Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Flood Vulnerability
2.2. Flood Modeling
3. Results
3.1. Flood Modeling
3.2. Climate Change Scenarios
3.3. Flood Adaptation Plan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wijesuriya, G.; Thompson, J.; Young, C. Managing Cultural World Heritage; UNESCO/ICCROM/ICOMOS/IUCN: Paris, France, 2013; ISBN 9789230012236. [Google Scholar]
- Jigyasu, R.; King, J.; Wijesuriya, G. Managing Disaster Risks for World Heritage; UNESCO/ICCROM/ICOMOS/IUCN: Paris, France, 2010; ISBN 9789231041655. [Google Scholar]
- Nicu, I.C. Natural Hazards vs Cultural Heritage. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–12. ISBN 9783319517261. [Google Scholar]
- Migon, P. Cultural Heritage and Natural Hazard. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 5–24. ISBN 9781402043994. [Google Scholar]
- Ravankhah, M.; de Wit, R.; Argyriou, A.V.; Chliaoutakis, A.; Revez, M.J.; Birkmann, J.; Žuvela-Aloise, M.; Sarris, A.; Tzigounaki, A.; Giapitsoglou, K. Integrated Assessment of Natural Hazards, Including Climate Change’s Influences, for Cultural Heritage Sites: The Case of the Historic Centre of Rethymno in Greece. Int. J. Disaster Risk Sci. 2019, 10, 343–361. [Google Scholar] [CrossRef] [Green Version]
- UNISDR-United Nations International Strategy for Disaster Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030, 1st ed.; UNISDR: Geneva, Switzerland, 2015. [Google Scholar]
- United Nations General Assembly Resolution A/RES/70/1. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- European Commission Council Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union 2007, L 288, 27–34.
- European Commission Staff. Action Plan on the Sendai Framework for Disaster Risk Reduction 2015–2030. A Disaster Risk-Informed Approach for All EU Policies; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Evelpidou, N.; Tzouxanioti, M.; Gavalas, T.; Spyrou, E.; Saitis, G.; Petropoulos, A.; Karkani, A. Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land 2022, 11, 21. [Google Scholar] [CrossRef]
- Jeffreys, R. The shelter on the temple of Apollo Epikourios. In 23rd Biennial IIC Congress Conservation and the Eastern Mediterranean 20–24/09/2010; International Institute for Conservation of Historic and Artistic Works: Instanbul, Turkey, 2009. [Google Scholar]
- Velani-Adam, P. Climate Change vs. Archaeological Sites and Monuments: An unequal battle. In International Conference Impacts of Climate Change on Cultural Heritage: Facing the Challenge, 21–22 June 2019; Academy of Athens-Research Center of Atmospheric Physics and Climatology: Athens, Greece, 2019. [Google Scholar]
- Athanasoulis, D.; Farnoux, A. Délos : Un patrimoine menacé par le changement climatique. In International Conference Impacts of Climate Change on Cultural Heritage: Facing the Challenge, 21–22 June 2019; Academy of Athens-Research Center of Atmospheric Physics and Climatology: Athens, Greece, 2019. [Google Scholar]
- Ministry of Environment and Energy of Greece. National Strategy for Adaptation to Climate Change of Greece; Ministry of Environment and Energy of Greece: Athens, Greece, 2016; ISBN 2013012911040. [Google Scholar]
- Academy of Athens. Research Center of Atmospheric Physics and Climatology International Conference “Impacts of climate change on cultural heritage: Facing the challenge”, Athens, Greece, 21–22 June 2019. Available online: https://ccich.gr/climate-change-impacts-on-cultural-heritage/ (accessed on 17 November 2021).
- Greece Letter Dated 28 June 2019 from the Pernament Representative of Greece to the United Nations Addressed to the Secretary-General, A/73/938 2019, 4. Available online: https://digitallibrary.un.org/record/3812550?ln=fr (accessed on 17 November 2021).
- United Nations. Report of the Secretary-General on the 2019 Climate Action Summit and The Way Forward in 2020; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Hellenic Republic Establishment of a Working Group (hereinafter referred to as Coordinator Unit) for the implementation and support of the international initiative of Greece in relation to the protection of cultural heritage and monuments of nature from the impacts of climate. Off. J. Gov. 2021, B, 3283–3284.
- World Bank. Implementing Nature Based Flood Protection: Principles and Implementation Guidance; The World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- World Wildlife Fund. Natural and Nature-Based Flood Management: A Green Guide; WWF: Washington, DC, USA, 2016. [Google Scholar]
- Brauman, K.A.; Bremer, L.L.; Hamel, P.; Ochoa-Tocachi, B.F.; Roman-Dañobeytia, F.; Bonnesoeur, V.; Arapa, E.; Gammie, G. Producing valuable information from hydrologic models of nature-based solutions for water. Integr. Environ. Assess. Manag. 2022, 18, 135–147. [Google Scholar] [CrossRef] [PubMed]
- National and Kapodistrian University of Athens CLIMASCAPE Project. Available online: http://climascape.prd.uth.gr/ (accessed on 15 October 2021).
- Aristotle University of Thessaloniki-Department of Forestry and Natural Environmen XENIOS Project. Available online: https://xenios-project.eu/ (accessed on 15 October 2021).
- Ministry of Environment and Energy of Greece LIFE-IP AdaptInGR—Boosting the Implementation of Adaptation Policy across Greece. Available online: https://www.adaptivegreece.gr/ (accessed on 15 October 2021).
- Hellenic Republic Declaration of Ancient Messene archaeological site. Off. J. Gov. 1991, B, 585–586.
- Hellenic Republic Approval of the delimitation of the archeological site of Ancient Messina, Municipality of Messina, Peloponnese Region. Off. J. Gov. 2011, AAP, 2395–2399.
- Permanent Delegation of Greece to UNESCO. Archaeological site of Ancient Messene; UNESCO: Paris, France, 2014; p. 3. [Google Scholar]
- Themelis, P. Ancient Messene-An Important Site in SW Peloponnese. Aust. Archaeol. Inst. Athens-AAIA Bull. 2010, 7, 28–37. [Google Scholar]
- Themelis, P. Ancient Messene: Hystory-Monuments-people; Militos: Athens, Greece, 2010; ISBN 9780415475976. [Google Scholar]
- Hellenic Ministry of Environment and Energy. 1st Update of River Basin Management Plans of the River Basins of Western Peloponnese Water District (EL01). Analysis of the Anthropogenic Pressures and Their Effect on the Surface and Groundwater Waterbodies; Hellenic Ministry of Environment and Energy, Special Secretariat for Water: Athens, Greece, 2017; p. 380.
- IGME—Institute of Geology and Mineral Exploration Geological Map of Greece, Sheet Meligalas, Scale 1:50.000; IGME: Athens, Greece, 1989.
- Kampouroglou, E.; Chatzitheodorou, T. Anticorrosive and flood protection study of Ancient Messene archaeological site [in Greek]. In Restoration-Conservation-Protection of Monuments and Sites, Technical Periodical Publication; Ministry of Culture of Greece: Athens, Greece, 1993; pp. 407–414. [Google Scholar]
- Blouet, G.A. Expédition Scientifique de Morée, Ordonnée Par le Gouvernement Français: Architecture, Sculptures, Inscriptions et Vues du Péloponèse, des Cyclades et de l’Atlantique, Premier Volume; Firmin Didot: Paris, France, 1831. [Google Scholar]
- Smith, W. Dictionary of Greek and Roman Geography; Walton and Maberly: London, UK, 1857; Volume II. [Google Scholar]
- Aldenhoven, F. Itineraire Descriptif de l’Attique et du Péloponèse, Avec Cartes et Plans Topographiques; Adolphe Nast: Athenes, Greece, 1854. [Google Scholar]
- Decentralised Administration of Peloponnese Western Greece & Ionian Islands Provision of Water Use Permits of 94 Existing (Boreholes & Springs) and Two (2) New Water Abstraction Points (Boreholes) for Domestic Use to The Municipal Water Supply and Sewerage Company of Messini (DEYAM). Available online: https://diavgeia.gov.gr/decision/view/9Θ09OΡ1Φ-15Φ (accessed on 16 July 2021).
- Kalogeropoulou, E.; Kyriakaki, G.; Makri, N. Giving Prominence To Excavating Discoveries of Ancient Messini. BSc Dissertation; Aggelis, G., Ed.; National Technical University of Athens, School of Architecture: Athens, Greece, 2021. (In Greek) [Google Scholar]
- Tharros Newspaper. “Tharros” 4 November 1909: Distructions at Ithomi—Villages Were Buried. Available online: https://www.tharrosnews.gr/2021/02/tharros-4-noemvriou-1909-katastrofai-en-ithomi-choria-paresyrthisan/ (accessed on 1 November 2021). (In Greek).
- Orlandos, A. Excavation of Messene. In Proceedings of the Archaeological Society of Athens of the Year 1969; Archaeological Society of Athens: Athens, Greece, 1971; pp. 98–120. (In Greek) [Google Scholar]
- Kolivari, N. Ancient Messene Will Be Closed Due to Flood. Available online: https://eleftheriaonline.gr/local/koinonia/item/103838-kleisti-gia-20-imeres-i-arxaia-messini-meta-tin-plimmyra-fotografies (accessed on 6 July 2021). (In Greek).
- Hellenic National Meteorological Service. Significant Weather and Climate Events in Greece 2016; Fragkouli, P.V., Ed.; Hellenic National Meteorological Servic: Athens, Greece, 2016. [Google Scholar]
- Papagiannaki, K.; Lagouvardos, K. Extreme Weather Events: 6–10 September 2016. Available online: https://meteo.gr/article_view.cfm?entryID=168 (accessed on 1 April 2021). (In Greek).
- Krysanova, V.; Donnelly, C.; Gelfan, A.; Gerten, D.; Arheimer, B.; Hattermann, F.; Kundzewicz, Z.W. How the performance of hydrological models relates to credibility of projections under climate change. Hydrol. Sci. J. 2018, 63, 696–720. [Google Scholar] [CrossRef]
- Plate, E.J. HESS Opinions Classification of hydrological models for flood management. Hydrol. Earth Syst. Sci. 2009, 13, 1939–1951. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 2021, 784, 147058. [Google Scholar] [CrossRef] [PubMed]
- Refsgaard, J.C.; Storm, B. Construction, calibration and validation of hydrological models. In Distributed Hydrological Modelling; Abbott, M.B., Refsgaard, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 41–54. [Google Scholar]
- DHI. MIKE SHE User Manual; Danish Hydraulic Institute: Copenhagen, Denmark, 2020. [Google Scholar]
- Thompson, J.R.; Iravani, H.; Clilverd, H.M.; Sayer, C.D.; Heppell, C.M.; Axmacher, J.C. Simulation of the hydrological impacts of climate change on a restored floodplain. Hydrol. Sci. J. 2017, 62, 2482–2510. [Google Scholar] [CrossRef] [Green Version]
- Clilverd, H.M.; Thompson, J.R.; Heppell, C.M.; Sayer, C.D.; Axmacher, J.C. Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain Hydrodynamics. River Res. Appl. 2016, 32, 1927–1948. [Google Scholar] [CrossRef]
- National Cadastre, S.A. Digital Elevation Model (DEM) of Greece 2014–2016 (2m). 2020. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill Book Company: New York, NY, USA, 1993; pp. 4.1–4.53. [Google Scholar]
- Koutsoyiannis, D.; Xanthopoulos, T. Engineering Hydrology, 3rd ed.; National Technical University of Athens: Athens, Greece, 1999. (In Greek) [Google Scholar]
- IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L. (Eds.) IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Strandberg, G.; Bärring, L.; Hansson, U.; Jansson, C.; Jones, C.; Kjellström, E.; Kolax, M.; Kupiainen, M.; Nikulin, G.; Samuelsson, P.; et al. CORDEX Scenarios for Europe from the Rossby Centre Regional Climate Model RCA4; Report Meteorology and Climatology No. 116; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2014. [Google Scholar]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Popke, D.; Stevens, B.; Voigt, A. Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 32–47. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Keerakamolchai, W.; Weesakul, S.; Pudar, R.S.; Medina, N.; Alves, A. Combining ecosystem services with cost-benefit analysis for selection of green and grey infrastructure for flood protection in a cultural setting. Environments 2017, 4, 3. [Google Scholar] [CrossRef]
- Polyzos, S.; Arabatzis, G.; Tsiantikoudis, S. The attractiveness of archaeological sites in Greece: A spatial analysis. Int. J. Tour. Policy 2007, 1, 246–266. [Google Scholar] [CrossRef]
- Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Clim. Change 2016, 135, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.G.F. A comparison of flood extent modelling approaches through constraining uncertainties on gauge data. Hydrol. Earth Syst. Sci. 2004, 8, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
Date | Time | Precipitation (mm) |
---|---|---|
5 September 2016 | 06:00 | 0 |
12:00 | 0 | |
18:00 | 0 | |
6 September 2016 | 00:00 | 0 |
06:00 | 0 | |
12:00 | 14.0/6 h | |
18:00 | 55.0/12 h | |
7 September 2016 | 00:00 | 6.0/6 h |
06:00 | 132.6/24 h, 78.0/12 h | |
12:00 | 9.0/6 h | |
18:00 | 9.0/12 h | |
8 September 2016 | 00:00 | 0.0/6 h |
06:00 | 91.0/24 h, 0.4/12 h | |
12:00 | Trace/6 h | |
18:00 | Trace/12 h | |
9 September 2016 | 00:00 | 0.0/6 h |
06:00 | 0.0/12 h, Trace/24 h | |
12:00 | 0.0/6 h | |
18:00 | 0.0/12 h | |
10 September 2016 | 00:00 | 0.0/6 h |
Scenario | Period | RCPs | Mean Annual Precipitation (mm) | Mean Annual Potential Evapotranspiration (mm) | Mean Annual Temperature (°C) | ||
---|---|---|---|---|---|---|---|
Minimum | Mean | Maximum | |||||
Reference | 1971–2000 | - | 1037.4 | 1128.3 | 9.8 | 14.8 | 19.9 |
Sc1 | 2031–2060 | RCP 2.6 | 874.0 | 1183.5 | 11.1 | 16.1 | 21.3 |
Sc2 | 2071–2100 | RCP 2.6 | 1107.0 | 1175.1 | 10.8 | 15.9 | 21.1 |
Sc3 | 2031–2060 | RCP 4.5 | 946.9 | 1185.5 | 11.4 | 16.4 | 21.5 |
Sc4 | 2071–2100 | RCP 4.5 | 821.4 | 1199.7 | 11.7 | 16.7 | 21.8 |
Sc5 | 2031–2060 | RCP 8.5 | 845.6 | 1196.6 | 11.6 | 16.6 | 21.8 |
Sc6 | 2071–2100 | RCP 8.5 | 606.9 | 1292.7 | 14.1 | 19.1 | 24.4 |
Flood Event | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Scenario | Real Event | Sc2 | Sc3 | Sc3 |
Precipitation dates | 6–8 September 2016 | 19–26 October 2097 | 12–14 August 2033 | 21 October–3 November 2047 |
Cumulative precipitation (mm) | 279.0 | 274.9 | 272.2 | 314.9 |
Precipitation duration (d) | 3 | 8 | 3 | 14 |
Precipitation intensity (mm/d) | 93.0 | 34.4 | 90.7 | 22.5 |
Before adaptation plan | ||||
Flood dates | 7–15 September 2016 | 24–27 October 2097 | 13–19 August 2033 | 29 October–1 November 2047 |
Flood duration (d) | 9 | 4 | 8 | 4 |
Date of flood peak | 8 September 2016 | 23 October 2097 | 14 August 2033 | 29 October 2047 |
Maximum water depth (m) | 0.6 | 0.2 | 0.6 | 0.2 |
Maximum inundated area (×103 m2) | 5.1 | 0.2 | 4.1 | 0.2 |
After adaptation plan | ||||
Flood dates | 7–12 September 2016 | - | 13–17 August 2033 | - |
Flood duration (d) | 6 | 0 | 5 | 0 |
Date of flood peak | 8 September 2016 | 25 October 2097 | 14 August 2033 | 29 October 2047 |
Maximum water depth (m) | 0.4 | 0 | 0.3 | 0 |
Maximum inundated area (×103 m2) | 1.3 | 0 | 0.5 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentzafou, A.; Dimitriou, E. Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece. Hydrology 2022, 9, 19. https://doi.org/10.3390/hydrology9020019
Mentzafou A, Dimitriou E. Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece. Hydrology. 2022; 9(2):19. https://doi.org/10.3390/hydrology9020019
Chicago/Turabian StyleMentzafou, Angeliki, and Elias Dimitriou. 2022. "Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece" Hydrology 9, no. 2: 19. https://doi.org/10.3390/hydrology9020019
APA StyleMentzafou, A., & Dimitriou, E. (2022). Hydrological Modeling for Flood Adaptation under Climate Change: The Case of the Ancient Messene Archaeological Site in Greece. Hydrology, 9(2), 19. https://doi.org/10.3390/hydrology9020019