholar] [CrossRef]
- Goonoo, N.; Bhaw-Luximon, A. Mimicking growth factors: Role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv. 2019, 9, 18124–18146. [Google Scholar] [CrossRef] [PubMed]
- Schoen, B.; Avrahami, R.; Baruch, L.; Efraim, Y.; Goldfracht, I.; Elul, O.; Davidov, T.; Gepstein, L.; Zussman, E.; Machluf, M. Electrospun Extracellular Matrix: Paving the Way to Tailor-Made Natural Scaffolds for Cardiac Tissue Regeneration. Adv. Funct. Mater. 2017, 27, 1700427. [Google Scholar] [CrossRef]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Sisson, K.; Zhang, C.; Farach-Carson, M.C.; Chase, D.B. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 2010, 10, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Sisson, K.; Zhang, C.; Farach-Carson, M.C.; Elsayed-Ali, H.E. Three-dimensional leaching of laser sintered porous polycaprolactone scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 221–230. [Google Scholar]
- Geevarghese, R.; Sajjadi, S.S.; Hudecki, A.; Sajjadi, S.; Jalal, N.R.; Madrakian, T.; Ahmadi, M.; Włodarczyk-Biegun, M.K.; Ghavami, S.; Likus, W.; et al. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int. J. Mol. Sci. 2022, 23, 16185. [Google Scholar] [CrossRef]
- Kang, H.W.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.-H.; Singh, R.; Jang, J.-H.; Kim, H. Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 2015, 16, 103–116. [Google Scholar] [CrossRef]
- Magarotto, F.; Sgrò, A.; Henrique Dorigo Hochuli, A.; Andreetta, M.; Grassi, M.; Saggioro, M.; Nogara, L.; Tolomeo, A.; Francescato, R.; Collino, F.; et al. Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model. Biomaterials 2021, 269, 120653. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Cao, J.; Gao, S.; Xu, P.; Feng, G.; Wang, L.; Wang, H.; Kong, D.; Fan, M.; et al. Highly interconnected inverse opal extracellular matrix scaffolds enhance stem cell therapy in limb ischemia. Acta Biomater. 2021, 128, 209–221. [Google Scholar] [CrossRef]
- Zhu, M.; Li, W.; Dong, X.; Yuan, X.; Midgley, A.C.; Chang, H.; Wang, Y.; Wang, H.; Wang, K.; Ma, P.; et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat. Commun. 2019, 10, 4620. [Google Scholar] [CrossRef] [PubMed]
- Cunniffe, G.; Díaz-Payno, P.; Sheehy, E.J.; Critchley, S.E.; Almeida, H.; Pitacco, P.; Carroll, S.; Mahon, O.R.; Dunne, A.; Levingstone, T.; et al. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials 2019, 188, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Levenberg, S. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Place, E.S.; George, J.H.; Williams, C.K.; Stevens, M.M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009, 38, 1139–1151. [Google Scholar] [CrossRef]
- Sultana, N.; Cole, A.; Strachan, F. Biocomposite Scaffolds for Tissue Engineering: Materials, Fabrication Techniques and Future Directions. Materials 2024, 17, 5577. [Google Scholar] [CrossRef]
- Alcazar, C.; Hu, C.; Rando, T.; Huang, N.; Nakayama, K. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater. Sci. 2020, 8, 5376–5389. [Google Scholar] [CrossRef]
- Kheradmandi, M.; Vasheghani-Farahani, E.; Ghiaseddin, A.; Ganji, F. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J. Biomed. Mater. Res. Part A 2016, 104, 1720–1727. [Google Scholar] [CrossRef]
- Sleep, E.; Cosgrove, B.; McClendon, M.T.; Preslar, A.T.; Chen, C.H.; Sangji, M.H.; Pérez, C.R.; Haynes, R.D.; Meade, T.; Blau, H.; et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc. Natl. Acad. Sci. USA 2017, 114, E7919–E7928. [Google Scholar] [CrossRef]
- Wang, L.; Cao, L.; Shansky, J.; Wang, Z.; Mooney, D.; Vandenburgh, H. Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold. Mol. Ther. 2014, 22, 1441–1449. [Google Scholar] [CrossRef]
- Aurora, A.; Roe, J.; Corona, B.; Walters, T. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 2015, 67, 393–407. [Google Scholar] [CrossRef]
- Eugenis, I.; Wu, D.; Rando, T. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021, 278, 121173. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, Q.; Zhao, Y.; Chen, W.; Chen, B.; Xiao, Z.; Lin, H.; Nie, L.; Wang, D.; Dai, J. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 2011, 32, 2508–2515. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Park, M.; Lee, J.W.; Kim, Y.H.; Kim, S.-H.; Kim, S. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Biomaterials 2008, 29, 4630–4636. [Google Scholar] [CrossRef] [PubMed]
- Atzet, S.K.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 2008, 9, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.Y.; Jing, X.; Napiwocki, B.; Hagerty, B.S.; Chen, G.; Turng, L. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J. Mater. Chem. B 2017, 5, 4137–4151. [Google Scholar] [CrossRef]
- Levenberg, S.; Golub, J.S.; Amit, M.; Itskovitz-Eldor, J.; Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2005, 99, 4391–4396. [Google Scholar] [CrossRef]
- Turner, N.J.; Badylak, S.F. Regeneration of skeletal muscle. Cell Tissue Res. 2012, 347, 759–774. [Google Scholar] [CrossRef]
- Kim, P.; Yuan, A.; Nam, K.; Jiao, A.; Kim, D.H. Fabrication of poly(ethylene glycol): Gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering. Biofabrication 2014, 6, 024112. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, J.; Zhang, W.; Yan, S.; Ding, J.; Chen, X.; Cui, L.; Yin, J. In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(l-glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. J. Mater. Chem. B 2018, 6, 7822–7833. [Google Scholar] [CrossRef]
- Park, J.Y.; Gao, G.; Jang, J.; Cho, D. 3D printed structures for delivery of biomolecules and cells: Tissue repair and regeneration. J. Mater. Chem. B 2016, 4, 7521–7539. [Google Scholar] [CrossRef]
- Tarafder, S.; Koch, A.; Jun, Y.; Chou, C.; Awadallah, M.R.; Lee, C.H. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration. Biofabrication 2016, 8, 025003. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, M.; Luo, J.; Zhao, H.; Zhou, X.; Gu, Q.-l.; Yang, H.; Zhu, X.; Cui, W.; Shi, Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 2021, 276, 121037. [Google Scholar] [CrossRef] [PubMed]
- El-Habashy, S.E.; El-Kamel, A.; Essawy, M.M.; Abdelfattah, E.Z.A.; Eltaher, H. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: Customizable implants for in vivo osteoregeneration. Int. J. Pharm. 2021, 607, 121002. [Google Scholar] [CrossRef] [PubMed]
- Tarafder, S.; Lee, C.H. 3D printing integrated with controlled delivery for musculoskeletal tissue engineering. J. Pharm. Sci. 2017, 1, 181–189. [Google Scholar] [CrossRef]
- Camacho, P.; Busari, H.; Seims, K.B.; Schwarzenberg, P.; Dailey, H.; Chow, L. 3D printing with peptide-polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomater. Sci. 2019, 7, 4237–4247. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, W.; Holmes, B.; Zhang, L.G. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Adv. Sci. 2016, 3, 1600058. [Google Scholar] [CrossRef]
- Johnson, B.N.; Lancaster, K.Z.; Zhen, G.; He, J.; Gupta, M.K.; Kong, Y.L.; Engel, E.; Krick, K.; Ju, A.; Meng, F.; et al. 3D Printed Anatomical Nerve Regeneration Pathways. Adv. Funct. Mater. 2015, 25, 6205–6217. [Google Scholar] [CrossRef]
- Asparuhova, M.; Gelman, L.; Chiquet, M. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand. J. Med. Sci. Sports 2009, 19, 490–499. [Google Scholar] [CrossRef]
- Parsons, J.; Martin, K.; Slack, J.K.; Taylor, J.M.; Weed, S. Focal Adhesion Kinase: A regulator of focal adhesion dynamics and cell movement. Oncogene 2000, 19, 5606–5613. [Google Scholar] [CrossRef]
- Kuo, J.-C. Mechanotransduction at focal adhesions: Integrating cytoskeletal mechanics in migrating cells. J. Cell. Mol. Med. 2013, 17, 704–712. [Google Scholar] [CrossRef]
- Kuo, J.-C. Focal adhesions function as a mechanosensor. Prog. Mol. Biol. Transl. Sci. 2014, 126, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Hanson, D.A.; Schlaepfer, D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. 2005, 6, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Ryall, J.G.; Cliff, T.; Dalton, S.; Sartorelli, V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 2015, 17, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Chua, Y.B.; Liu, T.; Liang, K.; Chua, M.J.; Ma, W.; Goh, J.W.; Wang, Y.; Su, J.; Ho, Y.S.; et al. Muscle Injuries Induce a Prostacyclin-PPARγ/PGC1a-FAO Spike That Boosts Regeneration. Adv. Sci. 2023, 10, e2301519. [Google Scholar] [CrossRef]
- Lian, D.; Chen, M.M.; Wu, H.; Deng, S.; Hu, X. The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants 2022, 11, 755. [Google Scholar] [CrossRef]
- Nguyen, J.H.; Chung, J.D.; Lynch, G.S.; Ryall, J.G. The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation. Front. Cell Dev. Biol. 2019, 7, 254. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef]
- Liu, L.; Rando, T. UTX in muscle regeneration--the right dose and the right time. J. Clin. Investig. 2016, 126, 1233–1235. [Google Scholar] [CrossRef]
- Gan, Y.; Zhou, J.; Quan, R.; Hong, L.; Li, Z.; Zheng, E.; Liu, D.; Wu, Z.; Cai, G.; Gu, T. Histone H3K27me3 in the regulation of skeletal muscle development. Yi Chuan Hered. 2019, 41, 285–292. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Tyagi, S. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int. J. Cardiol. 2014, 173, 1–11. [Google Scholar] [CrossRef]
- Tingle, C.F.; Magnuson, B.; Zhao, Y.; Heisel, C.J.; Kish, P.; Kahana, A. Paradoxical Changes Underscore Epigenetic Reprogramming During Adult Zebrafish Extraocular Muscle Regeneration. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4991–4999. [Google Scholar] [CrossRef]
- Chow, M.; Geng, L.; Kong, C.; Keung, W.; Fung, J.; Boheler, K.; Li, R.A. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: Insights for driven maturation and hypertrophic growth. Stem Cells Dev. 2013, 22, 2678–2690. [Google Scholar] [CrossRef]
- Borselli, C.; Christine, A.C.; Dymitri, S.; Vandenburgh, H.; Mooney, D. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 2011, 32, 8905–8914. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hou, P.; Zhang, W.; Zuo, M.; Liu, Z.; Wang, T.; Zhou, Y.; Chen, W.; Feng, C.; Hu, B.; et al. Species variations in muscle stem cell-mediated immunosuppression on T cells. Sci. Rep. 2024, 14, 23410. [Google Scholar] [CrossRef]
- Sheehan, S.; Allen, R. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J. Cell. Physiol. 1999, 181, 499–506. [Google Scholar] [CrossRef]
- Falco, E.E.; Wang, M.O.; Thompson, J.A.; Chetta, J.; Yoon, D.; Li, E.Z.; Kulkami, M.M.; Shah, S.B.; Pandit, A.; Roth, J.; et al. Porous EH and EH-PEG Scaffolds as Gene Delivery Vehicles to Skeletal Muscle. Pharm. Res. 2011, 28, 1306–1316. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, T.; Chen, M.; Yao, K.; Huang, X.; Zhang, B.; Li, Y.; Liu, J.; Wang, Y.; Zhao, Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef]
- Vardar, E.; Larsson, H.; Engelhardt, E.; Pinnagoda, K.; Briquez, P.; Hubbell, J.; Frey, P. IGF-1-containing multi-layered collagen-fibrin hybrid scaffolds for bladder tissue engineering. Acta Biomater. 2016, 41, 75–85. [Google Scholar] [CrossRef]
- Zhao, G.; Ge, Y.; Zhang, C.; Zhang, L.; Xu, J.; Qi, L.; Li, W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr. Pharm. Des. 2020, 26, 2022–2037. [Google Scholar] [CrossRef]
- Nikfarjam, S.; Rezaie, J.; Zolbanin, N.M.; Jafari, R. Mesenchymal stem cell derived-exosomes: A modern approach in translational medicine. J. Transl. Med. 2020, 18, 449. [Google Scholar] [CrossRef]
- Harrell, C.; Jovicic, N.; Djonov, V.; Volarevic, V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics 2020, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- Dominici, C.; Villarreal, O.D.; Dort, J.; Heckel, E.; Wang, Y.C.D.; Ragoussis, I.; Joyal, J.S.; Dumont, N.A.; Richard, S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. elife 2023, 12, RP84570. [Google Scholar] [CrossRef] [PubMed]
- Ichiseki, T.; Shimasaki, M.; Ueda, S.; Hirata, H.; Souma, D.; Kawahara, N.; Ueda, Y. Efficacy of Rectal Systemic Administration of Mesenchymal Stem Cells to Injury Sites via the CXCL12/CXCR4 Axis to Promote Regeneration in a Rabbit Skeletal Muscle Injury Model. Cells 2023, 12, 1729. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Mittal, A.; Makonchuk, D.Y.; Bhatnagar, S.; Kumar, A. Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum. Mol. Genet. 2009, 18, 2584–2598. [Google Scholar] [CrossRef]
- Wang, Y.X.; Feige, P.; Brun, C.E.; Hekmatnejad, B.; Dumont, N.A.; Renaud, J.; Faulkes, S.; Guindon, D.E.; Rudnicki, M.A. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell 2019, 24, 419–432.e416. [Google Scholar] [CrossRef]
- Sassoli, C.; Pierucci, F.; Zecchi-Orlandini, S.; Meacci, E. Transcriptome reprogramming through epigenomic changes enhances regenerative capacity in MuSCs. Int. J. Mol. Sci. 2019, 20, 5545. [Google Scholar] [CrossRef]
- Chang, N.C.; Sincennes, M.C.; Chevalier, F.P.; Brun, C.E.; Lacaria, M.; Segalés, J.; Muñoz-Cánoves, P.; Ming, H.; Rudnicki, M.A. The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment. Cell Stem Cell 2018, 22, 755–768.e6. [Google Scholar] [CrossRef]
- Kota, S.; Roening, C.; Patel, N.; Baron, R. PRMT5 inhibition promotes osteogenic differentiation of mesenchymal stromal cells and represses basal interferon stimulated gene expression. Bone 2018, 117, 37–46. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Chen, W.; Zhang, Z.; Zhou, Y.; Gou, Y.; Lv, C.A.; Jin, L.; Qiu, X.; Ma, S.; et al. Myofiber Baf60c controls muscle regeneration by modulating Dkk3-mediated paracrine signaling. J. Exp. Med. 2023, 220, e20221123. [Google Scholar] [CrossRef]
- Hayashi, T.; Sadaki, S.; Tsuji, R.; Okada, R.; Fuseya, S.; Kanai, M.; Nakamura, A.; Okamura, Y.; Muratani, M.; Wenchao, G.; et al. Dual-specificity phosphatases 13 and 27 as key switches in muscle stem cell transition from proliferation to differentiation. Stem Cells 2024, 42, 830–847. [Google Scholar] [CrossRef]
- Xie, L.; Yin, A.; Nichenko, A.S.; Beedle, A.M.; Call, J.A.; Yin, H. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J. Clin. Investig. 2018, 128, 2339–2355. [Google Scholar] [CrossRef] [PubMed]
- Judson, R.N.; Quarta, M.; Oudhoff, M.J.; Soliman, H.; Yi, L.; Chang, C.K.; Loi, G.; Vander Werff, R.; Cait, A.; Hamer, M.; et al. Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell 2018, 22, 177–190.e7. [Google Scholar] [CrossRef] [PubMed]
- Judson, R.N.; Rossi, F.M.V. Towards stem cell therapies for skeletal muscle repair. NPJ Regen. Med. 2020, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Somers, S.M.; Gilbert-Honick, J.; Choi, I.Y.; Lo, E.K.W.; Lim, H.; Dias, S.; Wagner, K.R.; Mao, H.Q.; Cahan, P.; Lee, G.; et al. Engineering Skeletal Muscle Grafts with PAX7::GFP-Sorted Human Pluripotent Stem Cell-Derived Myogenic Progenitors on Fibrin Microfiber Bundles for Tissue Regeneration. Bioengineering 2022, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Han, W.M.; Mohiuddin, M.; Anderson, S.E.; García, A.J.; Jang, Y.C. Co-delivery of Wnt7a and muscle stem cells using synthetic bioadhesive hydrogel enhances murine muscle regeneration and cell migration during engraftment. Acta Biomater. 2019, 94, 243–252. [Google Scholar] [CrossRef]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B. 4th. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 341. [Google Scholar] [CrossRef]
- Arabpour, M.; Saghazadeh, A.; Rezaei, N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 2021, 97, 107823. [Google Scholar] [CrossRef]
- Zhang, S.; Chuah, S.; Lai, R.C.; Hui, J.; Lim, S.; Toh, W.S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018, 156, 16–27. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, C.H.; Meek, G.; Kelly, B.; Castillo, D.B.; Young, L.E.A.; Martire, S.; Dhungel, S.; McCauley, E.; Saha, P.; et al. PASK links cellular energy metabolism with a mitotic self-renewal network to establish differentiation competence. eLife 2023, 12, e81717. [Google Scholar] [CrossRef]
- Petersen, P.; Tang, H.; Zou, K.; Zhong, W. The Enigma of the Numb-Notch Relationship during Mammalian Embryogenesis. Dev. Neurosci. 2006, 28, 156–168. [Google Scholar] [CrossRef]
- Wang, K.; Frey, N.; Garcia, A.; Man, K.; Yang, Y.; Gualerzi, A.; Clemens, Z.J.; Bedoni, M.; LeDuc, P.R.; Ambrosio, F. Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries. ACS Nano 2023, 17, 19640–19651. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Qi, Y.; Sun, S.; Tao, Y.; Shi, R. Mesenchymal Stem Cell-derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells Dev. 2020, 29, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Girkin, J. Multiphoton microscopy: In depth in vivo sub cellular resolution imaging. Proc. SPIE Int. Soc. Opt. Eng. 2006, 6163, 1–8. [Google Scholar] [CrossRef]
- Peti-Peterdi, J.; Kidokoro, K.; Riquier-Brison, A. Novel in vivo techniques to visualize kidney anatomy and function. Kidney Int. 2015, 88, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Shin, Y.C.; Lee, J.H.; Jun, S.; Kim, C.-S.; Lee, Y.; Park, J.-C.; Lee, S.H.; Park, K.; Han, D. Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds. Biomater. Res. 2016, 20, 1–7. [Google Scholar] [CrossRef]
- Williams, R.M. New Strategies for Cellular-Scale Imaging of Bone and Cartilage. FASEB J. 2015, 29, 12. [Google Scholar] [CrossRef]
- Hogan, K.J.; Smoak, M.; Koons, G.L.; Perez, M.; Bedell, M.L.; Jiang, E.Y.; Young, S.; Mikos, A. Bioinspired electrospun decellularized extracellular matrix scaffolds promote muscle regeneration in a rat skeletal muscle defect model. J. Biomed. Mater. Res. Part A 2022, 110, 1090–1100. [Google Scholar] [CrossRef]
- Lee, H.; Ju, Y.M.; Kim, I.; Elsangeedy, E.; Lee, J.H.; Yoo, J.; Atala, A.; Lee, S.J. A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods 2020, 171, 77–85. [Google Scholar] [CrossRef]
- Urciuolo, A.; Urbani, L.; Perin, S.; Maghsoudlou, P.; Scottoni, F.; Gjinovci, A.; Collins-Hooper, H.; Loukogeorgakis, S.; Tyraskis, A.; Torelli, S.; et al. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Sci. Rep. 2018, 8, 8398. [Google Scholar] [CrossRef]
- Surendrasingh, Y.S.; Elif, G.E.; Kothapalli, C.; Sikder, P. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. Materials 2022, 15, 7945. [Google Scholar] [CrossRef]
- Alireza, M.; Masoumeh Haghbin, N.; Karkhaneh, A. Polypyrrole-chitosan hydrogel reinforced with collagen-grafted PLA sub-micron fibers as an electrically responsive scaffold. Int. J. Polym. Mater. Polym. Biomater. 2020, 71, 302–314. [Google Scholar] [CrossRef]
- Pathum, C.; Seok-Chun, K.; Oh, G.; Seong-Yeong, H.; Nguyen, V.; Jeon, Y.; Bonggi, L.; Jang, C.; Geunhyung, K.; Park, W.; et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 2015, 81, 504–513. [Google Scholar] [CrossRef]
- Tohamy, K.; Mabrouk, M.; Soliman, I.; Beherei, H.; Mohamed, A.A. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int. J. Biol. Macromol. 2018, 112, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Pariya, Z.; Mohamad, P.M.; Davachi, S.M.; Pouria, Z.; Yazdian, F.; Simorgh, S.; Hadi, G.; Rashedi, H.; Bagher, Z. Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering. Carbohydr. Polym. 2021, 266, 118123. [Google Scholar] [CrossRef]
- Simões, F.C.; Cahill, T.; Kenyon, A.; Gavriouchkina, D.; Vieira, J.; Sun, X.; Pezzolla, D.; Ravaud, C.; Masmanian, E.; Weinberger, M.; et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Teo, B.K.; Wong, S.T.; Lim, C.K.; Kung, T.Y.S.; Yap, C.; Ramagopal, Y.; Romer, L.; Yim, E. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 2013, 7, 4785–4798. [Google Scholar] [CrossRef]
- D’Amore, A.; Nasello, G.; Luketich, S.K.; Denisenko, D.; Jacobs, D.L.; Hoff, R.; Gibson, G.; Bruno, A.; Raimondi, M.T.; Wagner, W. Meso-scale topological cues influence extracellular matrix production in a large deformation, elastomeric scaffold model. Soft Matter 2018, 14, 8483–8495. [Google Scholar] [CrossRef]
- Wan, S.; Fu, X.; Ji, Y.; Li, M.; Shi, X.; Wang, Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018, 171, 107–117. [Google Scholar] [CrossRef]
- Leucht, P.; Kim, J.B.; Currey, J.A.; Brunski, J.; Helms, J. FAK-Mediated Mechanotransduction in Skeletal Regeneration. PLoS ONE 2007, 2, e390. [Google Scholar] [CrossRef]
- Ye, G.J.; Nesmith, A.P.; Parker, K. The Role of Mechanotransduction on Vascular Smooth Muscle Myocytes Cytoskeleton and Contractile Function. Anat. Rec. 2014, 297, 1758–1769. [Google Scholar] [CrossRef]
- Martineau, L.; Gardiner, P. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J. Appl. Physiol. 2001, 91, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Digabel, J.L.; Forcato, M.; Bicciato, S.; et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chakraborty, S.; Heaps, C.; Davis, M.; Meininger, G.; Muthuchamy, M. Fibronectin increases the force production of mouse papillary muscles via α5β1 integrin. J. Mol. Cell. Cardiol. 2011, 50, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Sun, Z.; Hill, M.; Meininger, G. A Calcium Mediated Mechanism Coordinating Vascular Smooth Muscle Cell Adhesion During KCl Activation. Front. Physiol. 2018, 9, 1810. [Google Scholar] [CrossRef]
- Kuo, S.; Lin, H.I.; Ho, J.; Shih, Y.R.V.; Chen, H.; Yen, T.; Lee, O. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 2012, 33, 5013–5022. [Google Scholar] [CrossRef]
- Urciuoli, E.; Peruzzi, B. Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int. J. Mol. Sci. 2020, 21, 9426. [Google Scholar] [CrossRef]
- Nedjari, S.; Awaja, F.; Guarino, R.; Gugutkov, D.; Altankov, G. Establishing multiple osteogenic differentiation pathways of mesenchymal stem cells through different scaffold configurations. J. Tissue Eng. Regen. Med. 2020, 14, 1428–1437. [Google Scholar] [CrossRef]
- Seo, C.; Jeong, H.; Feng, Y.; Montagne, K.; Ushida, T.; Suzuki, Y.; Furukawa, K. Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization. Biomaterials 2014, 35, 2245–2252. [Google Scholar] [CrossRef]
- Ozdemir, T.; Xu, L.C.; Siedlecki, C.; Brown, J.L. Substrate curvature sensing through Myosin IIa upregulates early osteogenesis. Integr. Biol. Quant. Biosci. Nano Macro 2013, 5, 1407–1416. [Google Scholar] [CrossRef]
- Pennanen, P.; Alanne, M.; Fazeli, E.; Deguchi, T.; Näreoja, T.; Peltonen, S.; Peltonen, J. Diversity of actin architecture in human osteoclasts: Network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol. Cell. Biochem. 2017, 432, 131–139. [Google Scholar] [CrossRef]
- Izadpanahi, M.; Seyedjafari, E.; Arefian, E.; Hamta, A.; Hosseinzadeh, S.; Kehtari, M.; Soleimani, M. Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 686–703. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, X.; Wang, H. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules 2009, 10, 2772–2778. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Woo, K.; Tahir, M.; Wu, W.; Elango, J.; Mirza, M.R.; Khan, M.; Shamim, S.; Arany, P.; Rahman, S.U. Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold. Clin. Oral Investig. 2021, 26, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- VanBlunk, M.; Srikanth, V.; Pandit, S.; Kuznetsov, A.; Brudno, Y. Absorption rate governs cell transduction in dry macroporous scaffolds. Biomater. Sci. 2023, 11, 2372–2382. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.C.; Lin, Y.H.; Chen, Y.W.; Kuo, T.Y.; Shie, M.Y. Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells. J. Mater. Chem. B 2023, 11, 4666–4676. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, J.; Lee, E. Scaffold degradation and tissue regeneration synergy mediated by Wnt/β-catenin pathway. Biomater. Res. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Lo, C.; Wang, Y.; Lin, F.; Hong, H. Dynamic cellular projections and the Rac-Rho GTPase pathway regulate stem cell niche sensing during injury repair. J. Cell. Physiol. 2012, 227, 3088–3098. [Google Scholar] [CrossRef]
- Nighat, K.-U.; Yan, D.; Michael, S.; Daniela, G.; Jaqueline, A.; Christoph, B.; Brachvogel, B.; Maleki, H. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. ACS Biomater. Sci. Eng. 2021, 7, 4545–4556. [Google Scholar] [CrossRef]
- Park, H.; Min, K.D.; Min Chae, L.; Kim, S.; Lee, O.; Ju, H.; Bo Mi, M.; Jung Min, L.; Ye Ri, P.; Dong Wook, K.; et al. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J. Biomed. Mater. Res. Part A 2016, 104, 1779–1787. [Google Scholar] [CrossRef]
- Li, J.; Kyungsook, K.; Roohani-Esfahani, S.; Jin, G.; Kaplan, D.; Zreiqat, H. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. J. Mater. Chem. B 2015, 3, 5361–5376. [Google Scholar] [CrossRef]
- Pandey, B.; Chatterjee, S.; Nimisha, P.; Prashant, A.Y.; Anuya, A.N.; Sayam Sen, G. Silk-Mesoporous Silica-Based Hybrid Macroporous Scaffolds using Ice-Templating Method: Mechanical, Release, and Biological Studies. ACS Appl. Bio Mater. 2018, 1, 2082–2093. [Google Scholar] [CrossRef] [PubMed]
- Nune, M.; Shivaprasad, M.; Govindaraju, T.; Narayan, K.S. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, B.; Amin, S.M.S.; Rafienia, M.; Salamat, M.; Shahram, R.; Raucci, M.; Ambrosio, L. Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112242. [Google Scholar] [CrossRef]
- Jhamak, N.; Fahimeh, R.; Farokhi, M.; Masoumeh Haghbin, N. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 951–958. [Google Scholar] [CrossRef]
- Jing, L.; Sun, M.; Xu, P.; Yao, K.; Yang, J.; Wang, X.; Liu, H.; Sun, M.; Sun, Y.; Ni, R.; et al. Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Appl. Bio Mater. 2021, 4, 3189–3202. [Google Scholar] [CrossRef]
- Hamid, O.; Eltaher, H.; Sottile, V.; Yang, J. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Mater. Sci. Eng. C 2020, 120, 111707. [Google Scholar] [CrossRef]
- Gilbert, T.W.; Sellaro, T.L.; Badylak, S.F. Decellularization of tissues and organs. Biomaterials 2006, 27, 3675–3683. [Google Scholar] [CrossRef]
- Pati, F.; Ha, D.H.; Jang, J.; Han, H.H.; Rhie, J.W.; Cho, D.W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2014, 62, 164–175. [Google Scholar] [CrossRef]
- Rashad, A.; Mohamed-Ahmed, S.; Ojansivu, M.; Berstad, K.; Yassin, M.; Kivijärvi, T.; Heggset, E.B.; Syverud, K.; Mustafa, K. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2018, 19, 4307–4319. [Google Scholar] [CrossRef]
- Bhushan, S.; Singh, S.; Maiti, T.K.; Sharma, C.; Dutt, D.; Sharma, S.; Li, C.; Tag Eldin, E.M. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering 2022, 9, 728. [Google Scholar] [CrossRef]
- Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008, 17, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Crowder, S.W.; Liang, Y.; Rath, R.; Park, A.M.; Maltais, S.; Pintauro, P.; Hofmeister, W.; Lim, C.; Wang, X.; Sung, H. Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 2013, 8, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Entezari, M.; Mozafari, M.; Bakhtiyari, M.; Moradi, F.; Bagher, Z.; Soleimani, M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J. Biomed. Mater. Res. Part A 2022, 110, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Thitiset, T.; Damrongsakkul, S.; Yodmuang, S.; Leeanansaksiri, W.; Apinun, J.; Honsawek, S. A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater. Res. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Pezeshki-Modaress, M.; Rajabi-Zeleti, S.; Zandi, M.; Mirzadeh, H.; Sodeifi, N.; Nekookar, A.; Aghdami, N. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: In vitro and in vivo study. J. Biomed. Mater. Research. Part A 2014, 102, 3908–3917. [Google Scholar] [CrossRef]
- Wang, X.; Molino, B.Z.; Pitkänen, S.; Ojansivu, M.; Xu, C.; Hannula, M.; Hyttinen, J.; Miettinen, S.; Hupa, L.; Wallace, G. 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomater. Sci. Eng. 2023, 5, 4496–4510. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.E.; Han, J.; Jeong, S.; Lim, J.; Lee, M.; Son, H.; Kim, H.; Choung, Y.; Seonwoo, H.; et al. 3D-Printed Poly(ε-Caprolactone)/Hydroxyapatite Scaffolds Modified with Alkaline Hydrolysis Enhance Osteogenesis In Vitro. Polymers 2021, 13, 257. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, S.; Bonassar, L.; Kim, G. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol. Rapid Commun. 2013, 34, 142–149. [Google Scholar] [CrossRef]
- Kim, W.; Lee, H.; Lee, J.; Atala, A.; Yoo, J.; Lee, S.; Kim, G.H. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials 2019, 230, 119632. [Google Scholar] [CrossRef]
- Hurd, S.A.; Bhatti, N.; Walker, A.M.; Kasukonis, B.M.; Wolchok, J. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 2015, 49, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kasukonis, B.M.; Kim, J.; Washington, T.; Wolchok, J. Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds. Biotechnol. Prog. 2016, 32, 745–755. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, F.; Foster, L.A.; Selim, O.A.; Zhao, C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering 2024, 11, 1245. https://doi.org/10.3390/bioengineering11121245
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering. 2024; 11(12):1245. https://doi.org/10.3390/bioengineering11121245
Chicago/Turabian StyleYousefi, Farbod, Lauren Ann Foster, Omar A. Selim, and Chunfeng Zhao. 2024. "Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability" Bioengineering 11, no. 12: 1245. https://doi.org/10.3390/bioengineering11121245
APA StyleYousefi, F., Foster, L. A., Selim, O. A., & Zhao, C. (2024). Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering, 11(12), 1245. https://doi.org/10.3390/bioengineering11121245